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ABSTRACT
Approximate communication is being seriously considered as an
effective technique for reducing power consumption and improv-
ing the communication efficiency of network-on-chips (NoCs). A
major problem faced by these techniques is quality control: how
do we ensure that the network will transmit data with sufficient
accuracy for applications to produce acceptable results? Previous
methods that addressed this issue require each application to calcu-
late the approximation level for every piece of approximable data,
which takes hundreds of cycles. So the approximation information
is often not available when a request packet is transmitted. There-
fore, the reply packet with the approximable data is transmitted
with unnecessarily absolute accuracy, reducing the effectiveness of
approximate communication.

In this paper, we propose a hardware-based quality management
framework for approximate communication to minimize the time
needed for the approximation level calculation. The proposed frame-
work employs a configuration algorithm to continuously adjust the
quality of every piece of data based on the difference between the
output quality and the application’s quality requirement. When
the proposed framework is implemented in a network, every re-
quest packet can be transmitted with the updated approximation
level. This framework results in fewer flits in each data packet and
reduces traffic in NoCs while meeting the quality requirements
of applications. Our cycle-accurate simulation using the AxBench
benchmark suite shows that the proposed online quality manage-
ment framework can reduce network latency by up to 52% and
dynamic power consumption by 59% compared to previous ap-
proximate communication techniques while ensuring 95% output
quality. This hardware-software codesign incurs 1% area overhead
over previous techniques.

CCS CONCEPTS
• Computer systems organization → Interconnection archi-
tectures;Multicore architectures; •Hardware→Network on
chip.
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1 INTRODUCTION
Interconnection networks [1–6] play a critical role in the perfor-
mance of parallel computing systems, ranging from chip multipro-
cessors (CMPs) to supercomputers and exascale systems. Previous
research [7–10] showed that approximate computing applications,
such as pattern recognition, data mining and synthesis, can toler-
ate modest errors while yielding acceptable results. Consequently,
approximate communication techniques for approximate comput-
ing applications are starting to receive increasing research atten-
tion [11–17]. With such techniques, network-on-chips (NoCs) can
achieve better performance (e.g., end-to-end latency and power
consumption) in exchange for reduced accuracy of the transmitted
data. To reach this goal, previous studies [12–17] proposed lossy-
compression-, value-prediction- and protection-based techniques:
lossy-compression-based techniques compress data to a lower qual-
ity before transmission and decompress each packet at its destina-
tion to reduce traffic intensity [12, 13]; value-prediction-based tech-
niques predict data based on value locality, instead of transmitting
the data, to reduce packet transmission [16]; and protection-based
techniques approximate data by applying protection only to the
critical part of a packet to reduce the cost of error correction [17].

These techniques enable significant performance and energy
gains, but managing the quality of communication is still a major
issue. To tackle this problem, approximate communication tech-
niques [12–17] simply utilize the quality control frameworks [18,
19] designed for approximate computing without any modifica-
tions. In these frameworks, quality configurations are calculated
based on error monitoring and prediction to ensure the accuracy
of the results. Thus, such a quality control framework requires the
program designer to assign the desired result at the beginning of
a program, leading the application to change its configuration for
each approximable packet during execution to meet the quality
target [12–15, 17]. The calculated quality configuration is either
attached to each request packet [12, 14, 16, 17] or registered in a
quality control table [13] for the network to approximate each reply
packet.
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Figure 1: Conventional network interface (NI) design:
Read and write request packets are triggered by L1 cache
read/write misses.

However, the calculation of the quality configuration requires
hundreds of cycles for each piece of data, so the approximation level
may not be available before a request packet is sent. The absence of
an approximation level in a request packet causes the reply packet
to be transmitted with full accuracy instead of being approximated;
consequently, the packet requires more time and power to traverse
the network. As a result, we observe that previous approximation
techniques do not take full advantage of the error tolerances of
applications. For example, an approximate computing application
may yield a result with an average error of less than 1% even though
the application’s error tolerance is 5%. This observation indicates
that the approximation framework is not utilizing the remaining
range of 4% due to inadequate quality management.

To address this issue, we propose an online quality manage-
ment framework for approximate communication. The goal of this
framework is to design a quality control system for a network that
can automatically configure the approximation levels of data to
be transmitted based on the corresponding applications’ output
quality requirements. To achieve this goal, we introduce a new
NoC design that monitors the application error and adjusts the
data approximation level accordingly. Additionally, we design the
software interface of the quality management framework to capture
the output quality requirements and provide tuning knobs for pro-
gram designers to manage the system. As a result, the framework
can fully utilize the advantages of an application’s error tolerance
and achieve a balance between output quality and network perfor-
mance.

The major contributions of this work are as follows:

• The proposed hardware-based quality management frame-
work can continuously modulate the approximation level for
each packet based on the output error and the corresponding
application’s error threshold.

• A software interface is provided to capture the application re-
quirements and provide tuning knobs for program designers
to control the quality of approximate communication.

• The performance evaluation of our proposed framework
shows that it reduces end-to-end latency and dynamic power
consumption by up to 52% and up to 59%, respectively, com-
pared to previous approximate communication techniques
while ensuring 95% output quality.

2 MOTIVATIONS AND CHALLENGES
2.1 Motivations
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Figure 2: Relative errors on input data versus output data
for the Black-Scholes benchmark: There is a clear linear re-
lationship between the relative error on the input data and
the relative error on the output data.

2.1.1 The NoC can monitor the input and output data of an ap-
plication. Figure 1 shows the conventional network interface (NI)
design [1, 20, 21]. In this system, when the core loads data from
memory and misses the L1 cache, a read request packet will be sent
to the memory or the shared cache through the NoC. The mem-
ory or shared cache uses a read reply packet to send the required
data back to the core. When the core writes the result back to the
memory, the result is incorporated into a write request packet and
sent to the memory or shared cache through the NoC. After the
memory or shared cache has received the data, a write reply is sent
back to the core to verify the transmission. In this architecture, if
an NI has the address information for the input and output data of
an application, the NI can monitor those data during the execution
of that application. This observation motivates us to build a qual-
ity management framework in the NI to observe and control the
approximation levels of both the input and output data.

2.1.2 For quality control purposes, the approximable data are of-
ten independent of the rest of the data in an application. Previous
research (Rumba [18]) showed that an approximable code block
in an application reads and writes data only in a specific address
region. Since data will be processed only by approximate computa-
tion code, it is easier for a quality control method to monitor and
adjust the quality of the output. Rumba suggests that to achieve ac-
curate quality control, approximate computing applications need to
analyze the error after a result is calculated. After this analysis, the
quality information is stored in the shared memory space to allow
the program to decide whether this result meets the quality require-
ments. Thus, a quality management framework for approximate
communication can monitor the output error of an application by
examining the traffic to the address where this quality information
is stored.

2.1.3 The output error depends on the input error. Previous re-
search [18, 22–25] on quality control indicated that the output qual-
ity strongly depends on the input quality. These studies suggest
that the output error can be easily and accurately predicted using
simple algorithms, such as the moving average. Figure 2 shows the
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relative error on the input data versus the relative error on the out-
put data for the Black-Scholes benchmark. The linear relationship
between the input and output errors can be clearly seen from this
figure. Therefore, a simple error-predicting algorithm can be imple-
mented that incurs low hardware overhead while being capable of
managing the approximation level of the input data based on the
output error.
2.2 Challenges
2.2.1 Approximation Level Adjustment. The quality management
framework needs to adjust the approximation level of the requested
data based on the error estimate for the calculated output. To
achieve this goal, the framework predicts the output error and
then compares it against the application’s quality requirements.
The error prediction and approximation level calculation proce-
dures must be carefully designed so that the error on the output
will not exceed the application’s corresponding quality requirement,
which could lead to a system crash or re-execution. Meanwhile,
the latency of the approximation level generation process must be
strictly limited to ensure effective quality control.

2.2.2 Different users and applications have different output quality
requirements. In an approximate computing application, the user
should be able to tune the output quality based on the program’s
characteristics. Therefore, the design of the quality management
framework should provide sufficient flexibility for the program
designer to control the output quality with minimum programming
effort.
3 QUALITY MANAGEMENT FRAMEWORK

DESIGN PRINCIPLES
The goal of our proposed quality management framework is to
continuously modulate the approximation level for each packet
based on the error rate of the output data and the application re-
quirements. By comparing an application’s error threshold against
the error rate of the output data, the framework can automati-
cally adjust the approximation level of the input data to meet the
application’s needs. This framework can dynamically adjust the
approximation level for every packet, whether the application has
low or high requirements in terms of data accuracy. The model-
ing of the approximation level results in aggressive approximation
while ensuring the quality of the output, ultimately reducing the
NoC power consumption and latency.

3.1 Mathematical Model
Figure 3 shows the mathematical model of the proposed quality
management framework for approximate communication, which
is based on the three motivations mentioned in Section 2.1. In this
framework, we build a feedback loop with an approximation level
configurator to adjust the approximation level of the input data.
When an approximate computing application runs, the input data
are read and processed by an approximable function, and the output
data are the result of that function. The output error monitoring
logic captures the error rate (quality information) estimated by the
application and sends it to the approximation level configurator.
The approximation level configurator then uses an error prediction
algorithm and an approximation level configuration algorithm to
adjust the quality of the input data. The error prediction algorithm
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MonitoringApproximation

Approximation Level 
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Accurate 
Input Data

Approximated 
Input Data Output Data

Configure Quality Info.

Figure 3: Mathematical model of the proposed online qual-
ity management framework for approximate communica-
tion.
predicts the error rate of the output data based on the captured
quality information using a simple moving average algorithm. The
approximation level configuration algorithm adjusts the approx-
imation level by comparing the predicted error rate against the
application’s quality requirements.

3.2 Approximation Level Configurator
The approximation level configurator includes an error prediction
algorithm and an approximation level configuration algorithm for
accurate quality management.

We use a simple moving average algorithm to predict the er-
ror rate for the output of an application. Equation 1 describes the
algorithm for calculating the moving average (MA) of the error
rates.

MA = Previous MA +
pM
n

−
p(M−n)

n
(1)

where PM = error rate of the current output, n = window size, and
MA = predicted output error rate. The window size is defined as the
number of output errors needed for error predication. WhenM < n,
the initial approximation level is used for each request packet. This
algorithm calculates the average error rates sampled by a moving
window, while the application itself estimates the error rate for
every output.

After error prediction, the approximation level configuration al-
gorithm compares the value of MA against the application’s quality
requirements and adjusts the approximation level accordingly. The
quality requirements include both input and output error thresh-
olds. The input error threshold defines the maximum error rate
on the input data that the application can tolerate. The output er-
ror threshold describes the application’s requirement with respect
to output quality. The application’s output quality is defined as
1 minus the average error rate of the application’s output data.
For example, suppose that an approximate computing application
generates a result with 2 output data points, which have error
rates of 2% and 3% according to the evaluation metric. The output
error can be calculated to be (2% + 3%)/2 = 2.5%, which can be
translated into an output quality of 97.5%. The approximation level
represents the amount of error injected into the packet due to the
applied approximation and will be discussed in detail in Section 4.2
(Table 1).

Algorithm 1 describes the process of approximation level adjust-
ment in detail. First, the algorithm compares the predicted error
rate against the output error threshold. When the value of MA is
larger than the output error threshold, this indicates that the input
error is too large. Therefore, the approximation level configuration
algorithm will reduce the approximation level of the input value. If
the predicted error rate is substantially less than the output error
threshold, this means that the input error is too small. Therefore,
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Algorithm 1: Approximation Level Configuration
1 if Predicted Error Rate >= Output Error Threshold then
2 Reduce Approximation Level
3 if Predicted Error Rate < Output Error Threshold then
4 if Current Approximation Level < Input Error Threshold

then
5 Increase Approximation Level

Figure 4: Histogram of output errors and accumulative out-
put error distribution.
without exceeding the input error threshold, the quality manage-
ment system will increase the approximation level of the packet
to achieve better performance. Meanwhile, since this algorithm
compares the moving average against the output error threshold,
it can ensure that the output error will meet the application’s re-
quirements.

The results of our preliminary experiment on the Black-Scholes
benchmark are shown in Figure 4, in which are plotted the fre-
quency of output errors and the accumulative output error. Figure 4
shows that with an output error threshold of 5%, a maximum input
error of 0.8% and a window size of 10, 80% of the output lies below
the 5% error threshold, corresponding to an output quality of 94.9%.
This result proves the effectiveness of our proposed quality control
algorithm.

4 QUALITY MANAGEMENT FRAMEWORK
IMPLEMENTATION

Figure 5 provides a high-level overview of the online quality man-
agement framework along with the proposed hardware and soft-
ware enhancements. A compression-based approximate communi-
cation technique uses approximate data compression/decompression
logic at the memory/shared cache and core/L1 cache nodes to re-
duce the data size based on the approximation information stored in
the quality control table. Based on the mathematical model and the
approximation level configuration algorithm described in Section 3,
an approximation level configurator is implemented in the quality
management framework to compute and adjust the approximation
level of the input data. The output quality monitoring logic extracts
the quality information that is generated by each application and
embedded in its write request traffic. Then the logic sends the ex-
tracted quality information to the approximation level configurator.

The quality control table registers the approximation information,
including addresses, approximation levels, data types and validity
bits.

4.1 Quality Control Work Flow
When an approximate computing application starts running, the
quality management framework requires the programmer to set
the address of the approximable input data, the data type, the initial
approximation level, the output error threshold, the input error
threshold, the window size and the address for quality information
using the software interface. Then, the approximation level con-
figurator sets the quality control table on the core side using the
information captured by the software interface. During the execu-
tion of the approximate computing function, the approximation
level configurator sets the validity bit in the quality control table
to 1. Whenever a read request is issued, the quality control table
checks its address. If the requested data can tolerate error, then
the quality control table attaches the corresponding approximation
information to the packet and sends it out. When the NI at a mem-
ory/shared cache node receives a read request packet, the quality
control table at that node is updated. When a read reply is sent from
a memory/shared cache node, the approximate data compressor
reduces the packet size based on the information in the quality
control table. Whenever a write request is issued, the application
output quality monitor checks its address and extracts the quality
information. The quality information is sent to the approximation
level configurator for the algorithm to adjust the approximation
information registered in the quality control table.

The detailed design of the approximation level configurator is
discussed in Section 4.3. The detailed design of the quality control
table and the application output quality monitor is discussed in Sec-
tion 4.4. The software interface of the online quality management
framework is detailed in Section 4.5.

4.2 Approximate Data Compression and
Decompression

In this framework, we design an approximate data compression
method based on data truncation. This work mainly focuses on the
quality management system. We use the idea of data truncation
from [17] to perform approximate data compression.

4.2.1 Approximate Data Compression. The data compressor re-
duces the data size by truncating the least significant bits (LSBs) of
floating point data based on the approximation level. The higher
the approximation level is, the more LSBs will be truncated. We use
Table 1 to translate between the approximation level, the relative
error and the number of truncated LSBs.

At amemory/shared cache NI, the approximate data compression
module distinguishes approximable packets from accurate packets
based on the information stored in the quality control table. By
checking the address contained by a read reply packet against the
quality control table, the approximate data compression logic ac-
quires the transmission requirements for that packet. If the packet
requires accurate transmission, the approximate data compression
logic directly sends it to the packet encoder. Otherwise, the approx-
imation data compression logic distinguishes the data type based
on the information in the quality control table. If the data are of
the floating point type, the data compression logic truncates the
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Figure 5: Online quality management framework: The quality information (Quality Info.) includes the error rates measured
by the application in accordance with a given evaluation metric. The output quality monitoring logic extracts the quality
information fromwrite requests (Write Req.). The quality control table registers the address, the data type, the approximation
level and a validity bit for each piece of approximable data. The approximation level configurator uses the error prediction
algorithm and the approximation level configuration algorithm to control the approximation level of each read reply packet.

Table 1: Relationship among the relative error, the truncated
bits of a floating point value, and the approximation level.

Relative Error Truncated LSBs Approximation Level
0.25 21 14
0.125 20 13
0.0625 19 12
0.03125 18 11
0.015625 17 10
0.0078125 16 9
0.00390625 15 8
0.001953125 14 7
0.000976563 13 6
0.000488281 12 5
0.000244141 11 4
0.00012207 10 3
1.52588E-05 7 2
1.90735E-06 4 1
0 0 0

LSBs by looking up the approximation level in Table 1. If the data
are of the integer type, the data compression logic checks the data
value. If the value is within the range between −224 and 224, where
an integer can be converted into a floating point value without
accuracy loss, the data compression logic converts the data into
floating point data and then truncates the LSBs in accordance with
the approximation level. Otherwise, the integer is sent for packet
encoding.

4.2.2 Approximate Data Decompression. By searching for the data
address associated with a read reply packet in the quality control
table at a core/L1 cache node, the approximate data decompression
logic acquires the approximation information for that packet. If
the data in a packet are lossy-compressed floating point data, the
decompression logic fills in the truncated part with 0s to maintain
the standard floating point data structure. Otherwise, if the data
in a packet are lossy-compressed integer data, the decompression

logic fills in the truncated part and then converts the data into an
integer. In other cases, the read reply packet is sent directly to the
L1 cache.

4.3 Approximation Level Configurator
The approximation level configurator has two components: the er-
ror prediction logic and the approximation level configuration logic.
The error prediction logic (Figure 6) is composed of shift registers
and a signal converter (Window Size -> Control Signal). The shift
registers function as a queue that stores the output errors captured
by the application output error monitor. When the number of out-
put quality samples in the queue matches the specified window
size, the full flag is raised by the queue. Then, a control signal is
generated based on the window size and is input to the AND gates.
The signal converter (Window Size -> Control Signal) sets a number
of highest bits to 1 based on the window size to filter out data that
exceed the length of the window. For example, a window size of 5 is
converted into a control signal of 1111100000 (the highest 5 bits are
set to 1). On this basis, only the output quality information sampled
by the window is calculated, and other quality information is set to
zero. The predicted output error result is calculated by the average
calculator, which sums all the quality information and divides by
the window size. Afterward, the approximation level configuration
logic compares the predicted error against the output error thresh-
old, as described in Algorithm 1. If the predicted error is greater
than the output error threshold (set_output_error_threshold()), the
configurator reduces the approximation level of the approximable
data by updating the approximation level in the quality control table.
If the predicted error is less than the output error threshold, the con-
figurator checks whether the current approximation level exceeds
the maximum input approximation level (set_max_input_error()). If
the current input error level is lower than the input error threshold,
the configurator increases the approximation level and updates the
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encountered by the table at a memory/shared cache node.
quality control table. Otherwise, the configurator maintains the
current approximation level.

4.4 Quality Control Table and Application
Output Quality Monitor

4.4.1 Quality Control Table. Figure 7 shows the hardware design
of the quality control table at a core/L1 cache node (A) and at a
memory/shared cache node (B). The quality control table consists
of 4 columns of approximation information: address, data type,
approximation level and validity bit. The data type column describes
whether a piece of data is an integer or a floating point value.
The validity bit indicates whether approximate communication is
enabled. The validity bits in the quality control table are set to 0 for
accurate communication and 1 for approximate communication.

At a core/L1 cache node, the address column in the quality con-
trol table is compared against the address in a read request packet
(A1). If the requested address matches an entry in the quality con-
trol table, the corresponding approximation information (data type,
approximation level, and validity bit) will be attached to the packet

(A2). Otherwise, the read request packet (A3) will contain only
the address from which data need to be fetched from the mem-
ory/shared cache. When a configuration packet (A4) arrives at the
quality control table, the address column in the quality control table
is compared against the address in the packet to check whether the
current entry requires an update. If the address matches an entry in
the table, the corresponding information in the rest of the columns
of the table is compared against the approximation information in
the packet. If the approximation information matches, the entry
will not be updated. Otherwise, the entry is updated. If the address
does not match any existing entry in the quality control table, a
new row is created.

In the NI of a memory/shared cache node, the approximate data
compressor sends a read packet (B1) to the quality control table to
acquire the approximation information for the data. If the address
in the read packet (B1) matches an entry in the quality control
table, the corresponding validity bit in the table is checked. If the
validity bit is 1, the data type and approximation level (B2) are sent
back to the approximate data compressor. Otherwise, a negative
signal (B3) is sent to the approximate data compressor to indicate
that these data require accurate transmission. When a read request
packet (B4) arrives at the quality control table, it is first checked for
approximation information. If the packet contains approximation
information, the registered addresses in the table are compared
against the address in the packet to identify whether an entry re-
quires updating. If the address matches an entry in the table, the
corresponding information in the rest of the columns is checked
against the approximation information in the packet. If the informa-
tion matches, the entry will not be updated. Otherwise, the entry
is updated. If the address does not match any existing entry in the
quality control table, a new row is created.

In this way, this scheme synchronizes the quality control in-
formation calculated by the approximation level configurator at
a core/L1 cache node with the approximate data compressor at a
memory/shared cache node.
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4.4.2 Application OutputQuality Monitor. Figure 8 shows the hard-
ware design of the application output quality monitor. The monitor
contains a software-controlled table to register the addresses that
applications’ quality information is stored. When a write request
arrives at the quality monitor, the quality monitor compares the
address in the packet against the addresses registered in the table. If
the write request matches an entry in the table, the monitor copies
the quality information carried by the packet and sends it to the
approximation level configurator. Then, the packet proceeds to the
packet encoder and is sent to the memory/shared cache node.

4.5 Software Interface of the Online Quality
Management Framework

We propose a software interface that allows program designer
to configure the quality control framework. The software inter-
face of the framework includes the functions (set_approx_data(),
set_output_data_monitor()) which allow the quality management
framework to identify the approximation tolerance information
and quality information in the system address space. Specifically, to
create or update an entry in the quality control table, the function
set_approx_data() has four arguments: address, data type, initial
approximation level and validity. To update the application out-
put quality monitor, the function set_output_data_monitor() needs
only one argument: address. The functions set_window_size(),
set_output_error_threshold() and set_max_input_error() are de-
signed as tuning knobs for the programmer to adjust the communi-
cation quality and set quality requirements of applications. These
functions set the window size, the output error threshold and the
input error threshold in the approximation level configurator.

5 EXPERIMENTAL SETUP
5.1 Simulation Setup
We evaluated the performance of the proposed online quality man-
agement framework using theGEM5 simulator [26] and theAxBench
benchmark suite [27]. By running the AxBench benchmarks on the
modified GEM5 simulator, we could evaluate the end-to-end net-
work latency. We used DSENT [28] to capture the dynamic power
consumption of the network. The detailed settings of the GEM5
simulator are shown in Table 2.

AxBench is an approximate computing benchmark suite with
application-specific quality metrics (Table 3). We implemented the

Table 2: Simulation Environment Setup

NoC Parameters 8 ✕ 8 2D mesh
8 virtual channels
Wormhole routing
X-Y routing

System Parameters 64 on-chip cores @2 GHz
32 kB L1 instruction cache
32 kB L1 data cache
4-way associative
64-bank fully shared 16 MB L2 cache

Output Error Threshold 5%
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Figure 9: Average output error: The red line represents the
application’s quality requirement. The closer to the red line,
the higher the effectiveness of the quality control method.
proposed software interface in AxBench to evaluate the effective-
ness and efficiency of the quality management framework. We
integrated the approximate data compression algorithm and the
quality control algorithm into the GEM5 simulator to simulate the
error injected by the approximate communication technique. In the
simulation, our target was 95% output quality.

6 EVALUATION AND ANALYSIS
We evaluated the quality management system from four perspec-
tives: output quality, dynamic power consumption, end-to-end la-
tency and overheads. We compared the proposed quality manage-
ment system with two quality management systems for previous
approximate communication techniques: Approx-NoC [12] and
AxBA [13]. The quality management systems for both techniques
require each application to assign and calculate the approximation
levels for the data. The Approx-NoC system requires the approxima-
tion level to be attached to the read request packet if the requested
data can be approximated. The AxBA system includes a quality
control table with a software interface to register the approximation
levels for the data.

6.1 Output Quality
6.1.1 Output Error Analysis. The output errors were measured
using the application-specific metrics given in Table 3. Figure 9
shows the errors on the outputs for different benchmarks and qual-
ity control methods. The y-axis in this figure shows the average
output error, which represents the quality of the result. An average
output error of 5% indicates 95% output quality. The red line in this
figure indicates the approximate computing application’s output
error requirement. The techniques that achieve errors closest to
the output error threshold in this figure exert the most effective
quality control.
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Table 3: AxBench Benchmarks Suite [27]

Benchmark Input Data Size Output Data Size Evaluation Metric Output Quality Monitoring Frequency
Black-Scholes 64k fp 64k fp Average relative error 1 per output
fft 5k random fp numbers 5k fp values Average relative error 1 per output
inversek2j 100k random (x,y) points 100k (x,y) points Average relative error 1 per output
jmeint 10k pairs of 3D triangles 10k Boolean values # of mismatches 1 per 100 outputs
jpeg 512 * 512 pixel image 512*512 pixel image Average pixel diff. 1 per 64 pixels
kmeans 512 * 512 pixel image 512*512 pixel image Average output diff. 1 per 60 pixels

(a) Kmeans (b) Inversek2j (c) Black-Scholes (d) Jpeg
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Figure 10: Output error distribution.
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Figure 11: Dynamic power consumption of the proposed
quality management framework: The results are normal-
ized with respect to those of Approx-NoC (lower is better).
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Figure 12: Dynamic power consumption of the proposed
quality management framework: The results are normal-
ized with respect to those of AxBA (lower is better).

This figure shows that our online quality management frame-
work achieves higher effectiveness than the software-based qual-
ity management systems while ensuring that the output quality
is within the tolerance. We can see that on the fft, inversek2j,
jpeg, jmeint, kmeans and Black-Scholes benchmarks, our method
achieves output errors of 4.5%, 4.9%, 3.4%, 0.1%, 0.9% and 4.9%,
respectively. Due to the latency caused by calculating the error
threshold for every packet, the quality control method used by
Approx-NoC achieves output errors of only 0.2%, 0.5%, 1.3%, 0.08%,

0.8% and 2.7%, respectively. Moreover, AxBA achieves output errors
of only 0.08%, 0.92%, 1.05%, 0.08%, 0.34% and 1.06%, respectively,
showing significantly worse approximation performance than the
proposed approach.

Jmeint, jpeg and kmeans have a lower frequency of quality mon-
itoring compared to the rest of applications in the benchmark suite
(Table 3), which leads to less approximation level adjustment for
these benchmarks. When a significant output error occurs, the
proposed quality control framework reduces the approximation
level to avoid re-execution. Since these applications offer fewer
chances for the framework to reduce the approximation level, the
input error threshold is lowered for the benchmark to ensure the
output quality. As a result, jmeint (0.1% error), jpeg (3.4% error) and
kmeans (0.9% error) achieve fewer output errors compared to other
applications in the benchmark suite.

6.1.2 Output Error Distribution Analysis. Figure 10 shows the ac-
cumulative output error distributions for AxBench achieved with
the different approximate communication techniques. The output
error is monitored at the end of each iteration, and the quality man-
agement framework then adjusts the approximation level for the
requested data. Compared to the software-based quality manage-
ment frameworks, the proposed quality management framework
has a lower accumulative output error curve, which indicates a
higher output error on average. Since AxBA includes a quality
control table, the number of full-accuracy outputs is greatly re-
duced, while in the case of Approx-NoC, Figure 10(b) shows that
80% of its output is calculated at full accuracy. Figure 10(a) shows
the accumulative output error for the kmeans benchmark, which
has a low frequency of output quality monitoring. In this case, we
can see that the low frequency of quality monitoring limits the
approximation level adjustment, leading to less approximation on
average. Figure 10(d) shows the output error for the jpeg benchmark,
which is based on integer calculations. Since quality monitoring is
performed every 64 pixels for this benchmark and the evaluation
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Figure 13: End-to-end latency of the proposed quality man-
agement framework: The results are normalized with re-
spect to those of Approx-NoC (lower is better).
metric quantifies the output error as the number of different pixels,
the number of output error levels is limited to 64 (1.5% per level)
for this benchmark; this is the cause of the discrete output error.

6.2 Power Consumption
Figures 11 and 12 show the dynamic power consumed by the differ-
ent approximate communication techniques in comparison to our
quality management framework for a target output quality of 95%.
The y-axis in each of these figures indicates the dynamic power
consumption.

As shown in Figure 11, the proposed framework achieves an
average dynamic power reduction of 41.5% over Approx-NoC. The
largest dynamic power reduction in the experiment is achieved for
the jpeg benchmark, while the least dynamic power improvement
is obtained for the kmeans benchmark. In this comparison, we find
that with a higher rate of output quality monitoring, the proposed
framework can adjust the approximation level more frequently and
achieve better dynamic power improvement. On the other hand,
Approx-NoC transmits some packets at full accuracy, causing high
dynamic power consumption.

Figure 12 compares the dynamic power consumption between
the proposed framework and AxBA. Because AxBA includes a
quality control table to register the approximation levels for the
data, all approximable packets can be compressed. However, since
the approximation level is not frequently updated, applications use
lower approximation levels to avoid re-execution. Consequently, we
observe that the proposed quality management framework saves
25% dynamic power on average over AxBA.

A comparison of the average dynamic power savings between
Figures 11 and 12 shows that the proposed quality control frame-
work achieves better dynamic power savings relative to Approx-
NoC.

6.3 End-to-End Latency
Figures 13 and 14 show the evaluation results for the average end-
to-end latency normalized with respect to Approx-NoC and AxBA,
respectively. The end-to-end latency is defined as the number of
clock cycles between when a packet is injected at the source node
and when it is successfully delivered to its destination. As shown
in Figure 13, our online quality management framework achieves
an average end-to-end latency reduction of 34% over Approx-NoC.
Figure 14 shows that the proposed quality management framework
achieves an average end-to-end latency savings of 23% compared to
AxBA. For the reasons discussed above, the largest latency reduction
in both cases is achieved for the jpeg benchmark, whereas the least
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Figure 14: End-to-end latency of the proposed quality man-
agement framework: The results are normalized with re-
spect to those of AxBA (lower is better).
latency improvement is obtained for the kmeans benchmark. The
proposed quality management framework achieves high latency
reductions compared to both Approx-NoC and AxBA because the
proposed framework aggressively approximates the data in the
communication traffic.

6.4 Area and Latency Overheads
We evaluated the overheads of our online quality management
framework in terms of area and latency. We implemented the frame-
work with 100 entries in the quality control table, a maximum
window size of 100 and an output quality monitor with 20 entries
using Verilog. We synthesized the design with 32 nm technology
using Synopsys Design Vision. The synthesis results show that
the framework incurs an overhead of 8.23 µm2 for each network
interface, which is only 1% of the total NoC area. Regarding the
latency overhead, we find that compression and decompression,
searching and updating the quality control table, and calculating
the quality configuration each require one cycle when the queue is
full.

7 RELATEDWORKS
As computer architects seek to improve performance and energy
efficiency for CMPs, efficient communication between processing
elements is critical [5, 6]. Although many techniques were pro-
posed towards an efficient NoC design [29–32], approximate com-
munication is considered as the most effective way to improve
network performance when an application can tolerate modest
errors [11–16]. One of the most important aspect of designing an
approximation method is quality control [9]. A quality manage-
ment framework ensures that an approximate computing system
will generate results with acceptable errors. Rumba [18] uses a
lightweight check to eliminate large approximation errors in the
execution of an approximate computing technique. ApproxIt [19]
relies on a run-time quality calibration scheme and reconfiguration
control policy for approximate computing applications based on
iterative methods. The authors of [33] proposed the Approxilyzer
to quantify the quality impact of a single-bit error and strike a
balance between output quality and error resiliency. In [34], the au-
thors suggested controlling the output error by managing the input
error. In previous works on approximate communication [12, 13],
software-based quality management frameworks were applied to
control the quality of communication. Our mechanism reduces the
time needed to calculate the quality requirement for each packet
and achieves aggressive approximation without violating quality
requirements.
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8 CONCLUSIONS
Approximate communication techniques can be employed by ap-
proximate computing applications in various domains, such as
pattern recognition, data mining and synthesis. These techniques
enhance communication performance (e.g., power consumption
and end-to-end latency) while ensuring acceptable output quality.
However, current application-based quality control methods can
fail to calculate the approximation level before the transmission of
a request packet, causing the reply packet to be sent without ap-
proximation and leading to inefficient approximate communication.
In this paper, we propose an online quality management system
for approximate communication, consisting of a hardware design
and a software interface for energy-efficient and low-latency NoCs.
We designed an approximation level configurator to calculate the
error threshold for each packet based on the output quality and the
quality requirements of the corresponding approximate comput-
ing application. We compared the proposed framework with two
previous approximate communication techniques: Approx-NoC
and AxBA. Our detailed evaluation showed that the proposed qual-
ity management system reduces end-to-end latency and dynamic
power consumption by up to 52% and 59%, respectively, compared
with previous approximate communication techniques. Moreover,
our evaluation demonstrated that the proposed quality manage-
ment system improves the distribution of the output error rates
while satisfying the stipulated quality requirements.
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