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ABSTRACT
Hardware accelerators provide significant speedup and improve en-
ergy efficiency for several demanding deep neural network (DNN)
applications. DNNs have several hidden layers that perform concur-
rent matrix-vector multiplications (MVMs) between the network
weights and input features. AsMVMs are critical to the performance
of DNNs, previous research has optimized the performance and
energy efficiency of MVMs at both the architecture and algorithm
levels. In this paper, we propose to use emerging silicon photonics
technology to improve parallelism, speed and overall efficiency
with the goal of providing real-time inference and fast training
of neural nets. We use microring resonators (MRRs) and Mach-
Zehnder interferometers (MZIs) to design two versions (all-optical
and partial-optical) of hybrid matrix multiplications for DNNs. Our
results indicate that our partial optical design gave the best perfor-
mance in both energy efficiency and latency, with a reduction of
33.1% for energy-delay product (EDP) with conservative estimates
and a 76.4% reduction for EDP with aggressive estimates.

CCS CONCEPTS
• Computer systems organization → Parallel architectures;
• Hardware → Emerging optical and photonic technologies.
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1 INTRODUCTION
The combined effects of escalating power densities due to higher
transistors, and the performance limitation of instruction-level par-
allelism gave rise to multicore systems. Yet, due to the breakdown
of Dennard scaling, multicore systems too have been vexed by the
power barrier, impeding performance advances [4]. In order to con-
tinue performance scaling, chip architects have shifted their focus
towards application-specific accelerator designs that surpass the
efficiency and functionality of general purpose processors. Machine
learning (ML) architectures such as deep neural networks (DNNs)
are of particular interest due to their unparalleled accuracy on
contemporary applications such as speech recognition and image
classification.

DNNs are formed by placing several highly linked layers between
the inputs and outputs of the network, which allows for the model
to accomplish great precision by controlling the weights of each
connection. The hidden layers of these networks may involve sev-
eral thousands of concurrent matrix-vector multiplications (MVMs)
between the network weights and the set of input features. MVM
and dot products are fundamental operations in DNN architectures
such as convolutional neural networks (CNNs) and recurrent neu-
ral networks (RNNs), and are used throughout model training and
inference.

There are design challenges in DNN architectures that can detri-
mentally affect the computing speeds and power efficiency. First,
real world applications demand millions of MAC operations in each
network layer, and with DNNs comprised of a multitude of hidden
layers, scaling of DNNs poses serious challenges. Second, in order
to maintain high levels of parallelism, data distribution must be
done efficiently in these systems [10]. In the electronic-based accel-
erators, large broadcast buses used for parallel data distribution are
limited by electronic clock rates and consume excess power. These
fundamental physical limitations prevent the effective scaling of
hardware accelerators to maximally exploit the parallelism found
in neural networks.

Emerging technology, such as silicon photonics, is capable of
producing high processing bandwidths with high power efficiency
[3]. The high amount of parallelism, energy efficiency, and ease
of broadcast/multicast capabilities of silicon photonics are well
suited for the design of highly efficient and scalable neural net-
work accelerators [7, 8]. Harnessing the properties of light, linear
transformations can efficiently be performed on data sets at high
rates. While substantial prior work has been published on the use
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Figure 1: (a) shows dual-MRRs with Voff, (b) shows dual-
MRRs with Von, (c) shows MZI with both inputs appearing
at O0 (additive), and (d) shows MZI with inputs appearing at
O1.

of silicon photonics for hardware acceleration, none of the prior
work have analyzed the device properties sufficiently to provide
system-level exploration on how efficient DNN engines can be im-
plemented with current device technology. Prior works such as
PIXEL [8] and PCNNA [7] fail to address the bit-level parallelism
in MVMs, which we directly address in this work. This work re-
duces optical communication overhead compared to PIXEL’s mesh
of x-y crossbars by using a simplified tree distribution network.
Furthermore, by performing bit-level operations we avoid precision
limitations of purely analog systems like PCNNA.

In this paper, we leverage the unique properties of silicon pho-
tonics to design efficient matrix-vector multiplication (MVM) and
accumulation for use in fast neural network accelerators. The de-
signs are based on the use of microring resonators (MRR), MZIs,
lasers, and optical waveguides integrated with electronic processing
to perform highly parallel MVM and accumulation functionality.
MRRs and MZIs are well developed technologies that have the mini-
mal footprint and bandwidth density required for high speed optical
processing. We design two versions of our optical-electrical hybrid
matrix multipliers. The first design uses MRRs to perform bitwise
𝐴𝑁𝐷 operation with electronic processing for summation (O-E-E).
The second design uses MRRs to perform bitwise AND operation,
but also has MZIs to perform optical accumulation, with a final
electrical summation (O-O-E). We perform a thorough design-space
exploration that evaluates power, latency, and area requirements
for different versions of our designs with respect to both inputs and
number of bits.

2 BACKGROUND
2.1 Photonic Devices
2.1.1 Microring Resonator. Microring resonators (MRRs) are a
promising technology that have been used for modulation, demod-
ulation, and switching in optical interconnects. MRRs are desir-
able due to their small footprint (7.5 µm radius) and low energies

Figure 2: Bitwise MZI optical accumulator with differential
phase shift Δ𝜙 and feedback phase shift 𝜙fb.

(<100 fJ/bit including necessary thermal tuning) [6]. Figure 1(a)
shows the basic operation of double MRR when no voltage (V𝑜 𝑓 𝑓 )
is applied. The incoming signal from input port I0 arrives at output
port O0. When voltage is applied to double MRR (V𝑜𝑛), if the incom-
ing signal is in resonance with the ring resonator, the signal will
appear at output port O1. With an incoming optical signal A (A=I0),
and an applied ring voltage B as the two inputs to the double MRR,
the signal appearing at output port O1 will mimic an optical 𝐴𝑁𝐷

gate (Y = A AND B) as shown in Figure 1(a,b). For the optical 𝐴𝑁𝐷

operation, presence of an optical signal corresponds to A=1, and
absence of optical signal corresponds to A=0. The same is true for
the MRR weight (voltage), an "on" voltage corresponds to B=1, and
an "off" voltage corresponds to B=0.

2.1.2 Mach-Zehnder Interferometer. Mach-Zehnder Interferome-
ters (MZIs) [2] manipulate two light signals by coupling the signals,
applying phase shifts in its waveguide arms, and then coupling
the shifted signals before appearing at the output ports. MZIs are
2-input 2-output port devices, and are depicted in Figure 1(c,d).
Depending on the phase shifts applied in the phase-shifting arms,
the MZI can operate in 3 states. The phase delay 𝜙𝑖 = (2𝜋/_)𝑛𝑖𝐿𝑖 ,
where _ is wavelength of the optical signal, 𝑛𝑖 is the refractive index
of arm 𝑖 , and 𝐿 is the path length of arm 𝑖 and Δ𝜙 = 𝜙0 − 𝜙1 is the
differential phase shift. The first state is the bar-state (|Δ𝜙 | = 𝜋 ),
which passes input I0 to output O0 and passes input I1 to output O1.
The second state is the cross-state (|Δ𝜙 | = 0), which passes input
I0 to output O1 and passes input I1 to output O0. The third state
is the tunable-state, where the two output ports can have varying
amplitudes of the combined input signals, depending on the phase
shifts applied in the MZI arms (|Δ𝜙 | = 𝜋/2 or |Δ𝜙 | = 3𝜋/2). This
state is useful when modulating the two signals, or combining two
signals into a single output port, as shown in Figure 1(c,d).

2.1.3 MZI Accumulator. We create an MZI adder that performs
optical bitwise accumulation as shown in Figure 2. The optical
accumulator is formed by introducing a feedback waveguide from
the top output of the MZI back to the top input of the MZI. The
top arm of the MZI accumulator has no phase shifter, and will have
𝜙0 = 0. This means that the phase shifter on the bottom arm of the
MZI accumulator (𝜙1) will be solely responsible for controlling the
value of Δ𝜙 . The feedback arm of the MZI accumulator also has a
phase shifter (𝜙fb), which will tune the accumulation signal so it
will be in phase with the next input for further accumulation.

2.2 Bitwise Matrix-Vector Multiplication
Since MVM, and subsequently dot products, is the reoccurring
operation that is found in DNN architectures, it is necessary to
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Table 1: Bit position (BP) distribution for a 4-bit multiplica-
tion across 4 Processing Elements (PEs).

BP PE Sum
0 PE0 𝑥00𝑤

0
00

1 PE1 𝑥00𝑤
1
00 + 𝑥10𝑤

0
00

2 PE2 𝑥00𝑤
2
00 + 𝑥10𝑤

1
00 + 𝑥20𝑤

0
00

3 PE3 𝑥00𝑤
3
00 + 𝑥10𝑤

2
00 + 𝑥20𝑤

1
00 + 𝑥30𝑤

0
00

4 PE0 𝑥10𝑤
3
00 + 𝑥20𝑤

2
00 + 𝑥30𝑤

1
00

5 PE1 𝑥20𝑤
3
00 + 𝑥30𝑤

2
00

6 PE2 𝑥30𝑤
3
00

explore the data distribution of this operation to exploit a sufficient
amount of parallelism. Let’s consider the equation for the outputs
generated in a 4-input multilayer perceptron (MLP) as shown in
Equation 1.

𝑓

©«

𝑤00 𝑤01 𝑤02 𝑤03
𝑤10 𝑤11 𝑤12 𝑤13
𝑤20 𝑤21 𝑤22 𝑤23
𝑤30 𝑤31 𝑤32 𝑤33



𝑥0
𝑥1
𝑥2
𝑥3

 +

𝑏0
𝑏1
𝑏2
𝑏3


ª®®®¬ =


ℎ0
ℎ1
ℎ2
ℎ3

 (1)

In this equation,𝑤𝑖 𝑗 represents a weight associated with an input
feature 𝑥 𝑗 . The bias is represented by𝑏𝑖 , whereasℎ𝑖 is the activation
of the neuron 𝑖 on the hidden layer. The linear transformation of
the input is fed through a nonlinear activation function 𝑓 to obtain
the output ℎ𝑖 . Now let’s consider the equation for a single neuron
shown in Eq. 2.

ℎ0 = 𝑓 (𝑥0𝑤00 + 𝑥1𝑤01 + 𝑥2𝑤02 + 𝑥3𝑤03 + 𝑏0) (2)

In order to accelerate this expression, we must further decompose
into the bit-level representation of the data in order to fully under-
stand how the hardware will handle these mathematical operations.
Let’s take the multiplication 𝑥0𝑤00, we will assume for this example
that each feature 𝑥 𝑗 and weight𝑤𝑖 𝑗 is a 4-bit value, where the no-
tation is 𝑥𝑏𝑖𝑡

𝑗
and𝑤𝑏𝑖𝑡

𝑖 𝑗
, with 0 being the most significant bit (MSB)

and 3 being the least significant bit (LSB).
The sum for each bit position (BP) is displayed in Table 1. Note

this does not take bit-carries into consideration yet, as they will
be handled in a different level. These sums are arranged into 𝑛

processing elements (PEs) for 𝑛 bit multiplication. By arranging
the bit-level 𝐴𝑁𝐷s in this manner, and executing an 𝐴𝑁𝐷 oper-
ation in each clock cycle, exploitable parallelism becomes more
obvious. In each cycle, the same 𝑥𝑏𝑖𝑡

𝑗
is used by each PE, implying

that we can broadcast this bit to all PEs. Also, if the weight bits are
viewed as a matrix, where the rows are the PE, and the columns
are the cycle number, it is seen that the same 4 bits are used ev-
ery cycle, but in a different arrangement. This arrangement is a
circulant matrix, which is the same column vector being shifted by
one position each cycle. Using this circulant matrix arrangement
reduces retransmission, and 𝑥𝑏𝑖𝑡

𝑗
broadcasting allows for bit-level

data parallelism.

2.3 Electrical Accelerator
The accelerators are split into 3 sectors, and follow the BP distribu-
tion described in Table 1. Sector 1 (S1) contains the bitwise 𝐴𝑁𝐷

Figure 3: PE design with optical AND and electrical accumu-
lation (O-E-E), shown operating on 4 wavelengths.

functionality for 𝑥𝑏𝑖𝑡
𝑗

𝑤𝑏𝑖𝑡
𝑖 𝑗

. Sector 2 (S2) contains the bit-level ac-
cumulation of the 𝐴𝑁𝐷s performed in S1, and provides the result
for each BP of the entire multiplication. In our 4-bit example, PE0
will be fed BP0 (𝑥00𝑤

0
00) in cycle 1 which will then be redirected to

the BP0 output. Due to each BP result being output at a different
cycle, delay logic must be added to certain BP lines in order to syn-
chronize all BP results. So in this case, BP0 must undergo a 3 cycle
delay, BP1 must undergo a 2 cycle delay, and BP2 must undergo a
1 cycle delay to ensure all BPs are available to Sector 3 (S3) at the
same time.

This is the computation of the first multiplication term for ℎ0,
which is (ℎ00 = 𝑥0𝑤00). This hardware is replicated for a total of
four times in parallel to compute the values of ℎ10, ℎ

2
0, and ℎ

3
0. S3 is

responsible for the final additions with carries and activation func-
tion implementation to obtain output ℎ0. To compute the output
ℎ0, the sum (ℎ00 +ℎ

1
0 +ℎ

2
0 +ℎ

3
0 +𝑏0) will be calculated using an adder

tree. The result from the adder tree will then be fed into the activa-
tion function hardware to obtain the final result ℎ0. The activation
hardware is a hybrid piecewise linear with bit-level mapping design
from [12]. Although the main activation function for CNNs used is
the ReLu function (a compare with 0), the hybrid piecewise linear
hardware implementation is included to handle hyperbolic tangent
or sigmoid for flexibility. All 3 sectors of this design are electrical,
and the whole design will be referred to as E-E-E as a fundamental
comparison for our hybrid optical-electrical accelerator designs.

3 PHOTONIC ACCELERATOR DESIGN
In this section, we propose two photonic accelerators (O-E-E) and
(O-O-E) which use photonic devices for different sectors (S1 and
S2) and electrical devices for summation (S3).

3.1 Optical-Electrical-Electrical (O-E-E)
Figure 3 shows the design layout for the Optical-Electrical-Electrical
(O-E-E) accelerator PE. For our photonic designs, an off-chip laser
with a MRR bank modulates the signals for each input feature 𝑥 𝑗 ,
where it is split using a series of 3 dB Y-splitters [13] to each PE. We
can submit a light pulse bit that may contain up to several different
wavelengths at the same instance using wavelength-division mul-
tiplexing (WDM). WDM allows for large amounts of information
to be efficiently broadcasted on the same waveguide, increasing
bandwidth densities beyond the possibilities of electrical wires.

Each input feature 𝑥 𝑗 is mapped to a separate wavelength, and
the number of wavelengths of the system is equal to the number of
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Figure 4: PE design with optical AND and optical accumula-
tion (O-O-E), shown operating on 4 wavelengths.

input features. So for a 4-input system, feature 𝑥0 will be carried
by wavelength _0, feature 𝑥1 will be carried by wavelength _1,
and so on. Each bit of the input feature 𝑥𝑏𝑖𝑡

𝑗
is transmitted as an

optical pulse on wavelength _ 𝑗 , and the entire input feature 𝑥 𝑗 is
transmitted as a pulse train.

The MRRs shown in the "Optical 𝐴𝑁𝐷" box in Figure 3, along
with the waveguide tree splitter, make up S1. The circulant weight
matrix controls the voltage of the MRRs, providing optical 𝐴𝑁𝐷

functionality between bit 𝑥𝑏𝑖𝑡
𝑗

and 𝑤𝑏𝑖𝑡
𝑖 𝑗

, and there is a circulant
matrix associated with each wavelength to control these MRRs.
Since an optical pulse can contain several different wavelengths
using WDM, i.e. containing information for multiple inputs 𝑥 , we
can exploit further parallelism by performing optical 𝐴𝑁𝐷s on
multiple wavelengths using the same waveguide.

The second box "Electrical Accumulation" shows the accumula-
tion logic described in the electrical accelerator section. The optical
bits must undergo an optical-to-electrical (o/e) conversion, achieved
with photodetectors, before entering the electrical logic. Next, the
bit will either go to the output BP it is mapped to, or will undergo
accumulation. By adding the incoming bit with 0 selected by the
multiplexer, this allows it to pass through unchanged. The accumu-
lation can occur by forwarding the output of the adder back into
its input. Once all BPs are calculated, the delay logic, consisting of
D flip-flops (DFFs) on select BP lines, will then provide the result
to the S3 adder tree. The electrical logic in S2 is replicated for each
input, and corresponds to its respective wavelength.

3.2 Optical-Optical-Electrical (O-O-E)
Figure 4 shows the design layout for the Optical-Optical-Electrical
(O-O-E) accelerator PE. As in the O-E-E accelerator, S1 consists of
the off-chip laser source, and the double MRR optical 𝐴𝑁𝐷 func-
tional units. After the optical 𝐴𝑁𝐷 is carried out, the accumulation
must occur, shown in the second box "Optical Accumulation". Opti-
cal accumulation is implemented with MZIs, where the optical bit
can be fed back into the MZI or dropped to the output waveguide.
The waveguide path that connects the upper output of the accu-
mulation MZI back to its input is chosen such that the length of
the path incurs a delay precisely in sync with the next incoming
optical bit, and includes the phase shifter 𝜙 fb to tune the optical
pulse as described in Section 2.1.3.

Accumulation with photonics is achieved by feeding an optical
bit back into an MZI, which results in an additive analog signal that
is proportional to the sum of the input signals. Some BP lines must
undergo a delay as well, but instead of DFFs limited by the electronic

Figure 5: 16 Processor Element (PE) accelerator with waveg-
uide tree splitter, Sector 3 (S3) summation, and activation
function.

Table 2: Photonic losses used in O-E-E and O-O-E designs.

Component Loss
Single MRR[6] -0.045 dB
Double MRR[14] -0.1 dB

Straight Waveguide -1.0 dB/cm
90°Waveguide Bend[11] -0.06 dB
180°Waveguide Bend[11] -0.07 dB
Waveguide Y-Splitter[13] -0.3 dB
Directional Coupler[5] -0.8 dB

Photodetector[1] -0.61 dB
Photodetector Sensitivity[1] -12.7 dBm

clock rate, the waveguide of these lines is simply lengthened by
the correct amount for the desired delay. This avoids extra delay
circuitry and keeps the latency low.

Once the delays are performed, the BP lines undergo an o/e
conversion before being fed to the S3 adder tree. The o/e conver-
sion performed on the optical bits in this design is more involved
than in the O-E-E design. Since the light pulses can have different
amplitudes to represent their values, we must be able to extract
this analog information and convert it into the digital domain. The
photodiodes used as photodetectors provide an electrical current
that is proportional to the amount of photons absorbed, so com-
parator logic within the o/e modules is needed to convert the light
amplitudes into their binary values.

3.3 Scaling for larger architectures
Scaling up the O-E-E and O-O-E designs to higher PE counts still
requires that the optical signal be distributed to each PE, and we
have chosen to do this with awaveguide tree splitter for two reasons.
First, by using a splitter we can ensure that each wavelength is still
available to all PEs. Second, by using a tree design, the PEs are all
the same distance from the laser source, meaning that they will
observe their optical inputs at the same time. Figure 5 shows the
layout of a 16-PE design with the waveguide tree splitter for the
distribution of broadcasted data.

4 EVALUATION
Each component used was simulated to obtain their energy/bit,
area, and propagation delays for a compute-front evaluation of the
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architecture designs. Both electrical and photonic components were
modelled using the DSENT simulator [9], which provides cosim-
ulation of photonic and electrical circuits.By using the DSENT
simulator, we strive to show a fair comparison between electrical
and photonic components. Electrical components were modelled
using 22nm technology (Bulk22LVT) provided by DSENT, and pho-
tonic components were modelled from the referenced literature in
this section. The designs were then evaluated based on the number
of inputs (20 to 26) and number of bits (20 to 26) to show scaling
for all architectures.

Let’s take the MRR 𝐴𝑁𝐷 logic of a 16-input 16-bit O-O-E (Con-
servative) design for example. The overall number of MRRs in the
design is calculated by 2 × 𝑛𝑏 × 𝑛𝑖𝑛 , where 𝑛𝑏 is the number of bits
per input, and 𝑛𝑖𝑛 is the number of inputs. There will be 512 MRRs,
and with each operating at 100 fJ/bit (including ring heating) for
16 bits, they will collectively consume 81.9 nJ. This is assuming
an always-on voltage, which will be the MRR worst-case energy
since bias weights can contain several 0s. The propagation delay
can be calculated for optical components based of the path length
(PL) that a single light pulse must travel. We will calculate the path
length of the photonic splitter. The 1x16 tree splitter is made up of
waveguide Y-splitters cascaded together, and is shown in Figure 5.
The total PL for a node at the end splitter from the laser source is
estimated to be PL𝑌 = 14mm, and with the group refractive index
of ng= 3 at 1550 nmwavelength, the propagation delay will then be
D𝑌 = PL𝑌 ×ng÷𝑐 = 140 ps, where 𝑐 is the speed of light. In a similar
evaluation methodology, an electrical 16-bit carry-lookahead adder
will have a gate count of 1064, and using the Bulk22LVT technology
from DSENT at 2GHz will consume 1.26 pJ.

For optical designs, aggressive and conservative estimates were
used for evaluation. These estimates rely on only 3 changed pa-
rameters: optical modulation frequency, MRR energy/bit, and MZI
energy/bit. In the conservative designs, the parameters are 10GHz
modulation frequency, 100 fJ/bit for MRR, and 450 fJ/bit for MZI. In
the aggressive designs, the parameters are 12GHz optical frequency,
50 fJ/bit for MRR, and 100 fJ/bit for MZI. 7.5 µm radius MRRs have
been shown to have modulation energy as low as 7 fJ/bit [6] with
tuning energy less than 100 fJ/bit. MZIs have been demonstrated at
32.4 fJ/bit [2], which was taken into consideration when determin-
ing conservative and aggressive estimates for our photonic designs.
Photonic losses used in our photonic designs are shown in Table 2.

Our accelerator designs were evaluated on the following CNN
architectures: AlexNet, ZFNet, ResNet-34, VGG-16, and GoogleNet.
These architectures were broken down to their shapes at each
convolution layer to determine the amount of data that needs to
be distributed to each PE, as well at the total number of multiplies,
additions, and activation functions necessary for an inference. For
example, the first convolution layer of VGG-16 has input shape
[224x224x3] (length x width x channels) with 64 feature maps and
receptive field of size [3x3], which would require 3,211,264 kernel
dot products, each resulting in 27 multiplications (3x3 receptive
field x3 channels) and 26 additions. We can then map these numbers
to our design and evaluate for a given bit precision, and apply it
with our energy and latency results on a per-device basis.
Energy Efficiency: The energy consumption was calculated for all
designs on a per-device level. Table 3 shows the energy consumed
for each component in a 16-input 16-bit design. The O-O-E (A)

Table 3: Energy breakdown by component for E-E-E, O-E-E,
and O-O-E designs for a 16 input, 16 bit MVM [nJ].

Component E-E-E O-E-E (C) O-E-E (A) O-O-E (C) O-O-E (A)
E-Bcast 0.39
O-Bcast 0.0028 0.0036 0.0028 0.0036
PE wire 2.41 0.98 0.98 0.44 0.44
E-AND 1.86
E-Acc 33.3 33.3 33.3
E-Delay 293.0 293.0 293.0

o/e 0.073 0.073 0.007 0.007
MRR 52.4 26.2 52.4 26.2
MZI 236 52.4

_-Filter 26.2 13.1
S3 Sum 179 179 179 179 179
Act Func 0.059 0.059 0.059 0.059 0.059
Total 510.0 558.8 532.6 494.1 274.2

Figure 6: Area analysis of E-E-E, O-E-E, and O-O-E designs
for 16 inputs and varying bits (1-64).

design consume the lowest amount of energy, though the optical
designs are consuming substantial energy due to the high number
of MRRs and MZIs. In general, though, with larger number of bits,
the energies for the optical designs scale well. O-O-E (A) consumes
53.8% the energy that the E-E-E designs does. Our results also show
that for a waveguide tree splitter to broadcast 16 values (one per
wavelength) at 16-bits each, only 2.8 pJ is consumed (this includes
modulation, leakage, ring tuning, and laser), whereas to perform
an electrical broadcast on the same amount of data would require
390 pJ to distribute. The energies are assumed with always-active
components, which gives a worst-case estimation since signals are
not always held high for real-world operations.
Area: Figure 6 shows the area occupied by each design. Since pho-
tonic devices can be quite large when compared to CMOS com-
ponents, optical designs will have considerably larger areas than
their electrical counterparts. Although the areas for our photonic de-
signs are quite large, they scale well when compared to all-electrical
implementations. The dashed lines in Figure 6 show an area projec-
tion beyond what was simulated, and while E-E-E begins to trend
upwards with increasing bits, the O-O-E design scaling remains
steady.
Latency: The latency results for each design are shown in Figure 7.
The latencies of E-E-E, O-E-E (C), and O-E-E (A) are similar because
they are limited by the clock rate of their electrical components.
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Figure 7: Latency for a 16 inputMVMand varying bits (1-64).

Figure 8: CNN architecture energy-delay product (EDP) eval-
uation for a 16 PE design with 16 bit precision.

The benefits of photonics can be seen in the O-O-E designs, where
the high optical rates allow for fast data manipulation. The O-O-
E latencies scale well compared to E-E-E and O-E-E designs. At
16-inputs and 16-bits, O-O-E (C) is 77.8% faster than E-E-E, and
O-O-E (A) is 80.8% faster than E-E-E. If we scale the design up to 64
bits, O-O-E (C) is 79.4% faster than E-E-E, and O-O-E (A) is 82.7%
faster than E-E-E. These are computational latencies, assuming that
operands are fetched without significant penalty. This will change
depending on the memory system used, however these results show
the low latency and dense computation abilities of silicon photonics.
Energy-Delay Product: The energy-delay product (EDP) is a use-
ful performance metric that captures the trade-off between energy
efficiency and speed of a system. Figure 8 shows the EDP for a
16-PE design with 16-bit precision evaluated for various CNN archi-
tectures. It can be seen that O-O-E (C) and O-O-E (A) provide a low
EDP compared to the E-E-E and O-E-E designs. In O-O-E, the MRRs
for optical 𝐴𝑁𝐷 combined with the MZIs for optical accumulation
allow the design to outperform E-E-E and O-E-E across all CNN
architectures. On average when compared to E-E-E, the EDP of
O-O-E (C) is 33.1% lower and O-O-E (A) is 76.4% lower.

5 CONCLUSIONS
In this paper, we proposed two electrical-optical hybrid MVM ac-
celerators for use with DNNs. Our proposed architectures utilize
emerging photonic devices in a manner that leverages their low-
energy low-latency properties forMVMcomputation at the bit-level.
We found that the O-O-E design gave the best performance, with a
reduction of 33.1% for EDP with conservative estimates and a 76.4%
reduction for EDP with aggressive estimates. The optical designs
have demonstrated efficient scaling in energy, area, and latency.
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