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Abstract

The worth of completing parallel tasks is modeled using utility functions, which
monotonically-decrease with time and represent the importance and urgency of
a task. These functions define the utility earned by a task at the time of its
completion. The performance of a computing system is measured as the total
utility earned by all completed tasks over some interval of time (e.g., 24 hours).
We have designed, analyzed, and compared the performance of a set of heuris-
tic techniques to maximize system performance when scheduling dynamically
arriving parallel tasks onto a high performance computing (HPC) system that
is oversubscribed and energy constrained. We consider six utility-aware heuris-
tics and four existing heuristics for comparison. A new concept of temporary
place-holders is compared with scheduling using permanent reservations. We
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also present a novel energy filtering technique that constrains the maximum
energy-per-resource used by each task. We conducted a simulation study to
evaluate the performance of these heuristics and techniques in multiple energy-
constrained oversubscribed HPC environments. We conduct an experiment with
a subset of the heuristics on a physical testbed system for one scheduling sce-
nario. We demonstrate that our proposed utility-aware resource management
heuristics are able to significantly outperform existing techniques.

Keywords: heterogeneous computing, energy-aware computing, utility
functions, resource management heuristics, parallel tasks, scheduling

1. Introduction

High performance computing (HPC) environments are commonly used to
execute computationally intensive tasks. These tasks are often parallel, meaning
that they utilize multiple cores within an HPC environment to reduce the time
required to complete the computational work of the task. It is necessary to
have resource managers that execute the workload arriving into the system in
a way that attempts to maximize the amount of useful work that the system
accomplishes. This is especially important when the system is oversubscribed,
e.g., the system cannot begin executing each task as soon as the task arrives in
the system.

The heterogeneous HPC environments that we modeled in this study are
based on those being investigated by the Extreme Scale Systems Center (ESSC)
at Oak Ridge National Laboratory (ORNL). The ESSC is part of a collaborative
effort between the Department Of Energy (DOE) and the Department of Defense
(DoD) to perform research and deliver tools, software, and technologies that can
be integrated, deployed, and used in HPC environments in both DOE and DoD.

Many systems use metrics such as “utilization” of machines to measure the
performance of the system’s resource manager. Because we consider an oversub-
scribed heterogeneous environment, utilization is not an effective performance
measure. This is because assigning a task to the node types that take longer to
complete the task (i.e., node types that are not as effective for that task) will
still result in high system utilization, but provide delayed results for that task.
Furthermore, because the system is oversubscribed, we would expect to always
have near 100% utilization.

To effectively model the performance of an oversubscribed heterogeneous
system, for this study we employ the concept of utility functions [1], which
are appropriate for modeling the needs of DOE and DoD. Utility functions are
monotonically-decreasing with time and represent the importance and urgency
of a task. They define the utility earned by a task at the time of its completion.
The performance of the overall computing system is measured by the total utility
earned from completing tasks in a given period of time. We refer to this as the
system utility.

Energy is an expensive and potentially limited resource required to operate
HPC systems (e.g., [2, 3, 4, 5]). It has been found that attempting to scale
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up current systems to achieve an exascale system would result in energy and
power requirements that are currently not feasible. For example, the power
requirement would be greater than a gigawatt [5]. In some environments, there
is a limit on the amount of energy that is available in some interval of time
[4, 6]. In this study, we constrained the amount of energy available to the
HPC system each day. The general problem of mapping tasks onto a set of
resources is known to be NP-hard [7]. It is not possible for an algorithm to find
optimal solutions to NP-hard problems for a realistic system in a reasonable
amount of time. To effectively maximize system utility while satisfying this
energy constraint, heuristics are needed. We also created a new energy filtering
technique to improve the energy efficiency of our heuristics.

We designed four utility-aware resource allocation heuristics: Max Utility,
Max Utility-per-Time, Max Utility-per-Resource, and Max Utility-per-Energy.
We compared these to four approaches from the literature: Conservative Back-
filling, EASY Backfilling, FCFS (first-come, first-served) with Multiple Queues,
and Random [8, 9]. In addition, we designed two metaheuristics that switch
between the Max Utility-per-Resource and Max Utility-per-Energy heuristics
depending on how energy constrained the system is at the time of the task’s
mapping.

Many heuristics for the resource allocation of parallel tasks in HPC environ-
ments schedule using permanent reservations to allow for allocations of nodes
to tasks in the future (e.g., [8, 9]). Because permanent reservations can be
restrictive, we developed the concept of using temporary place-holders when
scheduling. This provides additional flexibility by allowing newly arriving tasks
of high utility to replace tasks that have reserved resources with place-holders.

The novel contributions of this work include:

• the design of utility-aware heuristics and an energy-per-resource filtering
technique with the goal of maximizing utility earned by parallel tasks
while obeying an energy constraint in heterogeneous oversubscribed HPC
environments;

• the design of new metaheuristics that make use of the strengths of different
utility-based heuristics;

• the validation of the relative performance of the heuristics derived by the
simulator through the use of an experiment on a physical testbed system
for one scenario.

Preliminary versions of portions of this material appear in the 2015 Meta-
heuristics International Conference [10] and the 2016 Heterogeneity in Com-
puting Workshop [11]. The differences between this work and the preliminary
versions include: (a) the design, analysis, and evaluation of two new metaheuris-
tics that in general result in improved performance; (b) the simulation of many
more environments, which is used to further analyze the performance of the
heuristics and the effect that different parameters have on the heuristics; and
(c) experiments on a physical testbed are used to further evaluate the heuristics.
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This paper is organized as follows. In Section 2, we define the HPC environ-
ment and problem we are addressing. Section 3 explains the resource manage-
ment techniques that are utilized. The setup for our simulated environment is
detailed in Section 4. The simulation analyses and comparisons are presented in
Section 5. An experiment that we performed on a testbed system has its setup
and results shown in Section 6. In Section 7, we discuss related work. Finally,
in Section 8 we conclude and discuss future work.

2. Environment and Problem Description

2.1. Compute System Model

We modeled an environment where the compute system is composed of het-
erogeneous clusters of nodes, as shown in Figure 1. A node is the atomic unit
of resource allocation in this model. Each node is composed of one or more
cores. The nodes that form each cluster are homogeneous, meaning that they
are identical (and therefore have the same number and type of cores). The node
architecture varies among clusters and each cluster can have different numbers
of cores per node. We modeled cores that utilize dynamic voltage and frequency
scaling (DVFS) to switch among multiple performance states (P-states), where
each P-state provides different power consumption and execution speed [12].

2.2. Workload and Environment Characteristics

Tasks arrive dynamically and may be required to execute on multiple nodes
concurrently (i.e., parallel execution). Because the environment is oversub-
scribed, it is not possible for all tasks to earn their maximum utility due to
the delay in their completion time. In this study, we do not allow a task to
be assigned across nodes in separate clusters. Our model assumes that tasks
are independent (potentially submitted by different users) and therefore do not
communicate with one another. We make the assumption that tasks cannot be
preempted (i.e., once they begin executing, they execute to completion).

Task types in this environment have estimated execution characteristics (ex-
ecution time and energy consumed) that are deterministic and known to the
system resource manager. We assume that this information is available through
historical and experimental data. This assumption is a common practice in re-
search for resource allocation (e.g., [13, 14, 15]). Tasks with similar execution
characteristics belong to the same task type. Whenever a task arrives to the
system it specifies its task type, the number of nodes that it will need depending
on the cluster it is assigned to, and its utility function (tasks of the same type
do not necessarily have the same utility function). Because the environment is
heterogeneous, cluster A may be faster (or more energy efficient) than cluster
B for one task type, but not for all task types.

When a task is assigned to execute in the system, it is assigned to a set
of nodes in one of the clusters. All nodes in this set will use the same P-state.
Within each cluster, execution characteristics are defined by an Estimated Time
to Compute (ETC) matrix and an Average Power Consumption (APC) matrix
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[6]. The ETC matrix is used to specify the execution time of tasks for each task
type, cluster type, and P-state combination for some number of nodes. Because
nodes within a cluster are homogeneous, the ETC only needs to reference the
number of nodes that a task type will use in a given cluster. An example of part
of an ETC matrix, where the cluster and P-state have already been selected,
is shown in Figure 1. It is assumed that from past executions or experiments
we have entries for certain levels of parallelism, i.e., for certain numbers of
nodes. In some cases, a task type’s execution time may increase (instead of
decrease) with an increased number of nodes due to increased communication
and synchronization overheads. In our simulations, if the number of nodes the
task needs is not listed in the ETC matrix then its execution time is assumed to
be between two values listed in the matrix, and we calculate its execution time
using linear interpolation. We assume that all tasks require a number of cores
between the minimum and maximum values provided in the ETC matrix.

The APC matrix defines the average power consumption of the nodes that a
task will utilize and is structured similarly to the ETC matrix. We can calculate
an estimate of the total energy that any task will consume by multiplying its
execution time and average power consumption value.

In Figure 2, the interaction between the different components of the modeled
system is shown. Tasks arrive dynamically and are sent to the resource manager.
The resource manager will use the ETC and APC information, in addition to
the utility function of the task, to map the tasks to nodes in one of the clusters.

2.3. Utility Functions

Our performance metric is based on utility, a flexible measure of the impor-
tance of a task. Utility functions [1] are monotonically decreasing functions that
define the utility that a task earns upon completion, and depend on the amount
of time that has passed since the task was submitted to the system as depicted
in Figure 3. In this study, utility functions are defined by three parameters:
priority, urgency, and a utility class. The priority of a utility function is equal
to its starting utility (the maximum it can possibly earn). Urgency is used to
define the rate at which the utility function will decay. The utility for functions
with a higher urgency value will decrease at a faster rate than those with a lower
value. The utility class defines the shape of the utility function, and is scaled
using the priority and urgency. Each task has an associated utility function that
may differ from the utility functions of other tasks.

2.4. Problem Statement

We defined the system utility earned over a day as the sum of utility earned
by all tasks that are completed by the system during that day. This also in-
cludes a portion of the utility earned by each task if the task would be partially
completed during that day. This can occur when the task has an execution
time greater than the amount of time remaining in the day when its execution
begins and it has not yet finished its execution when the day reaches its end.
For example, if a task were to complete 70% of its total execution time during
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day i and 30% of its total execution time during day i + 1, then the utility
earned for this task during day i would be 70% of the task’s final utility and
the utility earned during day i + 1 would be the remaining 30% of the task’s
final utility. The system is oversubscribed, and has an energy constraint, which
is the maximum amount of energy that it can consume each day. The goal of
our resource manager was to maximize the utility earned by the system subject
to the energy constraint of the system.

3. Resource Management

3.1. Mapping Events

Mapping is the process of assigning and scheduling tasks to the nodes of
the HPC system. When a task arrives to the system, it is added to the set of
mappable tasks. Once a task is mapped to nodes, it is removed from this set.
During a mapping event, the resource manager makes allocation decisions for
some or all mappable tasks in the system. In each mapping event, three tech-
niques are used to assist in maximizing system utility. First, some of the tasks
are dropped to tolerate oversubscription (described in Subsection 3.3). Next,
energy filtering (detailed in Subsection 3.8) attempts to improve energy effi-
ciency by limiting the allocation options for tasks. Finally, one of the heuristics
defined in Subsections 3.4, 3.5, or 3.6 is used to make the final resource manage-
ment decisions. In the environment we considered, mapping events occur every
60 seconds, but this can be changed depending on factors such as task arrival
rates and the average execution time of tasks.

3.2. Permanent Reservations and Place-holders

A permanent reservation marks the resources that will be allocated to a task
at some point in the future. The number of cores allocated to a task is equal
to the number of nodes that are allocated to the task multiplied by the total
number of cores on each node (even if only a subset of the cores in a node are
used by the task). Throughout this paper, we refer to the resources allocated
to a task as the amount of time that the task will take to execute multiplied by
the number of cores that are allocated to that task:

resources allocated = execution time× cores allocated. (1)

If a task cannot begin executing immediately on available nodes, a perma-
nent reservation can be made for the task so that it can begin executing at a
future time. This is done so that the resource manager is aware of tasks that
cannot begin executing immediately due to required resources being unavailable.
Permanent reservations cannot be removed or moved, i.e., they ensure that the
reserved task will start execution on those resources at that future time. We cre-
ated place-holders as an alternative to permanent reservations. A place-holder
is similar to a permanent reservation, except that all place-holders are removed
from the system at the beginning of the next mapping event. This creates
opportunities for newly arriving tasks to begin execution sooner if those tasks
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would earn more utility than the tasks originally scheduled to those resources
during the last mapping event.

3.3. Task Dropping

At the start of a mapping event, we calculate the amount of utility that
each task can earn if it were to start execution immediately in the cluster that
allows the shortest execution time for the task. This calculated value is an upper
bound on the utility that the task can earn and may be more than is realistically
achievable. If this amount of utility is lower than a preset dropping threshold,
then the task is dropped from the system. This is done so that tasks that
are unable to earn a significant amount of utility are removed from the set of
mappable tasks. This is particularly important when dealing with permanent
reservations because, without dropping, reservations for tasks that earn little
utility can be made far into the future. This can be a poor use of the system’s
resources in terms of earning little utility for the reserved task, and can also
result in reduced utility being earned for the tasks that arrive in the future due
to the delay caused by these reservations. Determining the optimal dropping
threshold may be accomplished through simulations.

3.4. Comparison Heuristics

3.4.1. Overview

Four of the heuristics we considered were for the purpose of comparison to
our utility-aware resource management techniques. Three of these heuristics
are commonly used in parallel scheduling. In addition, we consider a Ran-
dom heuristic as an additional point of comparison. The process used by these
heuristics to select a subset of nodes within a cluster is described in Subsection
3.7

3.4.2. Random

This heuristic takes the tasks in order of arrival and assigns a task to a
random cluster with a random P-state. This process is repeated until all map-
pable tasks have been assigned to some cluster, or until no more assignments
are possible.

3.4.3. Conservative Backfilling

This heuristic, described in [9], considers tasks in order of arrival and assigns
each task to a cluster where it can start execution immediately. If there is no
cluster where the task can start execution, then the heuristic makes a permanent
reservation for the task on a cluster where the task can start execution as soon as
possible. This process is repeated until each task is executing or has a permanent
reservation, or it is not possible to assign any more tasks to the system because
there is no availability in the system to start the task before the end of the day
being simulated. This heuristic employs backfilling, the process of assigning
tasks to the voids (gaps in node usage) in the schedule that can occur when
reservations are made for a future time. A backfilled task may be able to start
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execution immediately or may create another reservation. This heuristic was
designed for homogeneous clusters and an environment that does not consider
utility or energy. The heuristic always used 0 as the P-state, indicating the
highest performance for a given node.

3.4.4. EASY Backfilling

Extensible Argonne Scheduling sYstem (EASY) Backfilling, from [8], is a
common heuristic for scheduling parallel tasks. It initially works in the same
way as Conservative Backfilling. The major difference is in how it handles
permanent reservations. It makes a permanent reservation for a single task that
cannot start execution immediately such that the task will start execution as
soon as possible, but will not make reservations for any tasks if a reservation
already exists. Similar to Conservative Backfilling, it will still continue to search
for backfilling opportunities for other tasks, as long as they can start execution
immediately without delaying the single reservation. This heuristic was designed
for homogeneous clusters and an environment that does not consider utility or
energy. The heuristic always uses P-state 0.

3.4.5. FCFS with Multiple Queues

The FCFS (first come, first served) with multiple queues heuristic, designed
to model systems such as CSU’s ISTeC Cray [16], is another comparison heuris-
tic. It is similar to the Conservative Backfilling heuristic, except that it uses
multiple queues instead of a single FCFS queue. The purpose of these queues is
to separate the tasks based on their expected resource usage. The three queues
used in this study are labeled small, medium, and large. Based on the infor-
mation available in the ETC matrix, it is possible to determine the amount of
resources (based on Equation (1)) that any task will be allocated, averaged over
the clusters. This average amount of resources is then used to determine onto
which queue that task will be appended. The tasks are added to queues in or-
der of their arrival. Tasks that consume less than a lower threshold of resources
will be added to the “small” queue. Tasks that consume more than an upper
threshold of resources will be added to the “large” queue. The rest will added
to the “medium” queue. In our simulation study, the lower threshold was set
to 30% of the average resources of the task that needs the most resources in
the system and the higher threshold was set to 60% of the average. The rest
of the execution of the heuristic is identical to Conservative Backfilling, except
that instead of taking one task at a time from the single queue, the heuristic
will cycle through the three queues in a round robin manner such that within
each cycle, at most one large task is assigned, at most four medium tasks are
assigned, and finally at most eight small tasks are assigned. The specific lower
threshold, upper threshold, and the number of tasks assigned from each queue in
each iteration are examples of what may be used in a system. Implementations
of this heuristic on other systems may use different values for these parame-
ters. The motivation for this heuristic is to attempt to balance the tasks being
assigned to the system based on resources needed.
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3.5. Utility-Aware Heuristics

3.5.1. Overview

We have designed four utility-aware heuristics that can be used with perma-
nent reservations or with place-holders. All of these heuristics use a framework
that is based on the concept of the Min-Min scheduling technique from [17],
which has been used successfully in many environments (e.g., [18, 19]), but has
not been explored in an oversubscribed energy constrained environment with
parallel tasks. All of these utility-aware heuristics have a similar structure that
defines their execution, but each utilizes a different objective measure.

3.5.2. Heuristic Objective Measures

We utilized four objective measures for our heuristics. These are Utility
(Util), Utility-per-Time (UPT), Utility-per-Resource (UPR), and Utility-per-
Energy (UPE):

Util = value of the task′s utility function at completion, (2)

UPT = Util/the task′s execution time, (3)

UPR = Util/resources allocated to the task, (4)

UPE = Util/energy consumed by the task. (5)

We defined four heuristics, Max Util, Max UPT, Max UPR, and Max UPE
using the objective measures listed in Equations (2)-(5), respectively. Max
Util, Max UPT, and Max UPE were used in our work in [1, 6] with an energy
constraint, but only for serial tasks. Thus, the work presented in this study is
significantly different because the heuristics are designed for parallel tasks that
are assigned to sets of nodes.

3.5.3. Maximizing the Objective Measure for Each Task

The first phase of these heuristics involves finding the maximum value of the
heuristic’s objective measure for each mappable task. This is done by selecting
an allocation of nodes within each cluster that maximizes this objective measure
(varying the P-state as needed to achieve this maximum). This is shown for the
Max UPE heuristic in Algorithm 1, lines 2 to 4.

3.5.4. Assigning Tasks to Resources

Once a maximum objective measure allocation has been found for each un-
mapped task, the task that has the highest maximum objective measure is
assigned to its selected resources (defined by a cluster, nodes, a P-state, a start
time, and a finish time). This may create a permanent reservation if necessary
(i.e., when the task cannot start execution at the current time). The task is
removed from the set of mappable tasks. This process of greedily assigning
tasks to resources is repeated until no more unmapped tasks exist in the sys-
tem, or until it is not possible to assign any more tasks due to running out of
energy or reaching the end of the day. This is shown in Algorithm 1 for the
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Max UPE heuristic in lines 5 to 11. This algorithm also can use place-holders
instead of permanent reservations, by replacing “permanent reservations” with
“place-holders” in line 9 of Algorithm 1.

Algorithm 1 Pseudo-Code for the Max UPE Heuristic

1: while the set of mappable tasks is not empty and a mappable task exists
that can be scheduled to begin executing during the current day based on
energy remaining do

2: for each task in the set of mappable tasks do
3: find nodes/cluster/P-state combination

that maximizes UPE for the task
4: end for
5: select task from the set of mappable tasks with nodes/cluster/P-state

combination that has the highest maximum UPE
6: if selected task can start execution immediately

with that nodes/cluster/P-state combination then
7: assign selected task to that nodes/cluster/P-state combination
8: else
9: create a permanent reservation for selected task

on that nodes/cluster/P-state combination
10: end if
11: remove task from the set of mappable tasks
12: end while

3.6. Metaheuristics

3.6.1. Overview

In some cases, none of the heuristics described are well suited to a particular
environment. In this situation, a strategy based on a concept in [20], permits
switching between heuristics depending on the current state of the system. We
designed two metaheuristics to achieve good performance regardless of the en-
ergy constraint. These metaheuristics switch between Max UPE and Max UPR
depending on conditions defined below.

3.6.2. Event-Based Metaheuristic

The Event-Based metaheuristic chooses one of Max UPE and Max UPR at
the start of each mapping event and uses that heuristic for the entire mapping
event. At any given time during the day, we define a “goal energy,” which is
the energy that should be consumed up to a specific point of the day. This goal
energy could also be determined using known task arrival data to potentially
improve the metaheuristic, but because the environment in this study has an
unknown dynamic task arrival pattern, we consider the case where the goal is to
consume energy at a constant rate so that tasks arriving at any point during the
day will have energy to use. At the start of each mapping event, we calculate
the sum of energy consumed since the beginning of the day and the energy that
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will be consumed if all tasks in the current mapping also execute (i.e., currently
executing tasks and tasks with reservations or place-holders). If this energy
is greater than the goal energy, the Event-Based metaheuristic will use Max
UPE because the system has been consuming energy at a rate above the goal.
Otherwise, the metaheuristic will select Max UPR.

3.6.3. Task-Based Metaheuristic

The Task-Based metaheuristic will initially select Max UPE or Max UPR
using the same strategy as the Event-Based metaheuristic described above. If
the metaheuristic chooses to use Max UPR, it will use the heuristic to assign
tasks one by one. As tasks are assigned, the sum of energy consumed since
the beginning of the day and the energy that will be consumed if all tasks in
the current mapping also execute is updated. Once this sum reaches the goal
energy, the heuristic will switch to Max UPE and will finish the mapping event
by assigning tasks with Max UPE.

3.7. Finding Allocation Options for a Task

We designed a technique to select a node allocation for a task within a clus-
ter (line 5 of Algorithm 1). Given that nodes in a cluster are homogeneous,
the maximum value of any heuristic’s objective function for each task/P-state
combination (e.g., Max UPE) within each cluster is achieved when that task
finishes execution as soon as possible in that cluster with that P-state. The ex-
ecution time of a task will be the same irrespective of which nodes in a cluster
it uses. Because of this, finding the earliest possible finish time for a task is
equivalent to finding the earliest possible start time for the task. The allocation
options that are considered for a task are the earliest possible start time for
each P-state/cluster combination. This strategy was used for all of the heuris-
tics that we present in this paper (i.e., the comparison heuristics discussed in
Subsection 3.4, the utility-aware heuristics detailed in Subsection 3.5, and the
metaheuristics described in Subsection 3.6).

When the earliest possible starting time for a task is found within a cluster,
it is possible that there will be a set of nodes to choose from that contains
more nodes than are requested by the task. In this case, we use two criteria to
attempt to pick the best subset of nodes. The first of these criteria is to pick
nodes that cause the smallest number of idle voids in the system (i.e., sections
of time between the executions of two tasks on node). The second criterion,
which is only applied if there is a tie in the first criterion, is to compare the
size of the idle voids into which the task would be inserted, and to choose the
nodes with the smallest voids. An example of this process is shown in Figure 4a,
where a task t is requesting three nodes. The earliest time when three nodes
are available is a time when four nodes (n3, n4, n5, and n6 ) are available and
we use this algorithm to select three nodes out of the four. In this example,
n6 and n5 are selected in that order using the first criterion, and then n3 is
selected using the second criterion (the red arrows in Figure 4 show the size
of the idle voids being compared in this step). The node n4 is not selected.
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The motivation for these criteria is to reduce the overall fragmentation of the
schedule to give future tasks a better chance of being backfilled.

3.8. Energy Filtering

3.8.1. Overview

We have designed energy filtering techniques to improve the effectiveness
of our utility-aware heuristics under an energy constraint. An energy filter
is used to remove allocation options that exceed a notion of “fair share” of
energy consumption. The motivation for energy filtering is to limit the rate at
which energy is consumed by the resource manager until the energy constraint
is reached at the end of the day. Without energy filtering, many heuristics will
use up their energy part way through the day, which could result in lost utility
due to the inability to execute potentially high utility tasks that arrive after
the energy constraint has been reached. This is just a heuristic approach and
its effectiveness will need to be evaluated to determine what is suitable for a
typical expected environment.

3.8.2. Energy-per-Task Filtering

We calculate the energy-per-task budget for a task as the fair share of energy
that the task is permitted to consume. This budget, extended from our serial
version of this energy filter in [6] to apply to parallel tasks, is calculated using
the energy remaining in some interval of time (such as a day), and the estimated
number of tasks that will be executed in that same interval:

resources remaining =∑
i

unallocated time remaining on node i× cores on node i, (6)

estimated number of tasks remaining =

min(
resources remaining

average resources used
,

energy remaining

average energy consumed
),

(7)

energy-per-task budget =

leniency factor × energy remaining

estimated number of tasks remaining
.

(8)

A leniency factor is included that can be used to adjust the filter. As the
leniency factor is increased, the filter will allow more options for each task. In
our simulations, we set this factor by performing a parameter sweep to find the
best possible leniency value. Any task allocation options where the task would
consume energy greater than the energy budget are not considered by heuristics.

3.8.3. Energy-per-Resource Filtering

In our previous work, there were only serial tasks resulting in a one-to-one
mapping between a single task and a single resource. In contrast, here we
are considering parallel tasks that can use different numbers of resources. We
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need to consider the resources needed when designing the energy filter. We
present a new energy-per-resource filter that provides better performance in an
environment with parallel tasks. We calculate the energy-per-resource budget
as the fair share of energy-per-resource that a task is permitted to consume.
This energy-per-resource budget is calculated by dividing the energy remaining
in the day by the unallocated resources remaining in the system during the day:

energy-per-resource budget = leniency factor × energy remaining

resources remaining
. (9)

Again, we multiply by a leniency factor determined by simulations to improve
the results of this filter. We can then calculate the energy-per-resource of any
task allocation as the amount of energy that the allocation will consume, divided
by the resources allocated to the task, as defined in Equation (1). If the energy-
per-resource of some task allocation exceeds the energy-per-resource budget,
then that allocation is not considered by the heuristics.

4. Simulation Setup

4.1. Overview

The simulation setup described in this section was designed based on dis-
cussions with researchers from ORNL and DoD. We generated 48 simulation
trials as described in Subsection 4.2. We simulated a total of 28 hours, but
only analyzed the results for the last 24 hours of each simulation. The first four
hours ensure that the simulated system does not begin with all nodes in an idle
state.

4.2. Generation of Compute System and a Synthetic Workload

4.2.1. Compute System

The compute system we simulated is composed of 100,000 cores that are
distributed across six heterogeneous clusters. Of the clusters, four are general-
purpose and two are special-purpose. Special-purpose clusters are clusters with
specialized hardware that are designed to execute only specific tasks. For exam-
ple, the nodes of a special-purpose cluster may have GPUs available and would
only execute tasks that can utilize the GPUs. It is assumed that each special-
purpose cluster will have more cores on average than the individual general-
purpose clusters. The difference between general-purpose and special-purpose
clusters is the type of tasks they are able to execute.

4.2.2. Workload

In our simulations, two workloads were considered. The first has a mean of
5,000 parallel tasks arriving per day and the other has a mean of 10,000 parallel
tasks arriving per day. Each of the tasks belongs to one of 100 task types that we
generate for each simulation trial with different ETC values and APC values. Of
these 100 task types, 60 are tasks that can execute on general-purpose clusters
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and 40 are tasks that execute on special-purpose clusters. General-purpose
tasks can only run on the general-purpose clusters. Of the tasks that execute on
special-purpose clusters, 20 types can execute only on one of the special-purpose
clusters and the other 20 types can only execute on the other special-purpose
cluster. Because they cannot execute on the same clusters, the only interaction
between the tasks that execute on general-purpose clusters and the tasks that
execute on special-purpose clusters is the shared system energy constraint.

4.2.3. Utility Functions

To describe a task’s utility function, we used three parameters: priority,
urgency, and utility class [1]. The priority (or starting utility) and urgency
parameter for the utility function of each task type was generated using the
distribution of priority and urgency shown in Table 2 (from [1]). The actual
starting utility value was chosen uniformly from the starting utility range associ-
ated with each priority level. For each task of a task type, a utility class (defined
in Subsection 2.3) is randomly selected from one of 20 that we generated for our
simulation studies in [1].

4.2.4. Single Core Execution Time

The execution time for each task type on a single core for one of the clusters is
sampled from a Gaussian distribution. Because we assumed there is a correlation
between the single core execution time of a task and the starting utility value, the
mean of the Gaussian distribution is selected based on the starting utility of the
task type. This was because, in our intended environment, longer running tasks
are generally of higher importance. The perfectly correlated values for starting
utility and single core execution time were defined such that task types with the
minimum possible single core execution time (set to 1 hour) had the minimum
possible starting utility (set to 1). Similarly, task types with the maximum
possible single core execution time (set to 18 hours) had the maximum possible
starting utility (set to 8). The perfectly correlated values are obtained through
linear interpolation using these perfectly correlated end points. The perfectly
correlated values were used as the mean values for the Gaussian distribution
described above for determining the single core execution time for each task
type. The correlation between the single core execution time of a task type
and the starting utility of a task that we use for the 100 task types in the 48
simulation scenarios can be seen in Figure 5. This correlation was generated by
using a coefficient of variation (COV) value of 0.15 for the Gaussian distribution
described above. The execution time on other clusters (i.e., the heterogeneity)
was modeled using the COV method from [21] with a COV parameter of 0.3. To
generate this heterogeneity using the COV method, the execution time on each
other cluster is sampled from a gamma distribution with the COV of 0.3 and a
mean equal to the correlated single core execution time described above. The
entries of the APC matrix were generated using the COV method for generating
ETC matrices [21]. The power consumption on one of the clusters is generated
by sampling a gamma distribution with a mean power consumption of 133 watts
and a COV of 0.2. The power consumption for each of the other clusters is then
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sampled from a new gamma distribution with a COV of 0.2 and a mean equal
to the power consumption obtained for the first cluster.

4.2.5. Individual Task Arrivals

Once we had the completed set of task types, individual tasks were generated
for each task type. We defined a mean number of total tasks to generate an
equal mean number of tasks for each task type. From this mean number of
tasks, the mean rate of task arrival is calculated by dividing the mean number
of tasks of each type by the duration of a day (24 hours). We sample the uniform
distributions obtained from Table 3 to determine that the number of cores that
each task of a task type will use. The values in this table, which were used for
our simulation study, were based on typical DOE and DoD environments. Next,
we generated the arrival pattern for a task type. If the task type requires fewer
than or equal to 4096 cores, then its tasks will arrive with a sinusoidal pattern
throughout the 24-hour period. All other tasks will instead arrive with a high
rate during work hours (i.e., between 9:00 AM and 6:00 PM) and a low rate at
other times during the day. This is done to model the expected arrival patterns
for workloads of interest to DOE and DoD. The high rate is equal to two times
the mean rate of the task type and the low rate is set below the mean rate so
that the average arrival rate over the day is still equal to the mean rate.

4.2.6. Parallel Execution Time Scaling

The execution time for parallel tasks in our simulations is determined from
the single core execution times using the Downey model for the speedup of
parallel programs [22]. We use the high variance model, which is defined in
terms of two parameters A (the average degree of parallelism for the program)
and σ (the COV of the parallelism for the program). The σ value used in our
simulations is sampled uniformly between 4 and 10 for each task type and A is
equal to the average number of nodes requested by the task type. This model
represents tasks that have a sequential component of length σ and a parallel
component with an execution time of 1 when the task is given its maximum
parallelism. The parallel component has a maximum parallelism of A+Aσ−σ.
The execution time of a task in terms of the number of nodes, n, allocated to
it is then defined as:

T (n) =

{
σ + A+Aσ−σ

n 1 ≤ n ≤ A+Aσ − σ

σ + 1 n > A+Aσ − σ
. (10)

4.2.7. P-states

Cores may have many P-states. For our simulation study, we assumed they
each had three P-states. This provides for a choice between the lowest P-state,
an intermediate P-state, and the highest P-state. We also ran simulations with
fifteen P-states and found that the relative performance of the heuristics was
the same as using three P-states. Because of this, we consider three P-states
to be a good sample for modeling the advantages that can be gained from
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having multiple P-state options. This allows for energy-aware heuristics and
techniques to improve energy efficiency while keeping the search space for al-
locations tractable. All cores in each node must always have the same active
P-state. For our simulations, the differences among P-states for the same node
type were defined using a “power scaling factor” for each P-state. This factor
was used to scale the average power usage and execution time of each task for
that P-state. The three P-states have power scaling factors of 1.0, 0.75, and 0.5.
A “randomness factor” also was used so that the power scaling factor is not the
same for all combinations of task types and clusters. Each randomness factor
was generated by sampling a gamma distribution with a mean of 1, and a COV
of 0.3 for general-purpose tasks and 0.2 for special-purpose tasks. The power
consumption scaling for each of the three P-states is determined by sampling
from one of three gamma distributions (each P-state has a different distribu-
tion). These gamma distributions have means equal to the power scaling factor
associated with that P-state multiplied by a randomness factor (generated as
described above). In addition, the gamma distributions have a COV of either
0.03 for general-purpose tasks or 0.02 for special-purpose tasks. The execution
time scaling for each P-state was determined in a similar way to the power scal-
ing. The execution time scaling for each of the three P-states is determined by
sampling from one of three gamma distributions (each P-state has a different
distribution). These gamma distributions have means equal to the square root
of the product of the power scaling factor associated with that P-state and a
randomness factor [6]. The final execution time scaling was found by taking the
reciprocal of this value so that the execution time of the task type is increased
when there is less power.

4.3. Generating a Workload from a Real System Trace

We also simulated a system that used a workload of tasks generated from
the log of the Curie Supercomputer in France from Dror Feitelson’s Parallel
Workloads Archive [23, 24]. We used the “clean” version of the Curie trace
and selected 48 days from the trace for our simulations. Because we simulate
28 hours in total, we use the last four hours from the previously simulated
day as the first four hours of the 28 hours. In addition, we removed any tasks
that requested more than 4,096 cores from the trace to keep the size of the
simulations tractable. Over the 48 days of log data, this resulted in the removal
of 1,114 tasks out of 92,298 tasks in total (1.2% of the tasks).

From this trace, we took each task’s arrival time, execution time, and the
number of cores that were allocated to it. Unlike the environment we considered
in this study, the data we took from the Curie trace was for a homogeneous sys-
tem. To generate a workload for a heterogeneous system, we use the execution
time as the task’s execution time on one of the clusters of the simulated system
and generate values for the other clusters using the method described above in
Subsection 4.2. In addition, the size of the simulated system in cores is equal
to a fraction of the 92,160 cores of the Curie system. This fraction is varied
between 10% and 80% of the cores in our simulations. We always use a fraction
of the cores to ensure that the system is oversubscribed (all tasks in the Curie
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trace started and finished execution on the real Curie system). All other aspects
of the workload and system are generated using the same methods described
above in Subsection 4.2.

4.4. Resource Management Parameters

4.4.1. Dropping Threshold

The dropping threshold for our resource manager was set to 0.5 for the
majority of our simulations. We also simulated scenarios where there was no
dropping or a dropping threshold of 0, 0.1, or 0.3. Using a dropping threshold
of 0.5 means that tasks that could no longer earn utility greater than 0.5 if
they were to start execution immediately in their fastest cluster were dropped
from the system. We selected this threshold value because it gives all tasks the
opportunity to execute (i.e., because all tasks arrive with a starting utility of at
least 1.0, it is possible for them to be mapped to nodes in the system). Lower
dropping thresholds resulted in all heuristics earning less or equal utility than
they did with a dropping threshold of 0.5. In actual practice, the threshold can
be set based on simulations modeling the real system environment to be used.
Dropping may also be disabled entirely, but this could greatly decrease system
performance in terms of utility earned depending on which heuristic is used.

4.4.2. Energy Filter Leniency Factors

We define the maximum system utility as the utility that would be earned if
all tasks began execution at the time that they were submitted to the system.
This is an upper bound on how much utility can be earned, i.e., the system
utility, but is unobtainable in an oversubscribed environment because by defini-
tion all tasks cannot earn their individual maximum utility values (as discussed
in Subsection 2.3). The leniency factors for the two energy filters were both
selected empirically using simulations, by varying the energy leniency factor for
the Max UPR heuristic with place-holders as seen in Figures 6 and 7 for a mean
of 5,000 tasks arriving per day. The 95% mean confidence intervals are based on
the 48 simulation trials. The leniency factor that performed the best was then
used for all utility-based heuristics that were not energy-aware (i.e., Max Util,
Max UPT, and Max UPR) with permanent reservations and with place-holders.
Using these results, a leniency factor of 2.0 was chosen for the energy-per-task
filter and a leniency factor of 4.0 was chosen for the energy-per-resource filter.
The energy leniency factors for a mean of 10,000 task arrivals were determined
using the same method. In practice, the leniency factors can be set based on
the results of simulations modeling the real system environment to be used.

4.4.3. Energy Constraint

We set the energy constraint by running simulations without an energy con-
straint and observing how much energy the best heuristics consumed. We then
set the energy constraint to a fraction of the energy that the best heuristic
consumed to show the advantages of the energy-aware approaches.

The energy constraint for our simulations for a mean of 5,000 tasks arriv-
ing was initially set to 70% of the energy consumption for the Max Util with
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place-holders heuristic (and no energy constraint) because this heuristic earned
the highest mean percentage of maximum utility. This resulted in an energy
constraint of 12 gigajoules, which was used for most of our simulations. This
provided a good starting point to ensure that the system would be constrained
in terms of energy. In addition, we varied the energy constraint for this system
from 8 gigajoules to 18 gigajoules to study a wider range of constraints. For
our study of the workload generated using the Curie trace, we varied the energy
constraint from 8 gigajoules to 26 gigajoules.

When the level of oversubscription of the system was increased by modeling
a mean of 10,000 task arrivals per day, and there was no energy constraint, Max
UPR with place-holders was the best heuristic. The energy constraint for a
mean of 10,000 tasks arriving per day was set to 70% of the energy consumed
by the Max UPR with place-holders heuristics equal to 15 gigajoules. In a real
system, the energy constraint would be set by the system administrator.

5. Simulation Results

5.1. Comparing 5,000 and 10,000 Tasks per Day

In Figure 8a, the percentage of maximum system utility earned in an energy
constrained environment for a mean of 5,000 tasks is shown. Here, the utility-
based heuristics made use of task dropping. In addition, results are shown for
simulations where the utility-based heuristics used no energy filtering, energy-
per-task filtering, and energy-per-resource filtering. The energy consumption for
these results can be seen in Figure 8b with an energy constraint of 12 gigajoules.
Results using the energy filters are not shown for the UPE heuristic because they
had identical performance in this environment. Using either energy filtering
technique allows the other utility-based heuristics to operate with a higher level
of energy efficiency. This allows them to earn significantly more utility than they
did when an energy constraint was set with no energy filtering. The confidence
intervals in Figure 8 are based on the 48 simulation trials. The set of comparison
heuristics (Random, Conservative Backfilling, EASY Backfilling, and Multiple
Queues) did not use the energy filters because they are not applied to these
heuristics in the literature.

The utility-aware heuristics (Max Util, Max UPT, Max UPR, and Max
UPE) that we proposed to solve this problem are able to earn significantly more
utility than the comparison heuristics from the literature that do not consider
utility and make permanent reservations instead of using place-holders (EASY
Backfilling, Conservative Backfilling, and Multiple Queues). Because the system
is oversubscribed and these comparison heuristics attempt to execute tasks in
their FCFS arrival order, they will often run tasks that have had significant
decay in their utility functions, resulting in less overall utility. The comparison
heuristics obtain close to 35% of the maximum system utility on average, while
the worst performing utility-aware heuristics earn an average of 55% of the
maximum system utility. Finally, the best performing heuristics have an average
utility of around 73% of the maximum system utility.
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The energy-per-resource filter that we designed during this study outper-
formed the energy-per-task filter, earning 8% more utility on average in the
case of Max UPR with place-holders, as seen in Figures 8a and 8b for a mean of
5,000 task arrivals. This is due to the increased ability of the energy-per-resource
filter to execute tasks that have a higher amount of resources allocated to them
(see Equation (1)). Recall that tasks that have longer execution time in general
have higher starting utility values (see Figure 5). The energy-per-task filter will
almost always remove all options for these tasks because of the large amount of
energy that they consume due to the increased amount of resources allocated to
them (Equation (1)). We also examined how the energy-per-resource filter per-
forms with a higher level of oversubscription created by a mean of 10,000 task
arrivals per day. The results with this higher level of oversubscription can be
seen in Figure 9. The relative performance of Max UPR with place-holders and
Max UPE with place-holders is comparable to the results for a mean of 5,000
task arrivals per day, but the performance of Max UPT with place-holders has
degraded such that the other place-holder heuristics perform better with no
overlapping 95% confidence intervals, obtaining up to 50% more utility in the
case of Max UPR with place-holders. Max UPT does poorly because it priori-
tizes tasks tasks with shorter execution times (it does not consider the number
of nodes a task is assigned to). Tasks that are parallelized over many nodes
will often have the shortest execution times. Max UPT will prioritize these
tasks, which is inefficient in terms of resources. This results in especially poor
performance because of the high level of oversubscription in this environment.

The performance of the comparison heuristics from the literature became
significantly worse with this increase in oversubscription. With so many tasks
arriving, it is more common for these heuristics to schedule tasks that earn
insignificant amounts of utility. The permanent reservations for these tasks can
extend far into the future preventing newly arriving tasks from running quickly.
When Figure 9a is compared with the results in Figure 8a, the difference between
the performance of the heuristics that earn the most utility (Max UPR with
place-holders and Max UPE with place-holders, which have 49.5% and 48.7%
of the maximum utility on average, respectively) and the comparison heuristics
from the literature such as Conservative Backfilling and EASY Backfilling, which
obtain averages of only 15.3% and 7.1% of the maximum utility, respectively,
has become more significant.

Even though the Max UPR with place-holders heuristic using the energy-
per-resource filter is able to earn comparable utility to the Max UPE with place-
holders heuristic for multiple levels of oversubscription, shown in Figures 8a and
9a, the Max UPE with place-holders heuristic consumes less energy as seen in
Figures 8b and 9b, where the average energy consumed by Max UPR with
placeholders increases by 20% when compared to Max UPE with place-holders.
We consider Max UPE with place-holders to be the best heuristic that we have
designed for use in energy constrained environments because it is able to earn
utility comparable with all other high performing heuristics, while consuming
less energy.

We do not expect the overhead of our heuristics to be prohibitive when
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running on a typical computing environment’s frontend or scheduling node.
A single mapping event for the Max UPE with place-holders heuristic took
0.1 seconds on average when simulating the results shown in Figure 8. If the
number of P-states were increased to 15, our simulations showed that the Max
UPE with place-holders heuristic would only take 0.3 seconds to execute on
average. In addition, with 15 P-states the performance of the heuristic in terms
of utility earned and energy consumed is similar. When considering the larger
number of tasks shown in Figure 9, the Max UPE with place-holders heuristic
took less than two seconds to execute. A single mapping event for the Max
UPR with place-holders and energy-per-resource filtering took three seconds
on average when simulating the results shown in Figure 8 and the Max UPR
with place-holders heuristic with energy-per-resource filtering took 80 seconds
in the larger simulations shown in Figure 9. With the smaller number of tasks,
both of these heuristics complete well within the scheduling interval of a typical
cluster scheduler (usually approximately 60 seconds). Max UPE with place-
holders continues to execute well within this scheduling interval even for larger
numbers of tasks.

5.2. Evaluation of the Metaheuristics

We also designed two metaheuristics that combine Max UPR and Max UPE.
Results comparing these heuristics to the other heuristics are shown in Figure 10.
In these results, all heuristics utilize a dropping threshold of 0.5 and results are
not shown for the utility-based heuristics with permanent reservations because
permanent reservations never performed better than place-holders in any of
our simulations. These results show that the metaheuristics are able to use
the entire energy budget for the day while earning an average utility that is
comparable to Max UPE. The advantage of the metaheuristics over Max UPE
is discussed in Subsection 5.4 Because the Event-Based metaheuristic requires
simpler operations, it runs faster than the Task-Based Metaheuristic, but their
performance in terms of utility earned is the same, therefore we consider the
Event-Based metaheuristic to be a better metaheuristic. Another significant
advantage to the metaheuristics over Max UPR is that they perform well even
without the use of an energy filter. In our simulations, using an energy filter
resulted in a significant increase in the execution time of the heuristics. Be-
cause the metaheuristics do not use an energy filter, the overhead of running
these heuristics is significantly lower than Max UPR with place-holders and the
energy-per-resource filter. The Event-Based Metaheuristic completes mapping
events in the simulations used to generate Figure 10 with an average execution
time of 0.1 seconds compared to an average execution time of three seconds for
Max UPR with place-holders and the energy-per-resource filter.

5.3. The Effects of Varying the Dropping Threshold

The dropping threshold was varied for the 5,000 task environment to obtain
the results shown in Figure 11. The figure shows the percentage of maximum
utility earned by all of the heuristics for each dropping threshold. In this en-
vironment, the energy constraint is 12 gigajoules. These results demonstrate
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the effect of various dropping thresholds below the minimum starting utility
of any task in the system. For the utility-based heuristics, dropping does not
have a significant effect on performance. For the comparison heuristics other
than Random, there is a significant increase in performance when the dropping
of tasks is enabled and the dropping threshold is greater than 0. For exam-
ple, when increasing dropping threshold from 0 to 0.1, Conservative Backfilling,
EASY Backfilling, and Multiple Queues see increases of 28%, 20%, and 28%
in their average utility earned, respectively. This is because these heuristics do
not normally consider utility and consider the tasks in FCFS order. This means
that the oldest tasks, which are the most likely to have a large decay in their
utility functions, will be scheduled first. Using dropping with these heuristics
ensures that all tasks that get scheduled by the heuristic will earn some utility.
This effect is not as significant for the Random heuristic (there is an increase
of 5% when increasing the dropping threshold from 0 to 0.1) because it often
skips over some of the tasks that would not earn a significant amount of utility.

5.4. Energy Constraint Analysis

In Figure 12a, the percentage of maximum system utility earned in eleven
energy constrained environments for a mean of 5,000 tasks is shown. Here, all
heuristics employed task dropping. The energy consumption for these results
can be seen in Figure 12b. The confidence intervals in Figure 12 are based on
the 48 simulation trials.

It can be seen in Figure 12a that for environments that have a tight energy
constraint, the Max UPE heuristic and both metaheuristics (Event-Based and
Task-Based) are able to earn the most utility. On average, they earn 60% of the
maximum system utility in the case with an 8 gigajoule energy constraint. The
reason for this is because these heuristics consider the energy consumption of
tasks when making mapping decisions. Max UPE will always choose the most
energy efficient option for any task while the metaheuristics will attempt to use
energy at a constant rate throughout the day so that tasks arriving later in the
day have the opportunity to execute.

In the environments with a loose energy constraint, the Max Util heuristic,
Max UPR heuristic, and the metaheuristics are able to earn the most utility.
In the case with an 18 gigajoule energy constraint, they earn almost 80% of
the maximum system utility on average. This is because in these environments
energy is not a significant constraint and it is more important to use the system
resources efficiently by selecting the tasks that would earn the highest utility.
In addition, the metaheuristics behaved similarly to Max UPR because with a
loose energy constraint they rarely select Max UPE. The utility-aware heuristics
that do not consider energy also see a very significant drop-off in terms of utility
earned as the energy constraint becomes tighter.

For the cases with intermediate energy constraints, the metaheuristics earn
the highest utility. In the environment with a 15 gigajoule energy constraint,
the metaheuristics get 79% of the maximum system utility while the Max UPE
and Max UPR heuristics obtain 74% of the maximum system utility on average
and the corresponding 95% confidence intervals do not overlap. This is because
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they are energy-aware, but do not always choose the most energy efficient option
for a task if a task with higher utility is available. In these environments, Max
UPE will maximize its energy efficiency, resulting in reduced utility earned due
to not using the entire energy constraint.

5.5. Impact of Integrating an Energy Filter

Results for the same set of environments using the energy-per-resource filter
are shown in Figure 13. Figure 13a shows the percentage of maximum system
utility earned by each of the heuristics with this filter. This filter improves the
utility earned by the utility-based heuristics when their energy consumption
without an energy constraint is greater than the energy constraint. In all cases,
the Event-Based metaheuristic earns utility that is comparable to the other best
performing heuristics. The leniency factor used in these simulations was the one
found in Section 4 for the case with a 12 gigajoule energy constraint. Figure 13b
shows the energy consumption for each of the heuristics. These results suggest
that it is only worth spending time determining the best leniency factor for very
tight energy constraints because the metaheuristics are able to earn the highest
utility for the more the forgiving constraints without energy filtering.

5.6. Analyses with Curie Workload Arrival Trace

5.6.1. Results without an Energy Constraint

Figure 14 shows the percentage of maximum system utility earned in 15
environments using the workload generated from the Curie system trace. The
different cases shown for each heuristic represent different system sizes. The
size of each system is given as a percentage of the size in cores of the actual
Curie system associated with the trace. Here, all heuristics made use of task
dropping. The energy consumption for these results can be seen in Figure 14b.
The confidence intervals in Figure 14 are based on the 48 simulation trials.

Figure 14a shows that the utility earned by the metaheuristics, Max UPT,
and Max UPR is the highest among the heuristics. This makes sense because this
environment is not energy constrained and the heuristics that do not consider
the energy consumed by a task perform the best. The reason for the poor
performance of Max Util is likely because there are periods in this trace where
very large numbers of small tasks arrive to the system needing to be mapped.
Because the maximum utility given to a large task is eight, if it is possible to
execute more than eight small tasks that would earn one utility in that time then
the larger task should not be executed. Max Util underperforms in comparison
to the other heuristics for these task arrival cases because it only considers
maximizing the utility earned by each task. The other utility aware heuristics
are able to account for this (by considering time or resources) and select the
smaller tasks instead. Max UPE is able to achieve high performance in these
scenarios because tasks with a very short execution time use less energy than
the tasks with a long execution time.
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5.6.2. Results with an Energy Constraint

Figure 15 shows the performance in the Curie trace environment for a simu-
lated system with 80% of the total number of cores of the actual Curie system.
These results are shown for a range of energy constraints. The 95% mean con-
fidence intervals in these results are larger than in the other results because
variance between task arrival patterns on different days of the trace can signif-
icantly affect the performance of the heuristics. The heuristic that earns the
highest average utility for the tighter energy constraints, as seen in Figure 15a,
is Max UPE. This is because the Max UPE heuristic always chooses the most
energy efficient mapping option for each task. The metaheuristics still perform
well relative to every utility-aware heuristic except for Max UPE. However, they
do not perform as well in some of these environments because they attempt to
keep the rate of energy consumption constant throughout the day. In this envi-
ronment, there are often very large bursts of tasks that arrive all at once. This
means that the rate of energy consumption throughout the day should not be
assumed to be constant and energy should be saved for the periods when a large
set of tasks is arriving. The arrival pattern of the tasks is not known in advance
because the environment is dynamic. If the arrival pattern was known, then the
metaheuristics could be modified to consume energy at a rate consistent with the
rate of arriving tasks in the system, which may result in increased performance.
This arrival pattern could also be approximated through the use of historical
data. The other utility-aware heuristics do not perform as well as Max UPE
or the metaheuristics, but still perform better than the comparison heuristics
(Random, Conservative Backfilling, EASY Backfilling, and FCFS with Multiple
Queues). Similar to the results with a fully synthetic workload, the energy con-
sumption (shown in Figure 15b) is lowest for the Max UPE heuristic. The other
heuristics have energy consumption that stays closer to the energy constraint.

5.7. Discussion of Results

The results shown in this section indicate that: (a) the use of place-holders
results in more utility earned than permanent reservations; (b) utility-based
heuristics earn more utility than the comparison heuristics; (c) in most envi-
ronments, the Event-Based Metaheuristic and Task-Based Metaheuristic earn
the highest utility; (d) the energy filtering techniques are only beneficial when
the energy constraint is very tight; and (e) when the Max UPE heuristic earns
utility equal to the other best performing heuristics it often consumes signifi-
cantly less energy. Based on these results, it is clear that the best heuristics for
these HPC environments are Max UPE and the Event-Based Metaheuristic. In
addition, it can be beneficial to add the energy-per-resource filter (which was
shown to be better than the energy-per-task filter) to these heuristics if the
energy constraint is tight, as shown in the difference between Figures 12 and 13.
We also evaluated and compared several of our heuristics on a testbed system
as discussed in the next section.
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6. Experiment

6.1. Experimental Setup

We conducted an experiment on a testbed system, where we implemented
several of our heuristics. We used an IBM HS22 blade server with four homoge-
neous clusters. Each cluster consists of two Intel Xeon X5650 six core processors
(2.67 GHz), with 24 threads (two threads per core) and 24GB RAM (memory).
Each cluster runs the Kernel-based Virtual Machine (KVM) hypervisor [25].
We treated each of the 24 threads as an individual CPU for a virtual machine
(VM). A VM in the experimental setup corresponds to a node in the simulation
environment. For consistent use of terminology in this paper, we referred to
VM as a node in the experimental study. We recorded the power consumption
of each node using the IBM Advanced Management Module [26]. The nodes
in a given cluster have the same pre-determined configuration (core count and
RAM allocation). However, the node configuration across the clusters shows
heterogeneity as illustrated in Table 4 (columns 2-4). The allocation of cores
and RAM varies across clusters to emulate a heterogeneous environment.

We used a subset of NAS-NPB MPI benchmarks [27] for the experimental
evaluations. This subset included an integer sort (IS), Poisson equation solver
(MG), and conjugate gradient (CG). Similar to the simulation study, we as-
sumed that each benchmark had a fixed number of required cores, e.g., the IS.8
is an eight thread task with the requirement of eight cores.

Each node on cluster 4 has more cores than the nodes of the other clusters.
This means that applications scheduled on cluster 4 will often have less inter-
node communication than the other clusters. For example, a task that requires
eight cores will be able to run entirely on one node in cluster 4 and would
have no inter-node communication. On the other clusters, it would need to
use additional nodes and may have to communicate between them. Because of
this, if the memory requirement (i.e., the minimum amount of memory required
to execute the benchmark without significant slowdown due to swapping) is
met for a given benchmark by all the clusters, then cluster 4 will always have
better execution time than the others. In the simulation study, the purpose
behind the heterogeneity across the clusters was to have best execution time for
different task type on different clusters. For our experimental study, where we
emulate heterogeneity, this is only feasible if certain benchmarks are selected
such that their memory requirements may not be satisfied by all the clusters
but only a few. IS CG.8 is an eight core customized task created by combining
IS and CG benchmarks. The memory requirements for IS and CG are 2GB and
1GB, respectively. The combined memory requirement for the IS CG is 3GB.
This task has minimum execution time on cluster 3, because 3GB memory is
available for eight cores (two nodes). Cluster 4 provides only 2GB memory for
eight cores (one node), which leads to accessing of swap memory and increase
in the execution time. Table 5 shows the estimated time to compute (ETC)
matrix for our benchmarks. MG.8 has a minimum memory requirement of 3.5
GB. Therefore, execution of MG.8 on clusters 3 and 4 is not feasible due to
unavailability of minimum required memory with eight cores.
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Even after addressing the heterogeneity issue for clusters and benchmark
execution time, we still observed that the maximum power consumption was
approximately same for a given benchmark on all the clusters. Therefore, the
dynamic energy consumption for a benchmark became linearly proportional to
its execution time and preference of resource allocation for this benchmark was
same for the UPR and UPE heuristics. This created a challenge for differentiat-
ing the UPE from UPR. To overcome this challenge, we set the maximum limit
on P-states (operating frequency) and maximum possible C-states (sleep states)
for each cluster as shown in the last two columns of Table 4. By setting a limit
to the maximum P-state, we were able to vary the maximum dynamic power
consumption for a given benchmark across the clusters. With lower range on
C-states, we were able to increase the idle power consumption on clusters 1 and
3, and this gave us more flexibility in varying the dynamic power consumption
for each task across all the clusters. Table 6 represents the estimated energy
consumption to compute (EEC) for all the benchmarks on different clusters. In
our experimental study, each benchmark represents a task.

6.2. Workload Generation, Experimental Flow, and Data Collection

Our synthetic workload was designed such that at a regular interval of 120
seconds (on average) a new task arrived with a probability of 40% for the task
being IS.8, 40% for the task being IS CG.8, 10% for the task being MG.16, and
10% for task being MG.8. The task inter-arrival time was selected as 120 seconds
(experimentally determined) so that the system could achieve non zero utility
for more than 98% of the tasks. IS.8 and IS CG.8 were given a higher probability
because they required fewer core count than MG.16 and provided more options
for cluster selection compared to MG.8. We generated a workload based on
these constraints for a duration of three hours. Each task was associated with
a utility function. For each task, maximum utility value was randomly selected
in the integer range of one to four with uniform probability. For each task the
maximum utility was set to decay after 2.5 times of task’s minimum execution
time. The utility function was set to reach 0 at four times of task’s minimum
execution time.

Our experimental setup consisted of a centralized scheduler (CS) and four
local schedulers (LS) (one per cluster). We used the CS for running heuristics
on the input workload, and tracking the total utility earned by the scheduler
and the energy consumption of the whole system. We used the LS to collect the
list of tasks from the CS, schedule them on the available nodes, monitor their
progress, and collect cluster power consumption. We used the internal clock of
the CS to compare the time stamp of each task in the workload. Inside CS,
each mapping event occurs at a regular time interval of 50 seconds. On each
mapping event, we updated the waiting task queue with the new tasks, and
monitored the status of pre-scheduled tasks by communicating with LS of each
cluster. Upon the completion of a task, we updated the total system utility
earned since the last mapping event. Based on the state of the nodes (available
or busy) and the wait queue, we ran the heuristics to identify the next set of
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tasks for scheduling. We considered dynamic energy as the energy metric for
all the heuristics.

6.3. Experimental Results

The duration for each experiment was set to 180 minutes to utilize the gen-
erated three hour workload. We repeated the experiment four times for each of
the heuristics using the same workload. We then calculated the average utility
for each heuristic. We calculated the maximum limit on dynamic energy by
running the Max UPR heuristic for 180 minutes. We defined an energy con-
strained environment by setting a new threshold relative to the maximum limit
on dynamic energy. We used 85% and 70% as the two thresholds to compare
the behavior of all the heuristics under different energy constraints. We termi-
nated the experiment when either the time limit reached the 180 minute mark
or dynamic energy consumption exceeded the energy constraint set for the ex-
periment. Figure 16 shows the plot of utility earned for the EASY Backfilling,
Max UPR, Max UPE, and the Event-Based Metaheuristic under three energy
constraints. Task selection criterion for the EASY Backfilling is independent
from the utility of the task. Therefore, the utility earned by the EASY Backfill-
ing is less than the utility based heuristics for all energy constraint levels. With
100% energy constraint, we see the utility earned by Max UPR, Max UPE, and
the Event-Based Metaheuristic is approximately the same. As the energy con-
straint becomes tighter, fewer tasks get completed resulting in a reduction in
the total utility earned by all heuristics. Max UPE and the Event-Based Meta-
heuristic (switches between Max UPR and Max UPE), under tighter energy
constraints, behaved similarly and resulted in around 20% and 18% increase
in total utility earned compared to the Max UPR heuristic for the 85% and
70% energy constraints, respectively. With the 100% energy constraint, Max
UPR, the Event-Based Metaheuristic, and EASY Backfilling consumed approx-
imately all of the allocated energy budget, but Max UPE consumes only 92%
of the energy budget.

We performed simulations for a system with only one P-state option for each
cluster to better match these experiments. In these simulations, the relative per-
formance of the heuristics was very similar to these experimental results. For
example, in an unconstrained system the simulations showed that Max UPE,
Max UPR, and the Event-Based Metaheuristic earned similar utility. When
an energy constraint was added, Max UPE and the Event-Based Metaheuristic
earned the most utility. The similarity of these results suggests that the assump-
tions we made in designing our simulations (e.g., deterministic execution times)
do not significantly alter our results and that our conclusions about the relative
performance of each heuristic from these results apply to actual systems.

7. Related Work

Many heuristics and techniques for resource management have been designed
to operate in parallel dynamic HPC environments. Many of them, however, are
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designed for metrics that are not applicable to our oversubscribed, utility-based
environment because they use fairness and time-based objectives as their perfor-
mance measure (e.g., [8, 9, 28, 29, 30]). When designing resource managers for
parallel resource allocation, it is common to start with Conservative Backfilling
or EASY Backfilling and modify one of them to generate an improved heuristic.
In [28], the authors designed an iterative Tabu search algorithm to improve the
fairness of Conservative Backfilling. The Conservative Backfilling heuristic was
also modified in [29] to create a heuristic that improves the average turnaround
time of tasks. One of the reasons that our work differs from these is that we use
the total utility earned over an interval of time as our performance measure.

Other authors have determined that utility functions are an effective metric
for measuring the performance of resource managers in oversubscribed environ-
ments (e.g., [31, 32]). This is done through surveying the literature in [31] and
through the development of a framework for measuring supercomputer produc-
tivity in [32]. Our work extends these efforts by designing a resource manager
that attempts to maximize utility earned while obeying an energy constraint.
Monotonically decreasing functions, such as “value functions”, also have been
used to measure the performance of resource managers in various HPC envi-
ronments and behave similarly to utility functions [33, 34, 35, 36]. Differences
between these works and ours include that [33, 34, 36] do not consider hetero-
geneity and [36] does not consider parallel tasks.

The authors of [37] model a resource manager for a computing system where
heterogeneous computing sites that are similar to our clusters are used, but they
do not consider utility functions or energy consumption in their study. In addi-
tion, they measure the performance of their resource manager using utilization
and average turnaround time. This is very different from our oversubscribed
environment, which uses utility functions, total utility earned as a performance
measure, and has an energy constraint.

Genetic algorithms are sometimes used to solve resource management prob-
lems because they are able to find very good solutions if they are given enough
time to run. Utility was maximized using a genetic algorithm in [34], where the
genetic algorithm was able to earn more utility than EASY Backfilling, Con-
servative Backfilling, and a Priority-FIFO heuristic. The drawback of genetic
algorithms is that they require a significant amount of execution time to pro-
duce good results (e.g., the genetic algorithm in [34] had an average execution
time of 8,900 seconds). When compared with our best heuristics, which take
significantly less than a minute to execute on average, this long execution time
is a major drawback of genetic algorithms. Being able to generate solutions to
resource management problems quickly is very important in a dynamic environ-
ment. This is because nodes can be idle while the resource manager is making
decisions and no work would be accomplished on those nodes during that time.

In [4], a technique called Incremental Static Voltage Adaption (ISVA) is
proposed and evaluated. This technique attempts to minimize makespan un-
der an energy constraint. First, ISVA builds a schedule (using any scheduling
technique) without an energy constraint using the minimum voltage possible to
execute each task. This schedule is then modified by increasing the voltage used
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to execute specific tasks to reduce the makespan. This work differs from ours
in several significant ways. First, this work considers a static DAG scheduling
problem, while our study focuses on scheduling dynamically arriving tasks with
no precedence constraints. In addition, this work does not consider utility, and
instead uses makespan as the performance measure.

8. Conclusion and Future Work

We designed and evaluated the performance of several utility-aware resource
allocation heuristics (Max Util, Max UPT, Max UPR, Max UPE, and two meta-
heuristics), and associated dropping and filtering techniques. Performance was
measured in terms of the total system utility that was earned from the com-
pletion of parallel tasks in an oversubscribed HPC environment with an energy
constraint. The novel concept of place-holders that we presented, in addition
to our new energy-per-resource filtering technique, allowed our utility-based
heuristics to achieve significantly higher system utility than popular scheduling
techniques from literature that do not consider utility functions and heterogene-
ity. Due to energy filtering, our Max UPR with place-holders heuristic was able
to earn utility comparable to our energy-aware Max UPE with place-holders
heuristic, although Max UPE with place-holders is much more energy efficient.
In addition, both of our metaheuristics, the Event-Based Metaheuristic and the
Task-Based Metaheuristic, were able to earn utility greater than or equal to all
other heuristics in environments where there was a steady rate of task arrivals
regardless of the energy constraint. In environments with a highly variable task
arrival pattern, the Max UPE heuristic performed best in the energy constrained
environment. In addition, it is worth noting that although energy consumption
is limited by a constraint in this work and is not a goal for optimization, the Max
UPE heuristic often earns utility equal to the other best performing heuristics
while consuming significantly less energy.

A topic that we are interested in exploring in the future is employing the con-
cept of preemption in an environment where the system performance measure
is based on a time varying utility. We expect that having a resource manager
that supports preemption will allow for improvement in the execution of critical
tasks, in particular when there has been a period of low utility task arrivals
that may fill up many of the nodes within an environment, which can cause
high utility tasks arriving later to wait. This is especially important for an
environment where tasks arrive dynamically (i.e., information about tasks that
arrive in the future is not known). The most significant difficulty of designing
and analyzing techniques and heuristics that utilize preemption is to limit the
potential complexity of the problem. Similar to how it is not possible to explore
all possible solutions of this scheduling problem in reasonable time, we cannot
consider preempting every task individually to optimize the schedule. To limit
this complexity, we will need to determine what type of task should be able to
cause preemption among currently executing tasks, and will consider techniques
for effectively selecting which tasks to preempt in a reasonable amount of time.
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Working with preemption may also require studying techniques for saving the
state of a task so that the task can resume execution at a later point in time.

The energy filters presented in this paper could be used to dynamically
control the energy consumption of the system by adjusting the energy budget
or energy-per-resource budget throughout the day. This could be used to more
effectively manage system resources in environments with time-of-use pricing
(i.e., environments where energy prices change throughout the day).

Our metaheuristics that switch between Max UPR and Max UPE perform
well in environments where tasks arrive at a steady rate, but when the task
arrival rate varies significantly throughout the day the metaheuristics do not
perform as well as Max UPE when there is a tight energy constraint. Currently,
the metaheuristics attempt to guide the system to consume energy at a constant
rate throughout the day. It would be interesting to modify the metaheuristics
so that the goal for the system’s rate of energy consumption is the same as the
expected arrival pattern of tasks. This may result in performance of the meta-
heuristics that matches the best of Max UPR or Max UPE in all environments
instead of just environments where tasks arrive at a steady rate.
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Figure 1: A compute system composed of C clusters. Cluster 1 has n nodes and cluster C has
m nodes.
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Figure 2: Flow for the proposed resource manager. Tasks enter the resource manager and are
mapped to the nodes of clusters. Each task is mapped to the nodes of a single clusters.
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Figure 3: An example of a utility function for task 1. If task 1 completes at time 15, it earns
5.18 utility. If task 1 complete at time 40, it earns 2.84 utility.
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(a)

(b)

Figure 4: An example of a mapping on a cluster with ten nodes. The colored rectangles
represent different tasks, and the rounded rectangles represent voids where new tasks can be
inserted. (a) State of a cluster before assigning task where the first time available to schedule
the task is shown. (b) the selected nodes for task t Note that n4 is not chosen due to the
second tiebreaking criteria described in Subsection 3.7.
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simulation scenarios, each with 100 task types, for a total of 4,800 points.
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Figure 6: A range of energy leniency factors using energy-per-task filtering for the Max UPR
with place-holders heuristic.
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Figure 7: A range of energy leniency factors using energy-per-resource filtering for the Max
UPR with place-holders heuristic.
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Figure 8: Results for a mean of 5,000 tasks arriving per day. The utility-based heuristics
utilize task dropping with a dropping threshold of 0.5, and the utility-based heuristics that
are not energy-aware are also shown with and without the energy-per-task and energy-per-
resource filters. (a) The percentage of maximum utility earned with 95% confidence intervals.
(b) The energy consumption of each heuristic with 95% confidence intervals.
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Figure 9: Results for a mean of 10,000 tasks arriving per day. The utility-based heuristics
utilize energy-per-resource filtering and task dropping with a dropping threshold of 0.5. (a)
Percentage of maximum utility earned with 95% confidence intervals. (b) Energy consumption
of each heuristic with 95% confidence intervals.
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Figure 10: Results for a mean of 5,000 tasks arriving per day. A comparison of the two
metaheuristics with the heuristics from 3.6, where the utility-based heuristics all use place-
holders and all heuristics use a dropping threshold of 0.5. (a) Percentage of maximum utility
earned with 95% confidence intervals. (b) Energy consumption of each heuristic with 95%
confidence intervals.
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Figure 11: Results for a mean of 5,000 tasks arriving per day, where the dropping threshold
is varied, the energy constraint is 12 gigajoules, and none of the heuristics utilize the energy
filtering techniques. The percentage of maximum utility earned for each environment with
95% mean confidence intervals is shown.
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Figure 12: Results for a mean of 5,000 tasks arriving per day where the energy constraint is
varied from 8 gigajoules to 18 gigajoules. None of the heuristics utilize the energy filtering
techniques. (a) Percentage of maximum utility for a variety of energy constraints with no
energy filter with 95% mean confidence intervals. (b) Energy consumption for a variety of
energy constraints with no energy filter with 95% mean confidence intervals.
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Figure 13: Results for a mean of 5,000 tasks arriving per day where the energy constraint
is varied from 8 gigajoules to 18 gigajoules. All of the heuristics make use of the energy-
per-resource filter with a leniency factor of 4.0. (a) Percentage of maximum utility earned
for each environment with 95% mean confidence intervals. (b) Energy consumption for each
environment with 95% mean confidence intervals.
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Figure 14: Results when tasks are based on a trace from the Curie supercomputer and there is
no energy constraint. In these environments, the size of the system is varied from 10% to 80%
of the original Curie system. (a) Percentage of maximum utility earned for each environment
with 95% mean confidence intervals. (b) Energy consumption for each environment with 95%
mean confidence intervals.
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(a) Percentage of maximum utility for a variety of energy constraints with a real task
trace.
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(b) Energy consumption for a variety of energy constraints with a real task trace.

Figure 15: Results when tasks are generated using a trace from the Curie supercomputer and
there is a varied energy constraint. In these environments the size of the system is equal to 80%
of the original Curie system. (a) Percentage of maximum utility earned for each environment
with 95% mean confidence intervals. (b) Energy consumption for each environment with 95%
mean confidence intervals.
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Figure 16: Utility earned versus energy constraint, as percent of maximum allowed, where
maximum is 2.8 megajoules. The standard deviation is shown for each bar.
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Table 1: An example of an ETC matrix that specifies execution time for task type and number
of nodes for a given cluster and P-state.

task type number of nodes above execution time

1
1 2 4 16 32

100 70 50 25 30

2
256 512
300 200

3
8 16 64

100 80 70
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Table 2: Priority and urgency table.

priority level
starting

utility range
urgency rate

0.6 0.2 0.1 0.01
critical (6,8] 2% 2% 0.05% 0%

high (4,6] 3.45% 5% 1.5% 3%
medium (2,4] 0% 10% 10% 10%

low [1,2] 0% 0% 20% 33%
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Table 3: Core distribution of tasks.

percentage of tasks minimum cores maximum cores
20% 2 4
20% 5 256
40% 257 4096
19% 4097 max cores of cluster – 1
1% max cores of cluster max cores of cluster
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Table 4: Cluster configuration showing heterogeneity.

cluster cores per
node

RAM size
(GB) per

node

total
number of

nodes

maximum
allowable
operating
frequency

(MHz)

maximum
C-state

cluster 1 1 1 16 1596 C1
cluster 2 2 1 8 1862 C6
cluster 3 4 1.5 4 2261 C1
cluster 4 8 2 2 2660 C6
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Table 5: Estimated time to compute (ETC) matrix.

task core re-
quirement

execution
time on
cluster 1

(sec)

execution
time on
cluster 2

(sec)

execution
time on
cluster 3

(sec)

execution
time on
cluster 4

(sec)
IS.8 8 1,675 750 552 430

MG.8 8 1,100 712 n.a. n.a.
MG.16 16 702 500 380 326

IS CG.8 8 1,039 900 700 1,366
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Table 6: Estimated energy to compute (EEC) matrix.

task energy on
cluster 1 (J)

energy on
cluster 2 (J)

energy on
cluster 3 (J)

energy on
cluster 4 (J)

IS.8 25,962 35,250 17,388 28,380
MG.8 27,500 41,296 n.a. n.a.
MG.16 34,398 55,000 30,400 50,530

IS CG.8 23,897 47,700 27,650 105,865
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