
LEAD: Learning-enabled Energy-Aware Dynamic
Voltage/frequency scaling in NoCs

Mark Clark
Ohio University
Athens, Ohio

mc591611@ohio.edu

Avinash Kodi
Ohio University
Athens, Ohio
kodi@ohio.edu

Razvan Bunescu
Ohio University
Athens, Ohio

bunescu@ohio.edu

Ahmed Louri
George Washington University

Washington, D.C.
louri@email.gwu.edu

ABSTRACT
Network on Chips (NoCs) are the interconnect fabric of choice for
multicore processors due to their superiority over traditional buses
and crossbars in terms of scalability. While NoC’s offer several
advantages, they still suffer from high static and dynamic power
consumption. Dynamic Voltage and Frequency Scaling (DVFS) is a
popular technique that allows dynamic energy to be saved, but
it can potentially lead to loss in throughput. In this paper, we
propose LEAD - Learning-enabled Energy-Aware Dynamic volt-
age/frequency scaling for NoC architectures wherein we use ma-
chine learning techniques to enable energy-performance trade-offs
at reduced overhead cost. LEAD enables a proactive energy man-
agement strategy that relies on an offline trained regression model
and provides a wide variety of voltage/frequency pairs (modes).
LEAD groups each router and the router’s outgoing links locally
into the same V/F domain, allowing energy management at a finer
granularity without additional timing complications and overhead.
Our simulation results using PARSEC and Splash-2 benchmarks on
a 4 × 4 concentrated mesh architecture show an average dynamic
energy savings of 17% with a minimal loss of 4% in throughput and
no latency increase.

ACM Reference Format:
Mark Clark, Avinash Kodi, Razvan Bunescu, and Ahmed Louri. 2018. LEAD:
Learning-enabled Energy-Aware Dynamic Voltage/frequency scaling in
NoCs. In DAC ’18: DAC ’18: The 55th Annual Design Automation Conference
2018, June 24–29, 2018, San Francisco, CA, USA. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3195970.3196068

1 INTRODUCTION
As technology scales further into the sub-nanometer region, an
increasing number of transistors are packed onto chips. Single-chip
processors already contain more than 7.2 billion transistors (Intel

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’18, June 24–29, 2018, San Francisco, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5700-5/18/06. . . $15.00
https://doi.org/10.1145/3195970.3196068

Broadwell-EP Xeon), and with this astronomical number of tran-
sistors comes several unique power challenges. Prior research has
focused on reducing the excessive dynamic energy consumption
resulting from storing and switching data within routers and links
using Dynamic Voltage and Frequency Scaling (DVFS). As tech-
nology continues to scale down in size, static power consumption
continues to grow, already accounting for a significant portion of
the total power consumption of the chip. Power-gating [1] is a
useful technique that seeks to save static power, however wakeup
delay and break even time remain critical challenges.

The main goal when applying any DVFS strategy is the reduction
of dynamic energy consumption at runtime [2], [3], [4], [5]. Because
static power is not related to clock frequency, it is rarely considered,
even though multi supply voltage designs assume that any increase
or decrease in clock frequency is caused by a subsequent increase
or decrease in supply voltage. This is because the supply voltage
should be increased at times of high network traffic in order to
increase throughput, and the supply voltage should be decreased at
times of low network traffic in order to save dynamic energy. Vari-
ous metrics have been used to measure network traffic such as the
round-trip time (RTT) [5], Voltage Frequency Island (VFI) utiliza-
tion [6], network slack [7], and buffer utilization [3]. The nominal
supply voltage required for operation is hardware dependent, but
the supply voltage and frequency always increase/decrease propor-
tionally.

When dealing with any DVFS scheme, it is often the case that
the logic behind when to increase or decrease the supply voltage
becomes the most crucial part of the design (mode selection model).
Recently some designs have begun to apply machine learning (ML)
to their DVFS scheme in order to control the mode selection logic,
thus determining when to switch modes proactively rather than
older data-dependent reactive schemes [8], [9], [10], [11], [12], [13].
These approaches often apply online learning because it allows
the algorithm to learn as data becomes available instead of learn-
ing from a static data set. However, online learning is expensive
in terms of overhead cost as well as being inaccurate until after
several iterations of learning.

In this paperwe proposeLearning-enabledEnergy-AwareDynamic
voltage/frequency scaling (LEAD), a collection of linear regression
based DVFS techniques that are all trained offline. All LEADmodels
are proactive. They use only local router information when calcu-
lating the label and are trained offline in order to maximize the

reduction in overhead associated with traditional machine learning
approaches. LEAD also scales the router and the router’s outgoing
links simultaneously in order to avoid inefficient use of network
bandwidth or excess energy consumption. In order to achieve opti-
mal energy-performance trade-offs, LEAD predicts different net-
work metrics specific to the model. LEAD-τ predicts future buffer
utilization, LEAD-∇ predicts the change in buffer utilization be-
tween the current and future epoch, and LEAD-G predicts change
in enerдy

throuдhput 2 between the current and future epoch. Based on
these predicted values, our proactive ML techniques are used to se-
lect the appropriate mode on a per router basis without the need for
global coordination, thereby reducing the overhead and complexity.
Machine learning uses linear regression algorithms that minimize
the error of a model and make the most accurate prediction pos-
sible [14], [15], [16]. For a 4 × 4 concentrated mesh architecture,
our simulation results show that LEAD-τ achieves an average of
17% savings in total dynamic energy with minimal loss of 2-4% in
throughput for real applications.

2 RELATED WORK
There has been a significant amount of work in applying DVFS
schemes to various on-chip components including the processor,
caches, memory as well as the NoC. DVFS has also been applied
at different levels of granularity ranging from very fine grained to
very coarse grained. The trade-off between operating at a coarse-
grain or a fine-grain comes in terms of system complexity and
maximum amount of energy savings [7]. If the links operate at a
much lower frequency than the router, packets can queue up and
the network can saturate quickly. If the links operate at a much
higher frequency than the router, then unnecessary dynamic en-
ergy will be consumed when little work is being done. Prior works
have used various parameters to measure network traffic such as
round-trip time (RTT) [5], VFI utilization [6], network slack [7],
buffer utilization [3], or cache-coherence properties [17]. There has
also been research focused on using different reactive DVFS mode
selection models such as a threshold-based model, a proportional-
integral (PI) based model, and a greedy model [6].

Recently, DVFS and machine learning have been combined such
that the resulting regression based learning algorithm can auto-
matically learn a DVFS scheme that maximizes dynamic energy
savings within an allowable amount of performance degradation.
While one approach has applied regression based learning to a
heterogeneous embedded system [8], another approach has applied
online reinforcement learning techniques [9]. One recent work has
applied online learning to multi-tasking systems using only three
entities: a controller, an expert, and the CPU [10]. It has also been
shown that low-overhead reinforcement learning can be applied to
multi-processor systems to achieve a required balance in tempera-
ture, performance, and power [13].

While prior work has applied reinforcement learning as well as
regression models to the processor or shared computing resources,
we specifically apply regression to NoCs to optimize dynamic en-
ergy and performance. Combined with offline learning, our pro-
posed LEAD models greatly reduce overhead and implementation
cost. Applying DVFS to the router and the router’s outgoing links
locally guarantees that our design has the necessary link bandwidth

Figure 1: Topology: We apply LEAD to a concentrated mesh
with 16 routers and 64 cores. We use on chip voltage regu-
lators that can adjust the supply voltage between 0.8V and
1.2V, allowing us to apply DVFS to individual routers and
their corresponding links.

at times of high network traffic, while still saving dynamic energy
when lower link bandwidth is sufficient.

3 LEAD TOPOLOGY
In this section, we will discuss the proposed LEAD topology, NoC
microarchitecture, machine learning techniques and DVFS imple-
mentation.
LEAD Layout: LEAD is built on a concentrated mesh topology
using on-chip voltage regulators that allow the selection of multiple
voltage modes as shown in Figure 1. Our network consists of 16
routers, 64 cores, and 48 unidirectional links. We propose per router
DVFS such that the router as well as the outgoing links are scaled
simultaneously to operate at the same mode of operation. Each
router consists of 8 input ports, 8 output ports, and 4 virtual chan-
nels per port. Each processor has an individual L1 cache and each
router has an L2 cache shared among the four cores connected to
each router. When a packet is first generated, the packet is stored in
the input buffer. The output port is computed using XY dimension-
order routing (DOR) in the route computation (RC) stage of the
router pipeline. After a virtual channel is allocated, the head packet
competes for the output channel in the switch allocation (SA) stage.
After successfully competing and being awarded the channel, the
packet is sent across the crossbar to the destination port in the
switch traversal (ST) stage. The proposed router microarchitecture
is shown in Figure 2(a).
Operating V/F Modes: Our models use five modes of operation
with voltage and frequency levels similar to those proposed in
previous work [17]. The supply voltage changes in 100 mV steps
with proportional changes in clock frequency. The V/F pairs our
models use include {0.8 V/1 GHz, 0.9 V/1.5 GHz, 1.0 V/1.8 GHz, 1.1
V/2 GHz and 1.2 V/2.25 GHz} which correspond to modes 1-5 as
shown in Figure 2(b). We carefully chose five modes because us-
ing too many modes leads to increased voltage regulator overhead,
whereas too fewmodes will not allow for dynamic energy reduction.

Figure 2: (a) Router Microarchitecture: The architecture as
well as additional units required for reactive or proactive
mode selection. Reactivemodel selection requires two units,
Feature Extract and Non-ML Model. Proactive model selec-
tion requires three units, Feature Extract, Label, and ML
Model. (b) VR Scheme: The on-chip voltage regulator setup
that allows the selection of voltage levels in the range of 0.8V
to 1.2V for every router and its’ associated outgoing links.

Since power-gating has several challenges (deadlocks, breakeven
time, loss in throughput), we have not considered implementing a
power-gated version of LEAD, leaving this for future work.

3.1 DVFS Models
In this work we focus on measuring the impact of different mode
selection models on dynamic energy savings and performance. We
propose three machine learning based models; LEAD-τ , LEAD-∇,
and LEAD-G. LEAD-G is based on an already proposed reactive
model called Greedy. This Greedy model is presented in [6] as an
adaptation of a Greedy search method presented in earlier work
[18]. Greedy and LEAD-G are used strictly for comparative pur-
poses.
Baseline: The baseline model always operates all routers in mode 5
(highest V/F) and does not apply DVFS. This model has the highest
throughput and lowest latency, but has no dynamic energy savings.
LEAD-τ : LEAD-τ starts each router in the lowest mode. It chooses
the routers’ operation mode for the next epoch based on the pre-
dicted input buffer utilization of the router. If the router’s buffers
are predicted to be less than 5% full, then the lowest mode is chosen.
If the buffers are predicted to be between 5% and 10% full, then
the router will operate in mode 2. If the buffers are predicted to
be between 10% and 20% full, then the third mode is chosen. If
the buffers are predicted to be between 20% and 25% full, then the
router will operate in the fourth mode. Finally, if the buffers are
predicted to be greater than 25% full, then the router will operate in
the highest mode. For larger epoch sizes the thresholds are reduced
for more aggressive scaling. For example, at epoch size of 500, the
thresholds are reduced to 1%, 2%, 4%, and 5% respectively because
of how the maximum utilization is calculated as a worst case time
variant sum. For simplicity sake we will show the thresholds as if
they are all for epoch size of 100 cycles. This mode selection model
assumes a voltage regulator scheme that allows the transition from
any mode to any mode in one cycle without the need to transition

into adjacent modes. This model emphasizes the importance of be-
ing able to select the optimal mode at any given epoch versus other
designs which are constrained to only being allowed to transition
into adjacent modes.
LEAD-∇: LEAD-∇ starts each router in the highest mode. Every
epoch routers transition one mode up/down based on the predicted
change in input buffer utilization between the previous and current
epochs. Mode transitions only occur if this predicted change in
buffer utilization falls within certain criteria. It must be carefully
chosen so that small variations in network traffic do not govern
mode selection, but also such that the router can adequately adapt to
changes in network traffic patterns. The buffers must be predicted
to increase by at least 6-10% of their maximum utilization in order
to warrant a mode transition into a higher mode, and they must be
predicted to decrease by at least 3-5% of their maximum utilization
in order to warrant a mode transition into a lower mode. We ensure
dynamic energy savings by requiring the predicted change in buffer
utilization required to move down a voltage level be less than the
change required to move up. This model is used to compare and
contrast the trade-offs associated with being able to transition only
into adjacent modes at every epoch, but we still assume that each
transition takes one cycle. This model is more suited to gradual
traffic changes where adjacent mode transitions are optimal.
LEAD-G: LEAD-G [6], [18] explores to find the mode that mini-
mizes a predicted future enerдy

throuдhput 2 . This model adds explorative
logic and introduces both dynamic energy and throughput into the
model in the hopes of better balancing the trade-off between the
two. LEAD-G starts each router in the highest mode and in a down-
wards explorative direction. If the predicted change in enerдy

throuдhput 2

between the current and future epoch is less than or equal to 0,
then the router will move one mode further in the current explo-
ration direction (downward/upward). If the predicted change in

enerдy
throuдhput 2 between the current and future epoch is greater than
0, then the router is put into a hold phase. The hold phase lasts 2
epochs, and during the holdphase the router can not change modes.
After the hold phase expires, the exploration direction is flipped
and the model begins to explore in the opposite direction until the
predicted enerдy

throuдhput 2 is greater than 0 again. This model seeks
to minimize the predicted enerдy

throuдhput 2 and assumes that routers
may only transition into adjacent modes. The logic behind all three
LEAD models is further explained in Figure 3.
DVFS Implementation: As shown in Figure 2(a), LEAD uses four
components per router in order to perform reactive (non-ML) or
proactive (ML) model selection. The first component is called Fea-
ture Extract. It gathers the router/link features and supplies it to the
Label unit for proactive models. The next component is the Non-
ML Model, which takes the label supplied from Feature Extract
and selects the appropriate mode for the router and the router’s
outgoing links (Greedy model). For proactive model selection, we
require the addition of two new units. The first is called the Label.
This component takes the features supplied by Feature Extract and
applies Ridge Regression in order to generate a corresponding label.
This label is then supplied to the ML Model unit in order to select
the appropriate mode for the router and the outgoing links.

Figure 3: Mode SelectionModels: LEAD-τ uses a predicted input buffer utilization to select the optimal mode per epoch. LEAD-
∇ uses a predicted change in input buffer utilization to move in the direction of the optimal mode per epoch. LEAD-G uses
a predicted change in enerдy

throuдhput 2 to move up/down adjacent modes based on exploration direction such that enerдy
throuдhput 2 is

minimized.

3.2 Machine Learning Algorithm
We use machine learning to train different Ridge Regression algo-
rithms corresponding to LEAD-τ , LEAD-∇, and LEAD-G. There
are two arrays of values needed when using regression, the first
being the feature set and the second being the weight vector. Each
feature has a corresponding weight, a scalar factor representing
that particular features impact on predicting the output. The Ridge
Regression equation is shown below:
Ridge Regression:

E(w) = 1
2
∑N
n=1{y(xn ,w) − tn }

2 + λ
2
∑M
j=1w

2
j

In the Ridge Regression equation listed above, we minimize the
sum of squared errors between our predicted label y(xn ,w) and the
actual label tn . The feature results xn as well as the label tn are used
to train the system offline such that a corresponding weight vector
w is created. The weight vector is normalized during training by
adding L2 regularization. During tuning, different values of λ are
tried for the equation λ

2
∑M
j=1w

2
j until the best fitting solution for

the training data is found. We used a total of 14 different trace files;
6 for training, 3 for validation, and 5 for testing.
Feature Set: The feature set is directly related to prediction accu-
racy and overhead cost. The feature set must be kept as small as
possible because every new feature leads to an increase in arithmetic
overhead. Our feature set is composed of 39 network parameters
(buffer utilization, incoming/outgoing link utilization per direction,
request/response packets, etc) as well as a label local to each of the
16 routers.
Label: A reactive version of each LEAD model is ran for each of
the 6 training trace files. This is done so that corresponding feature
results and labels can be extracted and supplied for training each
LEAD model. While the same features are used to train all LEAD
models, the label supplied for training is unique for each LEAD
model. The label for LEAD-τ is the future input buffer utilization of
the router for the next epoch. The label for LEAD-∇ is the difference
between the routers’ current and future buffer utilization. The
label for LEAD-G is the difference between the routers’ current
and future enerдy

throuдhput 2 . These labels are supplied along with the

corresponding feature results in order to train the ML algorithm
offline.
ML Overhead: A trained linear regression algorithm uses a series
of additions and multiplies to calculate a label, thus the overhead
cost can be simplified to the timing, power, and area cost required
to execute a set number of additions and multiplies. The energy
cost of a single 16 bit floating point add is estimated to be 0.4 pJ
and the area cost is 1360 um2 [19]. The energy cost of a multiply is
estimated to be 1.1 pJ and the area cost is 1640 um2 [19]. The total
energy overhead cost is 58.1 pJ (considering two-stage multiplies
followed by an addition), the total area overhead cost is 0.12mm2,
and the total timing cost is 3-4 cycles. We use epoch sizes of 500
cycles and 1000 cycles, reducing overhead cost.

4 PERFORMANCE EVALUATION
Simulation Setup: In order to train our Ridge Regression model,
we first begin by gathering features and labels from a cycle accurate
simulator running a logically similar model with real traffic patterns.
The first step in achieving this is to gather real network traffic trace
files using Multi2sim. Multi2sim [20] is a full system simulator that
uses benchmarks from PARSEC 2.1 [21] and SPLASH2 [22] in order
to generate cycle accurate traces. These traces are used as input
for our in-house network simulator such that feature results and
labels can be extracted. We use the output of six trace files which
include feature values and target labels in order to train our Ridge
Regression algorithm in Matlab. The algorithm is then validated
on three different trace files. This process is repeated for all three
different LEAD models such that each has a uniquely trained Ridge
Regression algorithm. It is important that we tune the lambda hyper-
parameter as it controls the amount of L2 regularization used to
combat over-fitting, resulting in reduced model complexity. After
the models are trained and tuned, they are exported for testing back
in our network simulator where they predict the various target
labels. We use five untouched trace files as input during testing to
measure the performance of our trained Ridge Regression models.
These five traces are not used during testing or validation so that

Figure 4: Throughput loss/dynamic energy savings across
multiple Threshold selections for the lu tracewith awindow
size of 500.

we can accurately measure the performance of each model. We used
DSENT [23] tomodel routers and links so that the resulting dynamic
power results could be converted to dynamic energy. This resulting
dynamic energy is gathered for all 5 various modes at a 22 nm
technology node assuming a 128-bit flit width. The total dynamic
energy is calculated as the cost to send a specific amount of packets
through the network. The energy per packet is calculated as the
cost to traverse a router and an outgoing link which are operating
at modes 1-5. This energy cost is listed starting from lowest mode to
highest mode: {25 pJ/packet, 32 pJ/packet, 39 pJ/packet, 47 pJ/packet,
57 pJ/packet}.
Threshold: For the LEAD-τ model, we need to determine the ideal
thresholds for switching between modes. In order to determine
the ideal mode transition thresholds, we conducted an exhaustive
search, a small set of which are shown in Figure 4 on one trace file.
Each x-axis label has 4 values corresponding to the mode transition
thresholds. For example, 5/10/20/25 implies a transition from mode
1 to mode 2 when buffer utilization exceeds 5%, from mode 2 to
mode 3 when the buffer utilization exceeds 10% and so on. From
the results, we observed that the combination that led to the best
performance (least throughput loss and maximum energy savings)
was 5/10/20/25 which yielded 15.51% energy savings while showing
5.35% throughput loss. We use 5/10/20/25 threshold for our LEAD-τ
model.
Results:We compare the throughput/dynamic energy for all proac-
tive LEAD models against a baseline model which does not apply
DVFS and the reactive Greedy model as shown in Figure 5(a,b).
Due to space constraints, we show the result for 500 and 1000
window cycles for LEAD-τ . We normalize the dynamic energy to
the baseline for each application to make it easier to visualize the
energy savings. At an epoch size of 500 and 1000 cycles, LEAD-τ
reduces total dynamic energy consumption by 13-17% for a mini-
mal loss in throughput of 2-4%. LEAD-∇ was able to significantly
decrease dynamic energy consumption by 34-35% for a substantial
throughput loss of 40-43%. LEAD-G performs the best in terms
of dynamic energy saving which makes sense since it sought to
move in the direction that minimized enerдy

throuдhput 2 . LEAD-G was
able to save a significant 42% dynamic energy for an almost even
throughput trade-off of 42%. We see that LEAD-τ greatly improves
total dynamic energy savings with a minimal loss in throughput.
LEAD-G may not have performed very well in terms of throughput,

Table 1: LEAD-τ mode selection accuracy.

Models Lu Ls Radix Fluid Canneal
LEAD-τ 500 88.3% 82.3% 62.7% 68% 95.9%
LEAD-τ 1000 83.2% 73.2% 56.6% 53.2% 95.9%

but overall it did perform better than LEAD-∇ and was able to
achieve an even trade-off between dynamic energy savings and
loss in throughput. In a network with high amounts of contention,
LEAD-τ would be the optimal mode selection model. However, if
the network rarely became congested, then LEAD-G would be the
best option. Figure 6 shows the amount of time spent in different
modes across various applications. LEAD-τ shows that the ability
to switch from any-to-any mode allows it to avoid mode 4 alto-
gether. This ensures that LEAD-τ minimizes loss in throughput
while maximizing energy savings. Both LEAD-∇ and LEAD-G show
significant amounts of time spent in the lower modes 2 and 1 re-
spectively. Therefore, both LEAD-∇ and LEAD-G tend to minimize
energy at the cost of throughput. Table 1 shows the achieved mode
selection accuracy for various applications for LEAD-τ model. Here,
we measure the buffer utilization at the end of window and deter-
mine what mode should have been chosen. We compare this to
the actual mode to evaluate if the prediction was accurate for that
reconfiguration window. We achieve an average of 86% accuracy
across all benchmarks with the canneal application showing almost
95% accuracy.

5 CONCLUSIONS
We have shown how smart proactive mode selection techniques
such as LEAD-τ can lead to substantial dynamic energy savings, at
times with minimal loss in performance. LEAD-∇ highlights how
we can have an unequal trade-off between dynamic energy savings
and performance, showcasing the opposite side of the spectrum;
how a poorly tuned or otherwise underwhelming mode selection
model can lead to sub-optimal dynamic energy savings/performance
trade-off. LEAD-G shows a mode selection model that can get very
good energy savings for an even throughput trade-off in saturated
networks.

6 ACKNOWLEDGEMENT
This research was partially supported by NSF grants CCF-1054339
(CAREER), CCF-1420718, CCF-1318981, CCF-1513606, CCF-1703013,
CCF-1547034, CCF-1547035, CCF-1540736, and CCF-1702980. We
thank the anonymous reviewers for their excellent feedback.

REFERENCES
[1] L. Chen, D. Zhu, M. Pedram, and T. Pinkston, “Power punch: Towards non-

blocking power-gating of noc routers,” in (HPCA-21), July 2015, pp. 378–389.
[2] A. Mishra K., R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and C. Das R., “A

case for dynamic frequency tuning in on-chip networks,” in (MICRO), 2009, pp.
392–303.

[3] R. David, P. Bogdan, and R. Marculescu, “Dynamic power management for mul-
ticores: Case study using the intel scc,” in Internationa Conference on VLSI and
System-on-Chip (VLSI-SoC), October 2012, pp. 147–152.

[4] P. Bogdan, R. Marculescu, S. Jain, and R. Gavila, “An optimal control approach to
power management for multi-voltage and frequency islands multiprocessor plat-
forms under highly variable workloads,” in International Symposium on Networks
on Chip (NoCS), May 2012, pp. 35–42.

Figure 5: (a) shows the throughput for various LEAD designs compared against baseline and greedy. (b) shows the normalized
dynamic energy. For LEAD-τ , we also show the result for 500 and 1000 window cycles.

Figure 6: Time spent in different modes for LEAD.

[5] L. Shang, L. Peh S, and N. Jha, “Power-efficient interconnection networks: Dy-
namic voltage scaling with links,” in Computer Architecture Letters, 1(1), January
2002.

[6] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency scaling in
chip-multiprocessors,” in (ISLPED), August 2007.

[7] S. Eyerman and L. Eeckhout, “Fine-grained dvfs using on-chip regulators,” in
ACM Transactions on Architecture and Code Optimization (TACO), April 2011.

[8] S. Yeng, R. Shafik A., G. Merrett V., E. Stott, J. Levine M., J. Davis, and B. Al-
Hash M., “Adaptive energy minimization of embedded heterogeneous systems
using regression-based learning,” in 25th International Workshop on Power and
Timing Modeling, Optimization and Simulation (PATMOS), September 2015.

[9] R. Jain, P. Panda R., and S. Subramoney, “Machine learned machines: Adaptive
co-optimization of caches, cores, and on-chip network,” in (DATE), April 2016.

[10] G. Dhiman and T. Rosing S., “Dynamic voltage frequecy scaling for multi-tasking
systems using online learning,” in (ISLPED), August 2007.

[11] H. Richard, “Machine learning based dvfs for energy efficient execution of mul-
tithreaded workloads,” in Dissertations and Theses Technical Reports-Computer
Science, November 2014.

[12] X. Chen, Z. Xu, H. Kim, P. Gratz V., J. Hu, M. Kishinevsky, U. Ogras, and R. Ay-
oub, “Dynamic voltage and frequency scaling for shared resources in multicore
processor designs,” in (DAC), July 2013.

[13] H. Shen, J. Lu, and Q. Qiu, “Learning based dvfs for simultaneous temperature,
performance and energy management,” in (ISQED), March 2012.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and S. R., “Dropout: A
simple way to prevent neural networks from overfitting,” in Journal of Machine
Learning Research 15, June 2014, pp. 1929–1958.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Computer Vision and Pattern Recognition (CVPR), 2016.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in ICML, 2015.

[17] R. Hesse and N. Jerger, “Improving dvfs in nocs with coherence prediction,” in
NOCS ’15, September 2015.

[18] G. Magklis, P. Chaparro, J. Gonzalez, and A. Gonzalez, “Independent front-end
and back-end dynamic voltage scaling for a gals microarchitecture.” in (ISPLED),
2006.

[19] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),”
in 2014 (ISSCC), February 2014, pp. 10–14.

[20] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A simulation
framework for cpu-gpu computing,” in PACT ’12, 2012, pp. 335–344.

[21] C. Bienia and K. Li, “ PARSEC 2.0: A New Benchmark Suite for Chip-
Multiprocessors ,” in Proc. of the 5th Annual Workshop on Modeling, Benchmarking
and Simulation, June 2009.

[22] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations,” in ISCA-22, June 1995.

[23] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, and
V. Stojanovic, “Dsent - a tool connecting emerging photonics with electronics for
opto-electronic networks-on-chip modeling,” in Networks on Chip (NoCS), 2012,
pp. 201–210.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 28.80 points
 Normalise (advanced option): 'original'

 32

 D:20180419081402
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 28.8000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

