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With continuously shrinking technology, reliability issues such as Negative Bias Temperature Instability
(NBTI) has resulted in considerable degradation of device performance, and eventually the short mean-time-
to-failure (MTTF) of the whole multicore system. This article proposes a new workload balancing scheme
based on device-level fractional NBTI model to balance the workload among active cores while relaxing
stressed ones. Starting with NBTI-induced threshold voltage degradation, we define a concept of Capacity
Rate (CR) as an indication of one core’s ability to accept workload. Capacity rate captures core’s performance
variability in terms of delay and power metrics under the impact of NBTI aging. The proposed workload
balancing framework employs the capacity rates as workload constraints, applies a Dynamic Zoning (DZ)
algorithm to group cores into zones to process task flows, and then uses Dynamic Task Scheduling (DTS) to
allocate tasks in each zone with balanced workload and minimum communication cost. Experimental results
on a 64-core system show that by allowing a small part of the cores to relax over a short time period, the
proposed methodology improves multicore system yield (percentage of core failures) by 20%, while extending
MTTF by 30% with insignificant degradation in performance (less than 3%).
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1. INTRODUCTION

As device feature sizes continue to shrink, long-term reliability or permanent fault such
as Negative Bias Temperature Instability (NBTI) affects system life-span, and leads to
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the low yield and short mean-time-to-failure (MTTF) in a multicore system [Reddy et al.
2002; Chen et al. 2003]. A number of new techniques have recently emerged to cope
with NBTI aging effect using post-manufacturing burn-in strategy [Constantinides
et al. 2007; Wang et al. 2007a; Bhardwaj et al. 2006]. However, very little attention
has been paid to device stress and its impact on system life-span and performance
in the multicore era. Device stress may happen after days of full workload operation,
and requires days to relax before recovery. Letting the device completely wearout will
impact the system as defective cores have to be permanently removed from the pool of
active cores. A meaningful approach would be relaxing cores when they are stressed
long before they are completely wearout. This approach would require solving three
challenges: (1) how to assess that a core is stressed, (2) how to assign workload to
relax stressed cores, and (3) how to avoid additional performance cost associated with
balancing workload. The proposed approach in this article answered all these questions.

Different from existing approaches [Wang et al. 2007a; Bhardwaj et al. 2006] that
focused on long-term stress using static NBTI models, we propose to use a fractional
stress and recovery model to model partially stressed cores: cores alternate between a
heavy workload phase (once the core has relaxed) and a light workload phase (when the
core becomes stressed) with high frequency of alternation between phases. During the
light workload phase, PMOS transistors of idle gates are set to “1” to relieve the stress
as discussed in Abella et al. [2007]. The end result of fractional NBTI model is a core
capacity rate (CR) that indicates how much additional workload one core can accept
before getting over-stressed. We assume a full recovery of device in our implementation.
However, the proposed algorithm is also applicable to other NBTI models, for example,
the models in Paul et al. [2005] and Alam and Mahapatra [2008]. The workload changes
due to NBTI-induced performance variations will follow the same modeling process.

A number of research projects have been conducted on workload scheduling and bal-
ancing with performance and reliability objectives in multicore systems. Though not
solving the same problem, some of the ideas are worth mentioning and provide a good
initiative of the current work. For example, Rong and Pedram [2006] formulated the
problem of determining the optimal voltage schedule and task ordering as an integer
linear program. In Ruggiero et al. [2006], the scheduling problem was decomposed into
sub-problems of allocation and scheduling, respectively. Some other algorithms took
into account temperature changes when performing task scheduling. Coskun et al.
[2007], proposed a dynamic scheduling technique that incorporated the thermal his-
tory to adjust workload assignments for an optimal thermal distribution. Hung et al.
[2005] presented a thermal-aware task allocation and scheduling algorithm to achieve
a thermally even distribution by manipulating the peak temperature. In addition to
these traditional scheduling algorithms, several recent works have focused on mitigat-
ing NBTI aging effect in multicore era. For example, Basoglu et al. [2010] proposed
a predictive model to quantitatively evaluate the long-term impact of NBTI-aware
task mapping and to improve device lifetime. Lin et al. [2011] developed a transmis-
sion gate-based optimization technique for minimizing NBTI-induced degradation and
leakage power simultaneously.

The proposed approach has three components: (1) NBTI-introduced core performance
difference estimation, (2) Dynamic Zoning (DZ), and (3) Dynamic Task Scheduling
(DTS). Core performance difference is estimated using fractional NBTI model and is
indicated by capacity rate. Each core has its own capacity rate. Dynamic Zoning (DZ)
algorithm groups cores into zones according to core capacity rates. It starts with a rect-
angular region as the initial zone, and adjusts gradually considering zone connectivity
and core capacity rate to match workload from the assigned flow. Then, the Dynamic
Task Scheduling (DTS) algorithm allocates tasks in one zone to achieve maximum uti-
lization with low communication cost. Figure 1 demonstrates the flow of our proposed

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 1, Article 4, Pub. date: January 2014.



Workload Assignment Considering NBTI Degradation in Multicore Systems 4:3

Fig. 1. The general flow of the proposed workload balancing methodology.

approach. Note that this method is iterative: the core capacity rate should be updated
frequently because of changing core performance or aging effect.

Specifically, the new contributions of this article are: (1) a system NBTI stress es-
timation model, (2) a new workload balancing strategy considering core performance
difference, (3) a novel scheduling scheme incorporating data packet size and commu-
nication cost, and (4) a new insight into the relationship between core recovery time,
stress time, workload, and their impact on core life-span. This strategy has shown good
system yield improvement and MTTF extension with insignificant impact on latency or
communication traffic overhead. Experimental results on a 64-core system show that
by allowing a part of cores (approximately 12.5%) to relax over a short time period,
the proposed methodology reduces core failure rate by 20%, and extends MTTF by 30%
with insignificant degradation in performance (less than 3%). Moreover, as the number
of stressed cores increases, a minor increase in system degradation can be observed.
It is important to mention that a number of researchers in recent years have proposed
systematic approaches of designing control circuits and arranging input vectors to mit-
igate NBTI aging. Wang et al. [2007a], Abella et al. [2007], and Bild et al. [2009] have
demonstrated effective schemes to address severe NBTI issues with minor implemen-
tation cost. The focus of this work is to balance workload adaptively under the impact
of NBTI aging for the purpose of improving system reliability.

The remainder of this article is organized as follows: Section 2 introduces the frac-
tional NBTI device and core model. Section 3 discusses the proposed workload balanc-
ing methodology considering NBTI-introduced performance difference. Experimental
results are included in Section 4. Finally, Section 5 concludes the article.

2. NBTI MODEL FOR MULTICORE PERFORMANCE

NBTI limits lifetime in nano-scale integrated circuits and continues to worsen with
device scaling beyond 90nm [Constantinides et al. 2007; Wang et al. 2007a; Bhardwaj
et al. 2006]. When PMOS is negatively biased, the electrical field across the gate oxide
produces a complicated electrochemical reaction that consequently increases the PMOS

ACM Journal on Emerging Technologies in Computing Systems, Vol. 10, No. 1, Article 4, Pub. date: January 2014.



4:4 J. Sun et al.

threshold voltage over time. The impact of NBTI may take days or months to ultimately
affect timing and circuit delay, eventually leading to system failure. Recent research
works have confirmed that NBTI is getting worse with further scaling starting from
90-nm technology [Wang et al. 2007a].

The NBTI impact causes the core to alternative between stress and recovery phases.
In general, recovery and stress periods are fairly symmetric. The NBTI-introduced
threshold voltage change �Vth in stress phase follows a similar style as reported in
Bhardwaj et al. [2006]:

�Vth =
(

Kv

(
T (t)

)
(t − t0)

1
2 + �Vth0

1
2n

)2n
. (1)

Equation (1) describes Vth degradation due to NBTI impact at time t, compared with
the threshold voltage Vth0 at starting time point t0: �Vth = Vth(t) − Vth(t0). T (t) is
simply the temperature fluctuation with regard to time. Kv and C are two parameters
defined in compact NBTI predictive model [Bhardwaj et al. 2006]. Kv and C are both
functions in terms of varying temperature T (t), therefore they change over time as
well. In recovery phase the corresponding Vth degradation can be represented as

�Vth = Vth0

(
1 − 2ε1 +

√
ε2C(T (t))(t − t0)

2tox + √
C(T (t))t

)
, (2)

where process parameter tox denotes oxide thickness. Considering the temperature
change with regard to time, we include the time dependency in parameters Kv and C, as
they both are functions of T (t). The complete expressions of the associated parameters
in (1) and (2) can be detailed in Bhardwaj et al. [2006]. Process variability is another
important factor that may exert great influence on Vth shift. The proposed model can
be further extended to express Vth as a function in terms of not only temperature, but
also process parameters to develop process variability-affected NBTI model.

The change in threshold voltage in turn affects device’s gate delay (Dg) and leak-
age power from subthreshold leakage (Pleak). We consider gate delay first. Following
Sarangi et al. [2008a, 2008b], the time required to switch a logic gate can be estimated
by:

Dg ∝ VddLeff

γ (Vdd − Vth)α
, (3)

where Vdd and Leff are supply voltage and transistor effective channel length, respec-
tively, while α is a process parameter, which is typically 1.3, and parameter γ is the
mobility of carriers. The path between an input and an output with the maximum delay
is identified as the critical path. Note that for a single core there may be a number of
critical paths. Considering NBTI-induced Vth shift, gate delay function can be further
represented as:

Dg ∝ VddLeff

γ (Vdd − (Vth0 + �Vth))α
. (4)

According to (4), as Vth increases, Dg increases and the gate becomes slower. Therefore,
Vth variation may deteriorate critical path delay, and may even cause severe timing
errors in today’s low-voltage devices.

On the other hand, although Vth variation has little impact on dynamic power con-
sumption, it affects leakage power dramatically. Using an empirical leakage power
model [Sun et al. 2008], the leakage power for a single transistor is given by:

Pleak = C0 · exp (−C1Leff − C2Vth + C3Vdd) , (5)
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Fig. 2. Impact of Vth shift on core frequency (adapted from Sarangi et al. [2008b]).

where C0 is a constant coefficient in empirical leakage model, C1, C2, and C3 are the
fitting exponents of transistor channel length, threshold voltage and supply voltage,
respectively. Substituting the first-order Vth shift model Vth = Vth0 + �Vth into (5),
leakage power under NBTI degradation can be written as:

Pleak = C0 · exp (−C1Leff − C2Vth0 + C3Vdd) · exp(−C2�Vth) (6)

While these equations are for a single PMOS transistor, for every gate and every core,
the total leakage power is simply the summation of the leakage power of all transistors
in one gate or one core:

PleakT =
∑

j

Pleak, j . (7)

Here Pleak, j denotes a single transistor’s leakage power predicted by (6).
As NBTI-induced Vth shift causes fluctuations in leakage power and gate delay, core

devices will behave differently under NBTI aging effect. Therefore, it is important
to incorporate this diversity of core performance in workload assignment. Intuitively,
cores with lower leakage power and shorter gate delay have the potential to accept
more workload. We define a new concept of “Capacity Rate” (CR) as an indication of
how much workload one core can accept, by evaluating core performance difference
under NBTI aging and certain performance constraints.

We discuss the timing issue first. The Vth shift induces variation in gate delays, and
therefore slows down some critical paths in a core device. As a result, the maximum
frequency that can be achieved by the core to avoid timing errors will be lowered,
since a core cannot cycle any faster than its slowest critical path can [Sarangi et al.
2008b]. If this core is not operated at the resulting lowered frequency, timing errors
will occur. To estimate the rate of timing errors as a function of operating frequency, we
employ the error rate model described in Sarangi et al. [2008b]. This model considers
the dynamic distribution of all path delay metrics. Figure 2(a) provides an example
of such distribution with no impact of Vth variation. All path delays are less than the
nominal clock period Tnom, therefore, no timing error occurs. However, if NBTI aging
effect is considered, Vth degradation may slow down some critical paths (refer to (4)).
The distribution of path delays may be shown as in Figure 2(b). As delay values exceed
Tnom on some paths, to avoid timing errors the core must be clocked with a longer
period T ′ > Tnom. Figure 2(b) indicates that if a core operates with a shorter period
TE < T ′, it will suffer timing errors. In other words, a core must operate at a particular
frequency fE < f ′, where f ′ = 1/T ′, to guarantee no timing error.

Such frequency loses may be reduced if core device is equipped with error
detection/correction mechanisms that are capable of tolerating some variation-induced
timing errors [Sarangi et al. 2008b]. Based upon this assumption, we rely on (4) to
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estimate the probability of timing errors. We assume that NBTI-induced Vth degrada-
tion is subject to a Gaussian distribution with mean value μ and standard deviation σ .
As a function of random variable �Vth, the mean and standard deviation of Dg can be
obtained by using a Taylor series expansion [Papoulis 2002]:

μDg = VddLeff

γ
·
[
(Vx − μ)−α + (α2 + α) (Vx − μ)−α−2 · σ 2

2

]
, (8)

σ 2
Dg

=
(

αVddLeff

γ

)2

· (Vx − μ)−2α−2 · σ 2. (9)

where Vx = Vdd − Vth. The detailed derivations are provided in Appendix. Once obtain-
ing mean μDg and standard deviation σDg , we can approximately estimate the rate of
timing errors. Based on the assumption in Sarangi et al. [2008b], delay metric empir-
ically has a linear relationship with Vth within the parameter range of interest, and
therefore approximately follows a normal distribution since Vth is normally distributed.
This model estimates timing violation probability as the area of the shaded region in
Figure 2. Alternatively, we can conveniently compute error rate using the Cumulative
Probability Function (CDF) of the normalized path delays. In general, if the core is
clocked with period TE = 1/ fE < T ′, the timing error rate is computed as:

ER(TE) = 1 − CDF(TE), (10)

where CDF gives the cumulative probability that path delays exceed the specified clock
period TE. With the mean value and variance estimated by (8) and (9), such cumulative
probability can be calculated based upon assumption of normal delay distribution. We
set a target error rate for each core with Vth degradation: the induced error rate cannot
exceed a threshold value ER0. As a result, the core has to operate at a relatively lower,
and safer frequency fE to satisfy the timing error constraints:

ER( fE) = 1 − CDF
(

1
fE

, μDg , σDg

)
≤ ER0. (11)

Note that the timing error rate depends on not only Vth variation and operating fre-
quency, but also supply voltage Vdd. Lower supply voltage may increase gate delays,
slow down the critical paths, and eventually lead to higher error rate.

It is worth mentioning that, as device feature sizes continue to shrink, the assump-
tion of normal distribution may not be enough for estimating timing errors in future
technology. In future works, it will be necessary to extend the error rate model to con-
sider other distribution, for example, exponential, Weibull, and even more complicated
distributions. In these models, an analytical calculation of error rate based on an ex-
plicit CDF becomes unrealistic. To address this problem, the proposed NBTI model can
be extended by incorporating different probability lookup tables for possible distribu-
tions. The purpose is to establish a relatively complete yet efficient table lookup scheme
for error rate estimation, in order to achieve a good tradeoff between computational
efficiency and complexity.

We now discuss the power issue considering NBTI degradation. The power dissipa-
tion for one core consists of dynamic power consumption and leakage power dissipation.
Leakage power could account for 50% or even higher of total power of the circuit [Zhang
et al. 2004]. The variation of leakage power induced by NBTI effect is predicted by (6)
and (7). As known to all, the dynamic power consumption is determined by the supply
voltage and operating frequency:

Pdyn = CLV 2
dd f, (12)
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where CL is the external load capacitance, while Vdd,i and fi denote the core’s supply
voltage and operating frequency, respectively. Therefore, the total power consumption
for one core can be described as:

PTotal = CLV 2
dd f + PleakT, (13)

where the total leakage power is estimated according to (7). Similarly, we set a con-
straint of power requirement for each core:

PTotal,i ≤ P0. (14)

The power consumed by each core cannot exceed a predetermined specification. With
this power limit, the operating condition (Vdd,i, fi) of a particular core will be restricted,
due to the fluctuation in leakage power caused by Vth degradation.

Under performance constraints, the fluctuations in leakage and delay will force the
cores to operate at different points to avoid violating the limits. The cores will in
turn behave in differently manners during task execution. To estimate and quantify
this difference, we evaluate the task execution time on a particular stressed core, and
compare it with the result on a core without Vth degradation. Given a specific task, we
first evaluate the execution time on a nonstressed core working at full frequency, and
denote it as Ts0. We then perform the following optimization procedure to determine
the optimal execution time on the ith stressed core:

minimize Ts,i(Vdd,i, fi)

subject to ERi( fi) = 1 − CDF
(

1
fi

, μDg,i, σDg,i

)
≤ ER0 (15)

subject to PTotal,i = CLV 2
dd,i fi + PleakT,i(�Vth) ≤ P0,

where Ts,i(Vdd,i, fi) denotes the required execution time for core i running at operat-
ing condition (Vdd,i, fi). Note that supply voltage and frequency are correlated when
estimating the error rate. By solving problem (15), we can determine the optimal
task execution time without violating performance constraints. We denote the optimal
execution time as T ∗

s,i(Vdd,i, fi), which is achieved by letting the core work at its best op-
erating condition (V ∗

dd,i, f ∗
i ) under performance constraints. The obtained T ∗

s,i(Vdd,i, fi)
is then compared with the execution time required for a nonstressed core with full rate.
The capacity rate of the ith stressed core is determined by calculating the ratio:

CRi = Ts0

T ∗
s,i(Vdd,i, fi)

. (16)

The capacity rate for a core will lie in the interval [0, 1], indicating core’s capability dif-
ference in workload assignment. For example, a nonstressed core requires a execution
time of 30 clock cycles to complete the assigned task, while it takes 50 clock cycles for
a stressed core to process the identical task. Following (16), the stressed core will have
a capacity rate of 0.6, which means that it can accept at most 60% workload compared
with a core with full capacity rate.

To conclude, we have transferred the NBTI degradation model to core capacity rate
interpretation. The NBTI model first captures its impact on threshold voltage degrada-
tion. Considering threshold voltage degradation, we further model core’s performance
variation under delay and power constraints, based on which we are able to quantify
core’s ability in workload assignment. The end result is the capacity rate for each core
in percentage. The generated capacity rate will be considered as an upper bound limit
of acceptable workload on each stressed core. The workload assigned to a stressed
core cannot exceed this limit, as its capacity rate is evaluated at its optimal operating
condition while satisfying performance constraints.
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Fig. 3. A task graph representing a flow.

3. NBTI-AWARE WORKLOAD BALANCING

This section introduces the new workload balancing framework under NBTI impact.
The proposed method groups cores into zones based on capacity rates. Each zone has one
task flow. Task scheduling within the zone is formulated as a mixed-integer program
(MIP) considering workload balancing and communication cost. Capacity rate is also
incorporated in the scheduling model as a constraint of workload assignment. Capacity
rates are frequently updated to accurately capture the time-dependent Vth degradation.

3.1. Dynamic Zoning

We propose Dynamic Zoning (DZ) to spread out the workload across the entire multi-
core network. Workloads are fundamentally composed of sets of tasks, named task
flows. Tasks within a particular flow may have dependencies among them, while tasks
from different flows tend to have very few or no dependencies among them [El-Rewini
et al. 1994]. Therefore, to minimize communication cost, we limit the process of one
task flow to a group of cores physically adjacent to each other. Such a group of cores is
defined as a zone. The DZ algorithm aims at mapping a task flow onto one particular
zone. We then schedule tasks belonging to this flow among the cores within the assigned
zone.

Given a task flow presented as a DAG (Directed Acyclic Graph) G = (V, E) in Figure
3, nodes V = {v1, v2, . . . , vn} represent a set of tasks to be executed. And the arcs
E = {(i, j)} specify precedence relationships: each arc (i, j) means that task vi must be
completed before v j can start execution. Task weight wi ’s represent the execution time of
task vi on a nonstressed core (i.e., a core with capacity rate 1). The numbers at the input
and output of each node are the number of data tokens which represent the number
of data packets are consumed (at input of node) or produced (at the output of each
node) on each arc [Lee and Messerschmitt 1987]. Further details on the data tokens
will be discussed in Section 3.2. The workload of this task flow can be evaluated by the
structure of the task graph and the task weights. These two factors provide sufficient
information for workload estimation. Each zone, once generated for a particular flow,
should be able to accept the workload evaluated based on the given flow. On the other
hand, as capacity rate specifies the upper bound of workload one core can accept, the
sum of core capacity rates in one zone reflects the maximum total workload one zone
can accept. This summation must exceed the estimated workload resulted from the
flow assigned to this zone. We now explain how to evaluate the workload induced by a
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particular flow. We sum up all the task weights of its task graph, and average the total
sum over the length of the worst-case path because the worst-case path determines the
longest execution time. The estimated workload induced by this task flow is defined as
follows:

Workload =
∑

i wi, ∀ vi ∈ V∑
j w j, ∀ v j ∈ WCP

, (17)

where WCP denotes the set of nodes existing on the worst-case path. The workload
estimation defined in (17) is the minimally required capacity rate for a required zone to
process this particular flow, since capacity rate indicates the upper bound of acceptable
assigned workload.

Zones are not restricted to rectangle shapes in the current article. Several factors
determine the shape: capacity rates of included cores, total communication distances,
and the size of zones (defined as the number of cores in each zone). We start zoning in
a greedy way: start with a rectangular region for each zone and perturb gradually to
meet the communication and capacity rate requirement. The requirement of capacity
rate in this zone has been discussed above. To ensure low communication cost, a good
zoning should have short Manhattan distances among cores in one zone. Thus, the
problem of organizing an optimal zone for a particular flow can be described as:

find Zk

minimize
∑
(i, j)

d(i, j), ∀vi, v j ∈ Zk (18)

subject to
∑

i

CRi ≥ Workload, ∀vi ∈ Zk,

where Zk is the zoning result consisting of an optimal set of adjacent cores, d(i, j)
denotes the Manhattan distance between any two cores in this zone, and CRi represents
the capacity rate for each included core. The workload information of this flow is
evaluated according to (17).

Algorithm 1 describes the proposed DZ method. When a new task flow comes into
the system, DZ algorithm first searches for the maximally contiguous empty region
of available cores (“Find Max Region”). Then starting from one corner of the explored
empty region, “Initial Rectangle” initializes a zone in rectangular shape. Rectangular
shape leads to short Manhattan distances, and therefore is expected to be a good
initial solution. “Manhattan Distances” calculates the total communication distances
in this zone. Then “Perturbation” makes slight adjustments to this initialized zone
to explore a better grouping solution, according to a heuristic procedure described in
Algorithm 1. For each adjustment, the heuristic compares the total distances between
the initialized zone and the current adjusted zone. The heuristic not only accepts
changes that improve the objective, but also some changes that deteriorate it. The
latter are accepted probabilistically following a simulated annealing algorithm. This
searching procedure is repeated until the termination condition is satisfied (the total
distances of current zone is less than a predetermined threshold).

3.2. Task Scheduling in One Zone

As mentioned previously, the execution of tasks belonging to the same flow is restricted
within one zone, because of no inter-zone dependency. After zoning, the subsequent
step is to map the tasks onto the cores within this zone. We formulate the Dynamic
Task Scheduling (DTS) problem as a mixed-integer program (MIP). The objective is to
achieve maximum system utilization with minimum communication cost under work-
load constraints. A mixed-integer program is an optimization model in which some of
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ALGORITHM 1: Dynamic Zoning
Input: a task flow to be allocated; a multi-core system in which each core’s capacity rate is

identified
Output: the optimal zoning result to execute the given flow

1: S ⇐ Find Max Region ( ); � comment: determine the maximally continuous region
2: DZ opt ⇐ Initial Rectangle (S);
3: Dist opt ⇐ Manhattan Distance (DZ opt); � comment: compute the Manhattan distance

for the optimal zoning result
4: k ⇐ 0;
5: while k < N and Dist opt > Dth do
6: DZ new ⇐ Perturbation (DZ opt); � comment: assign slight adjustments to explore

better zoning result with shorter Manhattan distance
7: Dist new ⇐ Manhattan Distance (DZ new);
8: if Dist new < Dist opt then � comment: update the optimal solution if a better zoning

result is explored
9: DZ opt ⇐ DZ new;

10: Dist opt ⇐ Dist new;
11: end if
12: �Dist ⇐ Dist new – Dist opt;
13: if exp(–�Dist / N) > random (0,1) then � comment: probabilistically accept some

adjustments that deteriorate the objective
14: DZ opt ⇐ DZ new;
15: Dist opt ⇐ Dist new;
16: end if
17: k ⇐ k+1;
18: end while
19: return DZ opt;

the decision variables (not all of them) have to be of type integer or binary [Wolsey and
Nemhauser 1999].

To formulate the DTS problem into MIP form, we introduce a binary matrix M to
represent all task-core mapping relationships. Let V = {v1, v2, . . . , vn} denote a set of
tasks to be executed within a zone of m cores. The task-core mapping matrix is thus
of size m× n. Each entry in this mapping matrix Mij is a decision variable of binary
type, which is set to “1” if task vi is mapped onto the jth core and “0” as the opposite
situation. The definition of this matrix obviously imposes the first set of constraints:

m∑
i=1

Mij = 1, for j = 1, 2, . . . , n., (19)

which indicates that one task can be assigned to only one core. Using this binary
mapping matrix, we conveniently determine task assignments.

Other than the mapping matrix, another set of decision variables are the starting
times for all tasks, denoted by Si ’s. Task starting times are combined with the task-
core mapping matrix to determine the job sequences of all involved cores. An optimal
schedule can be fully specified by determining the mapping matrix Mij ’s and task
starting times Si ’s: each row in the mapping matrix indicates a set of tasks to be
executed on a particular core; the starting times help determine the execution sequence
of all assigned tasks. We then present the second set of constraints in this optimization
model, which is for the purpose of keeping the precedence relationships among tasks.
For each arc (i, j) of the task graph, the precedence relationship requires that task i
must be finished before the execution of its successor j:

Si + Ti + Tcomm(i, j) ≤ Sj, (20)
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where Si and Ti represent the starting time and execution time for task vi, respectively,
while Tcomm represents the communication time between task i and j.

The third set of constraints are workload constraints imposed by core capacity rates.
Capacity rate is included as an upper bound limit for workload assigned to each core. A
stressed core with low capacity rate indicates that light workload should be assigned to
this core. The proposed DTS method dynamically scales down core operating frequency
and thus leads to varying task execution times. Ti for task i depends on which core
this task resides in. Therefore, we need to take into account the scaling ratio when
evaluating the assigned workload on a particular core. Let αi j denote the frequency
scaling ratio when core i is processing task j. For each core within the zone, its assigned
workload can be estimated as:

WLi =
∑

j αi jTj · Mij

Ts
≤ CRi, for i = 1, . . . , m. (21)

WLi in (21) records the assigned workload on ith core. Ts represents the length of sched-
ule, that is, the execution time on the worst-case path. The value of core’s workload
lies into the interval [0, 1], and therefore can be compared with its capacity rate. The
workload assigned to each core should not exceed its capacity rate. As defined previ-
ously, one core’s capacity rate is measured based upon the optimal operating condition
under power and timing constraints. The real-time operating condition is restricted
to be worse than the optimal case to satisfy the performance constraints. Accordingly,
when performing task scheduling the real workload assigned to this core cannot exceed
the pre-evaluated bounding value; otherwise, it may break the performance limits and
worsen the stress level.

We now discuss the objective functions in the proposed DTS method. For an efficient
system, it is important to achieve high utilization. Core Utilization is measured as the
ratio of its busy time to its total active period of time:

Ui =
∑

j(Mij · Tj)

Ts
, for i = 1, . . . , m. (22)

One goal in our optimization model is to optimize the overall system utilization summed
over all cores. Under core workload constraints imposed by capacity rates, this total
utilization is also bounded by total capacity rate of the zone.

Another goal in this DTS scheme is to minimize the total communication cost among
the cores. In a task graph with different rates of data production and consumption [Lee
and Messerschmitt 1987], some data tokens have to be stored in the buffer on the arc.
Therefore, the communication cost consists of two components:

Tcomm = Ttrans + Tbuff, (23)

where Ttrans denotes total transmitting cost, and Tbuff denotes the total buffering cost
(or storage cost). For each arc (i, j) in the task graph, the transmitting cost is computed
as the multiplication of the number of token transmitted and the unit time to transmit
one token. The total transmitting cost is summed up over all arcs with buffering
operations:

Ttrans =
∑
(i, j)

Nc(i, j) c(i, j), (24)

where Nc(i, j) is the number of tokens transmitted on arc (i, j), and c(i, j) is the unit
transmission cost on (i, j). The unit transmission cost is the communication cost to
transmit one data token on arc (i, j), which is dependent on the Manhattan distances
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between the cores where the two tasks reside in:

c(i, j) ∝
∑
(k,l)

Mik · Mjl · dist (k, l) , (25)

where dist(k, l) is the Manhattan distance between core k and core j. The buffering cost
is calculated and accumulated in a similar way:

Tbuff =
∑
(i, j)

Nb(i, j) b(i, j), (26)

where Nb(i, j) denotes the number of tokens to be buffered on arc (i, j) or loaded from
(i, j), and b(i, j) is the unit buffering cost. In case that the number of input data tokens
is greater than that of output data tokens, b(i, j) indicates the time it takes to buffer
one unit token on (i, j). Under the opposite condition, b(i, j) denotes the time it takes
to load one token from the buffer on arc (i, j).

In summary, the DTS problem in our workload balancing framework can be gener-
alized by the following mixed-integer program:

minimize α ·
(

m∑
i=1

(1 − Ui)

)
+ β · Tcomm

subject to
m∑

i=1

Mij = 1, ∀ j = 1, 2, . . . , n

Si + Ti + Tcomm(i, j) ≤ Sj, ∀ (i, j) ⊂ E
WLi(M, S) ≤ C Ri, ∀i = 1, 2, . . . , m
M(i, j) ∈ Z,∀i = 1, 2, . . . , m,∀ j = 1, 2, . . . , n
0 ≤ M(i, j) ≤ 1,∀ (i, j)

variables M = [
Mij

]
m×n , S = {S1, S2, . . . , Sn} , (27)

where Ui represents the recorded utilization of ith core, Tcomm calculates the total
communication cost based on the schedule. α and β are simply two weighting factors
for the tradeoff between two objective functions. The decision variables are the task-
core mapping matrix, with each entry Mij constrained to be a binary value, as well
as the task starting times. The mapping matrix determines all mapping relationships
between tasks and corresponding assigned cores. Task starting times have to satisfy
the precedence relationships. On each arc of the task graph, the source node must be
finished before the execution of the sink node. Therefore, the core where the source
node resides in has to operate at a certain speed to meet this timing deadline. With the
mapping matrix and starting times specified, we are able to determine the frequencies
for all cores responsible for task execution.

The first constraint in this optimization model is to guarantee the uniqueness of
task-core mapping relationship. The second constraint satisfies all the precedence re-
lationships among the tasks. The third constraint reflects the workload constraint
induced by NBTI introduced capacity rate, where WLi denotes the assigned workload
on ith core, which is dependent on the mapping relationships and task starting times
(refer to (21)), and CRi represents its corresponding capacity rate.

Although the optimal solution can be derived by solving the MIP formulas in (27), its
computational complexity is a serious problem when applied to realistic task graphs.
It is well known that MIP-solving is often NP-hard [Schrijver 2003]. MIP solvers
use the branch and bound algorithm [Schrijver 1998] to obtain possible values of
integer variables. In this DTS algorithm, the size of the search space is proportional
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to the number of combination patterns of integer variables, and therefore increases
exponentially as number of tasks and cores increases. We use an integer heuristic-
based algorithm to solve the MIP formulated in (27). The heuristic is based on the Local
Branching approach [Fischetti and Lodi 2003], which aims at forming a new feasible
solution of better objective value based upon one or more explored feasible solutions.
The heuristic defines a neighborhood of a certain feasible solution, determines a point
in this neighborhood which is optimal for the objective function. Such explored point
is then used as a new reference point in the next iteration. The neighborhood of a
feasible point is defined in terms of the Manhattan distance between two points. In such
neighborhood we form a sub-optimization problem by exerting additional constraints
to the original MIP, and the search procedure explores a new feasible solution by
solving this sub-optimization problem. The details about this procedure can be found
in Fischetti and Lodi [2003]. The search heuristic relies on the observation that the
neighborhood of a feasible MIP solution often contains potentially better solutions.

3.3. NBTI-Aware Workload Balancing

This section details how to dynamically spread the workload across the entire network
based on the proposed DZ and DTS methods. Each task flow is assigned to a particular
zone for execution. The dynamic workload balancing policy should take effect in case
of inserting or relaxing a particular zone. Moreover, the balancing strategy is adaptive
to the frequent update of core capacity rate. As explained in Section 2, core capacity
rate varies at different time points. In most situations, some of the cores may be in
“quasi-defect” situations as they are over-stressed. The over-stressed cores cannot be
assigned heavy workload at that moment. On the other hand, when these cores are
released at a later time, they may become available again. In this sense, the capacity
rate for a core is not a constant number but has to be updated frequently.

When a new flow comes into the system, the DZ algorithm takes effect immediately
to generate an appropriate zone to allocate the flow tasks. The DZ algorithm first
searches for available cores and explores the maximally contiguous region. Starting
from the bottom-left corner of the region, the DZ algorithm determines the optimal
grouping solution according to the heuristic described in Algorithm 1. After the cores
are grouped in a zone, the DTS algorithm is responsible for mapping the tasks onto
particular cores within this zone. Note that due to the generation of a new zone, the
maximally contiguous region will then be updated. The procedure of generating a new
zone is illustrated in Figure 4. The blocks in white color represent the cores having high
capacity rates. These cores are not stressed, and therefore can accept heavy workload
when performing task scheduling. The gray color shows that a core is in stressed status
and can only be assigned light workload. The blocks in orange color represent the cores
in the moderate status. Suppose a newly generated flow G1 comes into the system,
by employing DZ algorithm zone Z1 is explored to process this task flow (denoted in
blue color). At the same time, the maximally contiguous region has been changed. The
cores in zone Z1 should be excluded from core grouping before they are relaxed. After
a certain period, another flow G2 arrives, a new group of cores are organized to form a
new zone Z2 (denoted in yellow color) to process this flow. Apparently an update of the
maximally contiguous region is required to reflect this zoning result.

The case of relaxing a zone is relatively simple. When a zone finishes processing all
assigned tasks, all the cores within this zone will be relaxed to join other available
cores for the processing of new flows. Therefore, the maximally contiguous region will
be changed in next search iteration. This is done by a merging procedure. Moreover,
after a period of task execution, the capacity rates of all involved cores also will be
updated. Figure 5 illustrates the relaxation procedure of an existing zone. Suppose
that zone Z2 has finished processing flow G2 earlier than zone Z1 has, the five cores in
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Fig. 4. The generation of a new zone.

Fig. 5. The relaxation of an existing zone.

Z2 will consequently be released and become available again. Such a relaxation of core
zone results in a corresponding change in the maximally contiguous region. We also
observe that the capacity rates of the cores in Z2 have been changed after processing
the assigned task flow.

The update of capacity rate depends not only on Vth degradation but also on workload
assignment. As a consequence, capacity rate needs to be updated in two situations. On
one hand, whenever a newly generated task graph arrives at the system, the dynamic
task scheduling algorithm takes effect immediately to update capacity rate and assign
the tasks onto the cores. On the other hand, capacity rate is updated on a periodic basis.
The update period is determined according to an estimation of temperature shift trend.
We use a thermal modeling tool HotSpot [Skadron et al. 2004] to predict the shortest
time period to reach a pre-set temperature threshold (e.g., 85℃) for a core operating at
full rate and full workload. This worst-case time estimate will be used as the update
period of capacity rate. It is worth emphasizing that temperature is not explicitly
shown in the optimization model because the evaluation of capacity rate has already
taken into consideration of core’s temperature shift. We rely on the temperature data
obtained from HotSpot to predict the change of core’s run-time temperature. Given
core’s operating speed and initial temperature as inputs, HotSpot is able to predict
core’s temperature change and power consumption after each calling interval.

4. EXPERIMENTAL RESULTS

This section presents the results of the proposed workload balancing methodology.
We consider a 8 × 8 multicore system. We select an upper bound as the maximum
number of cores that may be stressed due to NBTI aging effect. We initially started
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Table I. Benchmark Applications Used for Profiling and the Generated Task Graphs

Application
Name

Number of
Task Nodes

Number of
Arcs

Total
Weights

Data
Tokens

bc 12 23 14384 691
cjpeg 22 41 1128 1140

djkstra 25 42 523 1143
djpeg 21 38 3757 1058

fft 25 40 326 1109
qsort 24 44 1463 1201

rawcaudio 6 9 4829 231
ss 9 15 3637 445

susan 22 34 5021 956
tiff2bw 25 39 694 1140

tiff2rgba 25 48 847 1274
epicUnoptimizedEncode 14 26 4890 680

g721Decode 14 23 351 614
mpegDecode 18 36 5560 926
mpegEncode 23 35 4260 982
pegwitdecode 24 41 5464 1163
pegwitencode 20 34 5040 973
crcNetbench 10 19 3371 581
dhNetbench 25 47 4179 1322
drrNetbench 21 33 1337 1037

md5Netbench 25 44 4786 1262
tlNetbench 21 36 1285 1002

with a maximum number of eight cores and further increase this number to evaluate
performance degradation and reliability improvement. As we can slow down each core
by scaling down its operating frequency, NBTI would be less severe in these situations,
which is beneficial for easing the stress level and improving system reliability.

To demonstrate the effectiveness of our proposed approach, all task graphs are gen-
erated by profiling realistic applications from several benchmark suites, including
MediaBench [Lee et al. 2008], MiBench [Guthaus et al. 2001], and NetBench [Memik
et al. 2001]. In the analysis to create task graphs, we selected individual functions
(with at least 0.5% of the overall execution time) as the corresponding task nodes, from
which we can create the task graphs by adding precedence relationships to them. We
utilized the relative execution time for each function to compute the task weight for
each task. In this way, the smallest task has a weight of 1, and all other tasks are
presented in a multiple of this time unit. This implies that the computational weights
across various task graphs would not reflect the varying degrees of complexity of those
benchmark applications. The characteristics of the generated task graphs are summa-
rized in Table I. The first column lists the names of all benchmark applications. The
other columns provide the number of task nodes, the number of arcs, the total task
weight, and the total number of data tokens for each task graph.

The proposed workload balancing framework is application-driven. Depending on
the precedence relationships defined by the task flows, we partition the task flows
considering workload under NBTI impact. During this process, we regard the multicore
network as a whole system. The whole system is required to finish applications/tasks
within certain user-specified time requirements. Individual cores may pause for certain
amount of time and enter idle status. Table II lists the scheduling results by applying
the proposed strategy at 90 seconds after the start of simulation. This table includes
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Table II. The Capacity Rate and Core Utilization for NBTI
Stressed Cores at 90s

NBTI Stressed
Core Index

Zone #
Grouped in

Capacity
Rate

Assigned
Workload

9 1 0.8193 0.6248
12 2 0.5923 0.5000
28 3 0.4550 0.3892
33 4 0.5012 0.4000
37 5 0.4242 0.4000
39 6 0.4979 0.4473
50 6 0.8238 0.6482
57 4 0.8932 0.8079

Table III. The Capacity Rate and Core Utilization for NBTI
Stressed Cores at 100s

NBTI Stressed
Core Index

Zone #
Grouped in

Capacity
Rate

Assigned
Workload

14 2 0.3959 0.3514
25 2 0.4497 0.4000
31 3 0.5470 0.5000
38 4 0.5472 0.3892
41 4 0.7224 0.5864
44 6 0.3598 0.3000
52 5 0.6239 0.5536
58 6 0.5543 0.4293
59 6 0.2163 0.2000

core index, zone number each core is grouped in, each core’s capacity rate and its
assigned workload. Note that only the cores stressed by workload are listed in Table II.
In addition, the scheduling results at 100 seconds are further presented in Table III. We
can observe that for each NBTI stressed core, its assigned workload is well bounded by
its capacity rate. The tables show that those cores stressed by workload at 90 seconds
have been relaxed at 100 seconds, while a new group of cores alternate into stressed
phase. The experimental results demonstrate that capacity rate is an indication of
upper bound limit one core can accept workload. The DZ algorithm together with DTS
algorithm adaptively manipulate the workload assigned to those NBTI stressed cores,
in order to ease their stress levels.

We first evaluate network performance considering NBTI degradation. We use Book-
Sim, a cycle-accurate interconnection network simulator, to evaluate system through-
put. We initially ran simulations at a normal load up to 10000 sample periods, then
reduce the load by 50% every 10000 periods. We terminate generation of new flows at
30000 sample periods as throughput statistics become stable. As shown in Figure 6,
“Non-Stressed” represents the simulation without considering cores stress due to NBTI
aging, while “Stressed” is the opposite case. Figure 6 shows that the throughput is al-
most identical before and after considering NBTI impact. In experiment, while the
load on these 8/64 NBTI stressed nodes is reduced, other nodes are still at full rate.
A 4% drop in throughput is observed in “Stressed” case. When workload increases
beyond 0.3, minor differences can be observed between the ideal “Non-Stressed” and
the “Stressed” cases. As the workload approaches the throughput limit, we observe
that this difference saturates. This happens due to the fact that most of the packets
are injected early in the network simulation, therefore no additional packets can be
injected successfully into the system beyond saturation.
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Fig. 6. Comparison of throughput between nonstressed and NBTI-stressed cases.

Fig. 7. Comparison of execution times between nonstressed and NBTI-stressed cases.

We run another set of experiments to compare system performance in terms of
execution time. We observe how long the task flows run in such a 8 × 8 multicore
system. In the same way, while the load on NBTI-stressed nodes is reduced, other
nodes can operate at the maximum rate. Each NBTI-stressed core is able to execute
these tasks at a certain frequency, which is associated with its capacity rate. We
distribute the tasks by using the proposed DZ algorithm and evaluate the execution
time by using the DTS algorithm. Figure 7 illustrates the overall task execution
times (normalized to the metric on a system operating at full rate and full workload)
at different levels of offered network load. Compared with the “Non-Stressed” case,
an increase of less than 2% in execution time can be observed when the offered
load is above 0.2. When offered load is beyond 0.5, less than 1% differences can be
observed between the ideal “Non-stressed” and “Stressed” cases. For the worst case
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Fig. 8. Comparison of execution times with different number of NBTI-stressed cores.

that offered load as 0.1, approximately a 3% increase in execution time is obtained.
The results show that the proposed strategy effectively balances the workload among
NBTI-stressed cores, and therefore reduces system degradation to the most extent.

To demonstrate the efficiency of our proposed methodology, we increase the number of
NBTI-stressed cores and investigate how system performance will be affected. Figure 8
shows the comparison of task execution time between “Stressed” and “Non-Stressed”
cases. Here the offered load is fixed at full rate. Starting with 8 NBTI-stressed cores,
the execution time is almost identical before and after applying the NBTI stress model.
As the number of NBTI-stressed cores increases, a slight increase in the overall exe-
cution time can be observed. When the number of NBTI-stressed cores grows to 16,
approximately a 3% performance drop is observed. The results demonstrate the effi-
ciency of the method in balancing workload and alleviating aging effect on the devices
stressed due to NBTI.

Figure 9 displays core failure rate (in percentage) with regard to time. The x-axis
represents the time in terms of years and y-axis represents the percentage of core
failure. The red solid line represents the result of our new approach while the blue
dash line represents the case without the new approach. The difference in terms of
yield becomes obvious after 2 years and begins to widen. For example, after 6 years,
the core failure rate without the new methodology reaches as high as about twice
of the result by using the proposed method. Furthermore, we used Monte-Carlo
simulations to monitor the critical path delay and total leakage power for each core,
and predicted the changes in MTTF. The MTTF estimation follows the derivation
from Greskamp et al. [2007], Srinivasan et al. [2004, 2005], and Waldshmidt et al.
[2006], where MTTF is modeled as an exponential function of operating temperature
T . For temperature simulation during performance evaluation, we use HotSpot
[Skadron et al. 2004], a popular thermal modeling tool, and rely on the temperature
data obtained from HotSpot to predict the change of core’s run-time temperature.
Given core’s operating speed and initial temperature as inputs, HotSpot is capable of
predicting core’s temperature shift and power consumption after each calling interval.
To accurately characterize the thermal changes, HotSpot has to be initialized with
a heat sink temperature for every simulation. For this purpose, we run HotSpot
simulation twice with the first run to obtain core’s average power consumption which
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Fig. 9. Core failure percentage comparison between new strategy and without new strategy.

Fig. 10. MTTF comparison between new strategy and without new strategy.

can be used for heat sink temperature initialization. Figure 10 shows the MTTF
comparison between multicore systems without the proposed methodology and with
the proposed methodology. Considering the performance degradation brought by the
proposed scheme, we have forced the system using the new strategy to operate at about
3% higher rate, along with the associated effects on temperature and reliability etc.,
to conduct an “apples-to-apples” comparison. The x-axis presents the time in terms of
years of operation. The y-axis measure provides the average MTTF of the 8 multicore
system with 8 NBTI stressed cores. Though after about 3 years, both cases observe
decreases in MTTF measurements. The results indicate that by allowing relatively
light workload assigned to the NBTI-stressed devices, the new strategy is beneficial
to the recovery of NBTI stress and therefore extends device lifespan. On average, the
new methodology demonstrates about 30% improvement in MTTF degradation.
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5. CONCLUSIONS

This article presents a new design framework for multicore systems to include device
wear-out impact. The new approach starts from device fractional NBTI model to eval-
uate core performance difference, and provides a new NBTI-aware system workload
model based on new DZ and DTS algorithms to balance workload among active cores
while relaxing NBTI stressed ones. Experimental results show that by allowing some
cores stressed by workload to relax after a certain period of operation, the proposed
methodology improves multicore system yield and extends system MTTF with graceful
degradation in performance.

APPENDIX: MEAN AND VARIANCE OF DELAY VARIATION

Given a normal random variable X with mean value μ and standard deviation σ ,
consider a function of this random variable Y = f (X). A Taylor series expansion
around mean value μ yields:

Y = f (X) = f (μ) +
∞∑

n=0

f (n)(μ)
n !

(X − μ)n
. (28)

The mean value of Y can be determined by taking the second-order expansion:

μY = E
[

f (μ) + f ′(u) (X − μ) + f ′′(u)
2

(X − μ)2
]

= f (μ) + f ′′(u) · σ 2

2
. (29)

Recall the gate delay function (4), which is a function of Vth variation. Letting Vx =
Vdd − Vth, the mean value can be obtained according to (29):

μDg = VddLeff

γ
· (Vx − μ)−α + VddLeff

γ
· (−α)(−α − 1) (Vx − μ)−α−2 · σ 2

2

= VddLeff

γ
·
[
(Vx − μ)−α + (α2 + α) (Vx − μ)−α−2 · σ 2

2

]
. (30)

To derive the variance of gate delay, we simply use the first-order expansion to
estimate the function Y :

Y = f (X) = f (μ) + f ′(μ) (X − μ) . (31)

The mean value of Y is simply μY = f (u). Therefore, the variance can be derived as:

σ 2
Y = E[(Y − μY )2] = E{[ f ′(u)(X − μ)]2}

= f ′(u)2 · E[(X − μ)2] = f ′(u)2 · σ 2. (32)

By substituting the gate delay function (4) into (32), the variance of gate delay can be
derived as:

σ 2
Dg

=
(

VddLeff

γ
· (−α) (Vx − μ)−α−1

)2

· σ 2

=
(

αVddLeff

γ

)2

· (Vx − μ)−2α−2 · σ 2. (33)
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