
Adapt-Flow: A Flexible DNN Accelerator Architecture for
Heterogeneous Dataflow Implementation

Jiaqi Yang
Yang_Jiaqi_Cute@gwu.edu

The George Washington University
Washington DC, USA

Hao Zheng
hao.zheng@ucf.edu

University of Central Florida
Orlando, Florida, USA

Ahmed Louri
louri@gwu.edu

The George Washington University
Washington DC, USA

ABSTRACT
Deep neural networks (DNNs) have been widely applied to various
application domains. DNN computation is memory and compute-
intensive requiring excessive memory access and a large number of
computations. To efficiently implement these applications, several
data reuse and parallelism exploitation strategies, called dataflows,
have been proposed. Studies have shown that many DNN appli-
cations benefit from a heterogeneous dataflow strategy where the
dataflow type changes from layer to layer. Unfortunately, very few
existing DNN architectures can simultaneously accommodate mul-
tiple dataflows due to their limited hardware flexibility. In this paper,
we propose a flexible DNN accelerator architecture, called Adapt-
Flow, which has the capability of supporting multiple dataflow
selections for each DNN layer at runtime. Specifically, the proposed
Adapt-Flow architecture consists of (1) a flexible interconnect, (2) a
dataflow selection algorithm, and (3) a dataflow mapping technique.
The flexible interconnect provides dynamic support for various traf-
fic patterns required by different dataflows. The proposed dataflow
selection algorithm selects the optimal dataflow strategy for a given
DNN layer with the aim of much improved performance. And the
dataflowmapping technique efficientlymaps the dataflow amenable
to the flexible interconnect. Simulation studies show that the pro-
posed Adapt-Flow architecture reduces execution time by 46%, 78%,
26%, and energy consumption by 45%, 80%, 25% as compared to
NVDLA [1], ShiDianNao [2], and Eyeriss [3] respectively.

CCS CONCEPTS
• Computer systems organization→ Interconnection archi-
tectures; • Hardware → Networking hardware.

KEYWORDS
DNN, accelerator, Network on Chip, dataflow, DRAM access, flexi-
ble architecture

ACM Reference Format:
Jiaqi Yang, Hao Zheng, and Ahmed Louri. 2022. Adapt-Flow: A Flexible
DNNAccelerator Architecture for Heterogeneous Dataflow Implementation.
In Proceedings of the Great Lakes Symposium on VLSI 2022 (GLSVLSI ’22),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9322-5/22/06. . . $15.00
https://doi.org/10.1145/3526241.3530311

June 6–8, 2022, Irvine, CA, USA. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3526241.3530311

1 INTRODUCTION
Deep neural networks (DNNs) have been widely deployed in many
application domains such as virtual reality [4], image recogni-
tion [5], signal processing [6], and many others [7]. These DNN
applications are structured with a collection of layers with heteroge-
neous size and connectivity due to their distinct properties [8–11].
Such heterogeneity leads to a wide variation in computation needs
and data movement volume [8, 11–13], and it also indicates the
opportunity in the selection of parallelism and data reuse strategies,
called dataflow, from layer to layer. This could lead to up to 51%
of difference in DRAM access volume when considering different
dataflows per our simulation studies using AlexNet model [5].

Though a large number of architectures have been proposed and
implemented in support of various dataflows, few prior works are
agile enough to simultaneously accommodate multiple dataflows
within a single application. The key obstacle is the limited flexibility
of the underlying communication fabrics for implementing data
movement between the global buffer and the processing array. The
interconnect fabric plays a critical role in implementing data reuse
strategies needed for a given dataflow.

Significant research efforts have been devoted to the design of
flexible interconnects, but many have limited applicability in DNN
accelerators, in particular supporting multiple dataflows. For exam-
ple, SMART [14] and Adapt-NoC [15, 16] have been proposed to en-
able shortcut or path diversity on top of grid-like (e.g., mesh) topol-
ogy for general purpose processors. However, the long-distance
communication between processing elements (PEs) is rarely seen
in DNN accelerators. Reconfigurability [8, 17] has been explored
in DNN accelerators to customize the interconnects for multiply-
accumulate (MAC) units. As such, a collection of MAC units can
adapt to different dataflows eliminating the data sparsity in a fine-
grained manner. However, such fine-grained reconfigurability re-
sults in prohibitive latency and hardware overheads.

In this paper, we address the main bottleneck for the dynamic
support of multiple dataflows and the ability to switch dataflow
strategies from layer to layer. We identify the communication be-
tween the PE array and the global buffer as amajor impediment, as it
directly impacts the choice of data reuse and parallelism. Leveraging
this understanding, we propose a flexible DNN accelerator archi-
tecture, called Adapt-Flow, which allows each DNN layer to select
optimal dataflowwith its desired data reuse and parallelism exploita-
tion. Specifically, Adapt-Flow consists of (1) a flexible interconnect,
(2) a dataflow selection algorithm, and (3) a dataflow mapping strat-
egy. The flexible interconnect exploits the unique properties of the

Session 4B: VLSI for Machine Learning and Artifical Intelligence 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

287

https://doi.org/10.1145/3526241.3530311
https://doi.org/10.1145/3526241.3530311
https://doi.org/10.1145/3526241.3530311

DR
AM

Local Buffer
Data Dispatcher

Multiplier
Array

⋯

⋯
⋮ ⋮

BufferBank

BufferBank

BufferBank

⋮ ⋮

Processing
U
nit

Pooling
ReLu

Trunc
Bias

Proposed Adapt-Flow Architecture

(a)

G
lo
ba

lB
uf
fe
r

Processing Element (PE) Cluster

⋯ ⋯
PEPEPE PE PE

PEPEPE PE PE

PEPEPE PE PE

PEPEPE PE PE

PEPEPE PE PE

PEPEPE PE PE
⋯ ⋯

⋯ ⋯

⋯ ⋯

Controller

C-Switch
Distribution

Unit

Collection
Unit

DC-Switch
Distribution

Unit

Collection
Unit

Clos Network

(b)

(c)

(d) (e)

Figure 1: Overview of the proposed Adapt-Flow architecture. (a)Architecture of bidirectional Clos Network, (b)Layout of PE
array(16 × 8) with ring topology, (c)Architecture of Processing Element (PE), (d)Architecture of diverged bidirectional Clos
switch (DC-Switch), (e)Architecture of bidirectional Clos switch (C-Switch).

Clos network to seamlessly support unicast, multicast, and broad-
cast communication functions often seen in various dataflows [18].
The dataflow selection strategy selects the optimal dataflow at each
layer. And the dataflow mapping technique efficiently maps the
selected the dataflow onto the architecture. We evaluate the pro-
posed Adapt-Flow using several popular DNN benchmarks such
as AlexNet, VGG16 [19], ResNet50 [20] and UNet [21]. Simulation
results show that Adapt-Flow design reduces execution time by 46%,
78%, 26%, and energy consumption by 45%, 80%, 25% as compared
to NVDLA [1], ShiDianNao [2], and Eyeriss [3] respectively.

2 ADAPT-FLOW ARCHITECTURE
The goal of Adapt-Flow architecture is to enable flexible dataflow
selection for each DNN layer, thus maximizing data-reuse oppor-
tunities and minimizing DRAM accesses. More specifically, Adapt-
Flow provides several dataflow options including weight stationery
(WS), input stationery (IS), output stationery (OS) dataflows [7].

For the sake of simplicity, we illustrate the Adapt-Flow archi-
tecture using a 128-PE setup. As shown in Figure 1, Adapt-Flow
consists of a global buffer, a bi-directional Clos network [18, 22]
including 2× 4 diverged Clos switches as shown in Figure 1 (d) and
2 × 2 Clos switches as shown in Figure 1 (e), and 128 PEs arranged
as an array. The global buffer is connected to the PE array using
the Clos network as shown in Figure 1 (a). Within the PE array
illustrated in Figure 1 (b), PEs are connected by a bi-directional
ring at each row. Each PE consists of a 4 × 4 multiplier array for
vector multiplication and a local buffer for the temporary storage
of weights, input activations, and output activations as shown in
Figure 1 (c).

2.1 Proposed Flexible Interconnect
The proposed flexible interconnect is shown in Figure 1, and con-
sists of a bi-directional Clos network with the ability to provide
adequate support for various communication functions required by
the dataflows considered. As shown in Table 1, various dataflows
require distinct communication patterns for handling weights, in-
put activations, and psum to take advantage of the spatial-temporal
data reuse opportunities. This puts a huge burden on the communi-
cation fabric and the proposed Clos Network provides the needed
flexibility and capability.

Table 1: Traffic Pattern of Different Dataflows

Dataflow Weight Input Activation Psum

WS Unicast Multicast Unicast
OS Broadcast Unicast Unicast
IS Multicast Unicast Unicast

2.1.1 Communication Between Global Buffer and PE Array. The
bi-directional switches of the Clos network (shown in Figure 1)
can provide non-blocking and parallel communication when trans-
mitting the data from the global buffer to the the PE array and
can provide bypassing connection when transmitting the data back
from the PE array to the global buffer. These switches can be set
up by the controller for each DNN layer.

To better illustrate the process of communication between global
buffer and PE array, we use WS dataflow as an example with the

Session 4B: VLSI for Machine Learning and Artifical Intelligence 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

288

Weight Stationary Dataflow(WS)

Input Activation

Weight

Output

b3 b2 b1 a3 a2 a1

e1 e2 e2 f1 f2 f3

I3 … B1 A3 A2 A1
I3 … B1 A3 A2 A1

I3 … B1 A3 A2 A1

PEPE PE

PEPE PE

PEPE PE

PEPE PE

I3 … B1 A3 A2 A1

PEPE PE

PEPE PE

PEPE PE

PEPE PE

PEPE PE

PEPE PE

PEPE PE

PEPE PE

O1 O2 O3 O4
O5 O6 O7 O8

O9 O10 O11 O12
O13 O14 O15 O16

(c)

(d)

(e)

A3 B3 C3

D3 E3 F3

G3 H3 I3

A2 B2 C2

D2 E2 F2

G2 H2 I2

A1 B1 C1

D1 E1 F1

G1 H1 I1

A3 B3 C3

D3 E3 F3

G3 H3 I3

A2 B2 C2

D2 E2 F2

G2 H2 I2

A1 B1 C1

D1 E1 F1

G1 H1 I1

Kernel 1

A3 B3 C3

D3 E3 F3

G3 H3 I3

A2 B2 C2

D2 E2 F2

G2 H2 I2

A1 B1 C1

D1 E1 F1

G1 H1 I1

Kernel 3

Kernel 2

Weight Matrix

a3 b3 c3 d3

e3 f3 g3 h3
i3 j3 k3 l3

m
3

n3 o3 p3

a2 b2 c2 d2
e2 f2 g2 h2
i2 j2 k2 l2

m2 n2 o2 p2

a1 b1 c1 d1
e1 f1 g1 h1

i1 j1 k1 l1

m1 n1 o1 p1

Input Activation

Output Activation

A3 B3 C3

D3 E3 F3

G3 H3 I3

A2 B2 C2

D2 E2 F2

G2 H2 I2

A1 B1 C1

D1 E1 F1

G1 H1 I1

Kernel 4

O13 O14

O15 O16
O9 O10

O11 O12
O5 O6

O7 O8O1 O2

O3 O4

𝑻𝑪
𝑻𝑺

𝑻𝑹

𝑻𝑪
𝑻𝑿%+ 𝑻𝑺-1

𝑻𝒀%+
𝑻𝑹-1

𝑻𝑲

𝑻𝑲
𝑻𝑿%

𝑻𝒀%

p3 … c1 b3 b2 b1

Tensor Tensor Index

Input Activation I[n][c][y][x]

Filter Weight W[k][c][r][s]

Partial Sum P[n][k][c][y’][x’][r][s]

Output Activation O[n][k][y’][x’]

⋮

C

R

S

K

C

⋮ N

Y

X
K

⋮

X’

Y’

N

Filter
Weight

Input
Activation

Output
Activation

Sublayer in global buffer

DNN layer in DRAM

(a)

(b)

Figure 2: An example of our proposed accelerator processing
a simple tiled convolutional layer using WS dataflow.

stride of 1 (Stride is a parameter of the neural network’s filter that
modifies the amount of movement over the image or video). As
shown in Figure 2(a,b), weight (𝐾,𝐶, 𝑆, 𝑅), input activation (𝑁,𝐶,𝑋,𝑌),
and output (𝑁,𝐾,𝑋 ′, 𝑌 ′) are tiled into small portion of data, called
sublayer, fitting the global size, where tiling factors are considered
as (𝑇𝑘

𝑖
,𝑇𝑐
𝑖
,𝑇 𝑠
𝑖
,𝑇 𝑟
𝑖
,𝑇𝑥

′
𝑖
,𝑇

𝑦′

𝑖
). As such, weight matrix (𝑇𝑘

𝑖
,𝑇𝑐
𝑖
,𝑇 𝑠
𝑖
,𝑇 𝑟
𝑖
),

input activation (𝑇𝑐
𝑖
,𝑇𝑥

′
𝑖

+𝑇 𝑠
𝑖
−1,𝑇 𝑦′

𝑖
+𝑇 𝑟

𝑖
−1), and output activation

(𝑇𝑘
𝑖
,𝑇𝑥

′
𝑖
,𝑇

𝑦′

𝑖
) will be moved from the global buffer to the PE array.

In such a case, the bi-directional switches can be set to broadcast
input activation data (a1, a2, a3, etc.) to multiple rows of the PE
array, where the circuit switching allows the data to be broadcast
to multiple rows of PE array shown in Figure 2(c). In Figure 2(d),
multiple data paths can be simultaneously set to transmit weights
to different rows of the PE array. For the output, partial sums are
accumulated across each row and eventually written back to the
global buffer using the Clos network as shown in Figure 2(e). As
can be seen, WS communication requirements, namely input ac-
tivation broadcast, weight transmission, and psum gathering and
accumulation all happen efficiently.

2.1.2 Inter-PE Communication. The communication between PEs
within the PE array can be of two types, namely psum accumulation

Figure 3: Dataflow Selection Algorithm.

as well as input activation/weight transmission (unicast) from PE to
PE [23]. For psum accumulation, the psums are forwarded from PE
to PE calculating the final result. In other words, the average hop
count for psum accumulation would be a constant number, and this
can be handled by any simple topology such as a torus or a ring.
In order to manage various psum movement directions, we use a
bi-directional ring to support the unicast of weights and input acti-
vations for the proposed architecture. The bi-directional ring can
provide sufficient bandwidth, reduced diameter, with a reasonable
cost and design complexity for the proposed architecture.

2.2 Dataflow Selection Strategy
In this section, we present the algorithm for determining the optimal
dataflow for each DNN layer. As shown in Figure 3, the process con-
sist of estimating the number of DRAM access volume for each DNN
layer with different data dimensions (𝑁,𝐾,𝐶, 𝑆, 𝑅, 𝑋 ′, 𝑌 ′). In gen-
eral, our proposed model considers unique features of each dataflow
such as loop order (𝐿𝑂𝑖) and tiling factors (𝑇𝑘

𝑖
,𝑇𝑐
𝑖
,𝑇 𝑠
𝑖
,𝑇 𝑟
𝑖
,𝑇𝑥

′
𝑖
,𝑇

𝑦′

𝑖
).

Session 4B: VLSI for Machine Learning and Artifical Intelligence 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

289

To estimate the DRAM access volume (𝐷𝐴𝑖) for the i-th dataflow
of the dataflow candidates, we calculate the product of the data vol-
ume involved in each invocation (𝑉𝑑

𝑖
) and the total number of invo-

cations (𝑅𝑑
𝑖
) for all data types (i.e., weight(𝑤𝑡), input activation(𝑖 𝑓𝑚𝑎𝑝),

psum(𝑝𝑠𝑢𝑚)) as shown in Equation 1:

𝐷𝐴𝑖 =
∑︁
𝑑

𝑉 𝑑
𝑖 × 𝑅𝑑𝑖 , 𝑑 ∈ {𝑤𝑡, 𝑖 𝑓𝑚𝑎𝑝, 𝑝𝑠𝑢𝑚} (1)

The data volume involved in each invocation for different data
type can be calculated as 𝑉𝑤𝑡

𝑖
, 𝑉 𝑖 𝑓𝑚𝑎𝑝

𝑖
, 𝑉 𝑝𝑠𝑢𝑚

𝑖
as depicted in Equa-

tion 2:

𝑉𝑤𝑡
𝑖 = 𝑇𝑘

𝑖 ×𝑇 𝑐
𝑖 ×𝑇 𝑠

𝑖 ×𝑇 𝑟
𝑖

𝑉
𝑖 𝑓𝑚𝑎𝑝

𝑖
= 𝑇 𝑐

𝑖 × (𝑇 𝑥 ′
𝑖 +𝑇 𝑠

𝑖 − 1) × (𝑇 𝑦′

𝑖
+𝑇 𝑟

𝑖 − 1)

𝑉
𝑝𝑠𝑢𝑚

𝑖
= 𝑇𝑘

𝑖 ×𝑇 𝑥 ′
𝑖 ×𝑇 𝑦′

𝑖

(2)

The tiling factors determine the accessed array regions of each
sublayer, thus different tiling factor configurations imply different
dataflows. We observed that different dataflows exhibit large dif-
ferences in DRAM access volume. The total number of invocations
can be calculated as 𝑅𝑤𝑡

𝑖
, 𝑅𝑖 𝑓𝑚𝑎𝑝

𝑖
, 𝑅𝑝𝑠𝑢𝑚

𝑖
. According to the different

loop orders (𝐿𝑂𝑖), the total number of invocations (𝑅𝑑
𝑖
) has different

formulas to calculate:
If the loop order (𝐿𝑂𝑖) is weight stationary, the total number of

invocations (𝑅𝑑
𝑖
) can be calculated as depicted in Equation 3:

𝑅𝑤𝑡
𝑖 =

𝐾 ×𝐶 × 𝑆 × 𝑅
𝑇𝑘
𝑖
×𝑇 𝑐

𝑖
×𝑇 𝑠

𝑖
×𝑇 𝑟

𝑖

𝑅
𝑖 𝑓𝑚𝑎𝑝

𝑖
=
𝑁 × 𝐾 ×𝐶 × 𝑆 × 𝑅 × 𝑋 ′ × 𝑌 ′

𝑇𝑘
𝑖
×𝑇 𝑐

𝑖
×𝑇 𝑠

𝑖
×𝑇 𝑟

𝑖
×𝑇 𝑥 ′

𝑖
×𝑇 𝑦′

𝑖

𝑅
𝑝𝑠𝑢𝑚

𝑖
=
𝑁 × 𝐾 × 𝑆 × 𝑅 × 𝑋 ′ × 𝑌 ′ × (2𝐶

𝑇 𝑐
𝑖
− 1)

𝑇𝑘
𝑖
×𝑇 𝑠

𝑖
×𝑇 𝑟

𝑖
×𝑇 𝑥 ′

𝑖
×𝑇 𝑦′

𝑖

(3)

Similarly, the total number of invocations (𝑅𝑑
𝑖
) can be calculated

using Equation 4 for input stationary.

𝑅𝑤𝑡
𝑖 =

𝑁 × 𝐾 ×𝐶 × 𝑆 × 𝑅 × 𝑋 ′ × 𝑌 ′

𝑇𝑘
𝑖
×𝑇 𝑐

𝑖
×𝑇 𝑠

𝑖
×𝑇 𝑟

𝑖
×𝑇 𝑥 ′

𝑖
×𝑇 𝑦′

𝑖

𝑅
𝑖 𝑓𝑚𝑎𝑝

𝑖
=
𝑁 ×𝐶 × 𝑋 ′ × 𝑌 ′

𝑇 𝑐
𝑖
×𝑇 𝑥 ′

𝑖
×𝑇 𝑦′

𝑖

𝑅
𝑝𝑠𝑢𝑚

𝑖
=
𝑁 × 𝐾 × 𝑆 × 𝑅 × 𝑋 ′ × 𝑌 ′ × (2𝐶

𝑇 𝑐
𝑖
− 1)

𝑇𝑘
𝑖
×𝑇 𝑠

𝑖
×𝑇 𝑟

𝑖
×𝑇 𝑥 ′

𝑖
×𝑇 𝑦′

𝑖

(4)

The total number of invocations (𝑅𝑑
𝑖
) can be calculated as de-

picted in Equation 5 for output stationary.

𝑅𝑤𝑡
𝑖 =

𝑁 × 𝐾 ×𝐶 × 𝑆 × 𝑅 × 𝑋 ′ × 𝑌 ′

𝑇𝑘
𝑖
×𝑇 𝑐

𝑖
×𝑇 𝑠

𝑖
×𝑇 𝑟

𝑖
×𝑇 𝑥 ′

𝑖
×𝑇 𝑦′

𝑖

𝑅
𝑖 𝑓𝑚𝑎𝑝

𝑖
=
𝑁 × 𝐾 ×𝐶 × 𝑆 × 𝑅 × 𝑋 ′ × 𝑌 ′

𝑇𝑘
𝑖
×𝑇 𝑐

𝑖
×𝑇 𝑠

𝑖
×𝑇 𝑟

𝑖
×𝑇 𝑥 ′

𝑖
×𝑇 𝑦′

𝑖

𝑅
𝑝𝑠𝑢𝑚

𝑖
=
𝑁 × 𝐾 × 𝑋 ′ × 𝑌 ′

𝑇𝑘
𝑖
×𝑇 𝑥 ′

𝑖
×𝑇 𝑦′

𝑖

(5)

In this work, we also include hardware parameter to refine the
selection. The global buffer capacity of the proposed architecture
(𝐺𝐿𝐵) needs to be larger than the global buffer capacity require-
ment. In other words, any dataflow exceeding the global buffer
capacity requirement will not be considered in the proposed algo-
rithm. Given the different data type 𝑃𝑤𝑡 , 𝑃𝑖 𝑓𝑚𝑎𝑝 , 𝑃𝑝𝑠𝑢𝑚 and the
data volume involved in each invocation for different data type
𝑉𝑤𝑡
𝑖

, 𝑉 𝑖 𝑓𝑚𝑎𝑝

𝑖
, 𝑉 𝑝𝑠𝑢𝑚

𝑖
, the global buffer capacity requirement (𝐺𝑖)

can be calculated using Equation 6:

𝐺𝑖 =
∑︁
𝑑

𝑉 𝑑
𝑖 × 𝑃𝑑 , 𝑑 ∈ {𝑤𝑡, 𝑖 𝑓𝑚𝑎𝑝, 𝑝𝑠𝑢𝑚} (6)

We compare the total DRAM access volume (𝐷𝐴𝑖) of different
dataflows and consider the dataflow with minimal DRAM access
volume as the optimal one. We note that the layer-wise dataflow
selection will be calculated before execution time, and therefore it
will not have any negative impact on the execution. The dataflow
selection algorithm is described in detail in Figure 3.

2.3 Dataflow Mapping for Adapt-Flow
Architecture

Once a selected dataflow strategy is selected (data reuse and par-
allelism), we need to map it onto the architecture. Without loss of
generality, we illustrate the mapping strategy using WS dataflow. It
should be noted that the mapping can be applied to all the dataflows.

In WS dataflow, the matrix-matrix multiplication is performed in
a nested loop 𝐾𝐶𝑅𝑆𝑌𝑋 , where each input activation (𝐼 [𝑐] [𝑦] [𝑥]) is
multiplied with each weight (𝑊 [𝑘] [𝑐] [𝑟] [𝑠]) as shown in Figure 4
(a,b). To execute the multiplication in parallel, input channels (C)
and output channels (K) should be partitioned and distributed to
an array of PEs (𝑃𝐸 [𝑝] [𝑞]). In a typical WS-optimized accelerator
(i.e. NVDLA-style) as shown in Figure 4 (c,e), weights and input
activations are distributed to PEs in form of unicast and broad-
cast communications through the row-wise bus. However, the ring
topology would be inefficient in handling the broadcast communi-
cation at each row. In Figure 4 (d,f), the modified mapping strategy
distributes the input activations and weights column-wise, result-
ing in column-wise broadcast communication. The key idea of our
strategy is to map computations with broadcast communication
demand (spatial optimization) in the same column and the ones
with unicast communication demand (temporal optimization) in
the same row.

Session 4B: VLSI for Machine Learning and Artifical Intelligence 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

290

Loop order: KCRSYX

// Horizontal mapping index K to PE
array
H_parallel_for(k=0; k<K; k++)
// Vertical mapping index C to PE array
V_parallel_for(c=0; c<C; c++)
for(r=0; r<R; r++)
for(s=0; s<S; s++)
for(y=0; y<Y; y++)
for(x=0; x<X; x++)
O[k][y-r][x-s]+= W[k][c][r][s] *

I[c][y][x]

(a) Traditional weight stationary
dataflow Pseudocode

a1

a2

a3

PE

a1

a2

a3

PE

a1

a2

a3

PE

a1

a2

a3

PE

A1

A2

A3

PE

A1

A2

A3

PE

A1

A2

A3

PE

A1

A2

A3

PE

Mapping of input activation Mapping of weight

(e) Traditional weight stationary
dataflow mapping strategy example

a1

a1

a1

a1

a2

a2

a2

a2

a3

a3

a3

a3

PE

PE

PE

PE

A1

A1

A1

A1

A2

A2

A2

A2

A3

A3

A3

A3

PE

PE

PE

PE
Mapping of input activation Mapping of weight

Loop order: KCRSYX

// Vertical mapping index K to PE array
V_parallel_for(k=0; k<K; k++)
// Horizontal mapping index C to PE
array
H_parallel_for(c=0; c<C; c++)
for(r=0; r<R; r++)
for(s=0; s<S; s++)
for(y=0; y<Y; y++)
for(x=0; x<X; x++)
O[k][y-r][x-s]+= W[k][c][r][s] *

I[c][y][x]

(b) Modified weight stationary
dataflow Pseudocode

K=3K=2K=1K=0
C=0
C=1

C=2

C=0
C=1

C=2

k=0

k=1

k=2
k=3

C=0 C=1 C=2 C=0 C=1 C=2

(f) Modified weight stationary
dataflow mapping strategy example

// I[c][y][x] mapping to the PE at
coordinate [p][q]

p = # 𝑐, 𝑐 ≤ 𝑉
𝑐%𝑉, 𝑐 > 𝑉; 𝑞 = 0,1,2…H-1

// W[k][c][r][s] mapping to the PE at
coordinate [p][q]

p = # 𝑐, 𝑐 ≤ 𝑉
𝑐%𝑉, 𝑐 > 𝑉; q = # 𝑘, 𝑘 ≤ 𝐻

𝑘%𝐻, 𝑘 > 𝐻

// I[c][y][x] mapping to the PE at
coordinate [p][q]

𝑝 = 0,1,2…V-1; q = # 𝑐, 𝑐 ≤ 𝐻
𝑐%𝐻, 𝑐 > 𝐻

// W[k][c][r][s] mapping to the PE at
coordinate [p][q]

𝑝 = # 𝑘, 𝑘 ≤ 𝑉
𝑘%𝑉, 𝑘 > 𝑉; q = # 𝑐, 𝑐 ≤ 𝐻

𝑐%𝐻, 𝑐 > 𝐻

(c) Traditional weight stationary
dataflow mapping strategy

(d) Modified weight stationary
dataflow mapping strategy

Figure 4: The differences between proposed mapping strat-
egy and traditional mapping strategy for weight stationary
dataflow.

3 EVALUATION METHODOLOGY
3.1 Simulation Setup
We extend MAESTRO[11] simulator to support the non-uniform
latency and bandwidth between PEs. The extended simulation
framework is used to calculate arithmetic operation, and access to
memory both to the global buffer and the local buffers, taking the
dataflow and system configuration parameters into account. The
number of arithmetic operations is used to calculate the compu-
tation time, while the number of accesses to memory is used to
calculate the on-package communication time. We take the Clos
network and bandwidth limit into account when calculating the
on-package communication time. The overall execution time is
derived by calculating computation time, the on-package communi-
cation time, and the off-package communication time, considering
the overlap caused by the buffering of the GB and other memory
accesses.

Baseline: We compare the proposed design with three accelera-
tor architectures, namelyNVDLA[1], ShiDianNao[2], and Eyeriss[3].
We use AlexNet[5], Vgg16[19], ResNet50[20], and UNet[21] DNN
models as our workloads. The proposed Adapt-Flow architecture
can support multiple dataflows at the same time. For a fair com-
parison, we keep the configurations consistent for all designs: All

0
1
2
3
4
5
6
7
8

Alexnet Vgg16 Resnet50 Unet Average

E
xe
cu
ti
o
n
T
im

e
(N
o
rm

a
li
ze
d
)

NVDLA ShiDianNao Eyeriss Clos Network Reconfiguration Time

0.0018% 0.0003% 0.0015% 0.0001% 0.0003%

Adapt-FLow

Figure 5: Normalized latency of different accelerators
for DNN models(AlexNet[5], Vgg16[19], ResNet50[20], and
UNet[21]), normalized to Adapt-Flow and the reconfigura-
tion time of Clos network.

designs use 256 processing elements, and each processing element
contains 16 MAC units, the SRAM of each processing elements is
5KB and the global buffer capacity is 20MB.

3.2 Execution Time Analysis
Figure 5 shows the normalized execution time for NVDLA[1],
ShiDianNao[2], and Eyeriss[3], and for the proposed Adapt-Flow.
As can be seen, Adapt-Flow outperforms other architectures, be-
cause prior designs can only select fixed dataflow across different
DNN applications and DNN layers. This limits their ability in ex-
ploiting data reuse and minimizing DRAM access. And Adapt-Flow
architecture can support multiple dataflow at runtime and can min-
imize DRAM access by dataflow selection algorithm. Furthermore,
the average hop count of Adapt-Flow is lower than the previous
designs (NVDLA[1], ShiDianNao[2], and Eyeriss[3]). The proposed
work reduces overall execution time by 46%, 78% and 26%, when
compared to NVDLA[1], ShiDianNao[2], and Eyeriss[3] on average.

We also study the latency overhead of Adapt-Flow for setting
up communication paths for each DNN layer. For a 32 by 8 Clos
network, the latency overhead would be 96 cycles. This latency ap-
pears to be very small when compared to the layer-wise execution
time of DNN applications. Figure 5 shows the ratio of the reconfig-
uration time to the total execution time. The reconfiguration time
represents 0.0003% of the total execution time on average.

3.3 Energy Consumption
For energy analysis, we use DSENT[24] to obtain power consump-
tion and MAESTRO[11] to calculate execution time. It should be
noted that the evaluation includes the energy consumption of the
entire system including PE array, DRAM, global buffer, and inter-
connects. Figure 6 shows the normalized overall energy analysis of
the proposed Adapt-Flow. As can be seen, Adapt-Flow improves

Session 4B: VLSI for Machine Learning and Artifical Intelligence 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

291

0
1
2
3
4
5
6
7
8

Alexnet Vgg16 Resnet50 Unet Average

O
ve
ra
ll
E
n
e
rg
y

NVDLA ShiDianNao Eyeriss Adapt-Flow

Figure 6: Normalized overall energy consumption of dif-
ferent accelerators for DNN models(AlexNet[5], Vgg16[19],
ResNet50[20], and UNet[21]), normalized to Adapt-Flow.

overall energy savings by 45%, 80% and 25% when compared to
NVDLA[1], ShiDianNao[2], and Eyeriss[3] on average. The energy
savings mainly result from the reduced execution time, simplified
architecture design, and reduced DRAM access.

3.4 Area Overhead
We evaluate the area overhead of various architectures through de-
tailed synthesis using 45nm technology. Figure 7 shows the break-
down of the area overhead for NVDLA[1], ShiDianNao[2], and
Eyeriss[3] respectively, normalized to the proposed Adapt-Flow.
Adapt-Flow uses a multi-stage topology between global buffer and
PE array, and for the chosen size (32×8), the Clos network contains
7 stages requiring 56 simple switches and 368 links. For a similar
accelerator size, the Eyeriss[3] and NVDLA[1] use 16 buses and
256 links, ShiDianNao[2] uses a MUX array and 512 links. The
NoC area of the proposed Adapt-Flow architecture is 74% smaller
compared to the previous design on average, and the overall area
of the proposed architecture is also reduced by 2% on average. The
area savings mainly result from the simplified architecture design.

4 CONCLUSIONS
In this paper, we propose a flexible DNN accelerator architec-
ture, called Adapt-Flow, which can provide optimal dataflow for
each DNN layer at runtime. With the ability to support multiple
dataflows and data reuse capabilities at runtime, the proposed archi-
tecture provides significant energy saving and reduction in overall
execution time. Detailed simulation studies show that Adapt-Flow
reduces execution time by 46%, 78%, 26%, and energy consumption
by 45%, 80%, 25% as compared to NVDLA [1], ShiDianNao [2], and
Eyeriss [3] respectively while incurring minimal overheads.

REFERENCES
[1] Nvdla deep learning accelerator, http://nvdla.org, 2017.

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

Ad
ap
t-F
low

Ey
er
iss

Sh
iD
ian
Na
o

NV
DL
A

N
o
C
A
re
a

(N
o
rm

al
iz
ed

)

(a) (b)

0.96

0.98

1

Ad
ap
t-F
low

Ey
er
iss

Sh
iD
ian
Na
o

NV
DL
A

To
ta
lA

re
a

(N
o
rm

al
iz
ed

)

PE NoC

Figure 7: (a) Overall area (includes PE and NoC) and (b)
NoC area overhead of different accelerators (Adapt-Flow,
Eyeriss[3], ShiDianNao[2], and NVDLA[1]), normalized to
Adapt-Flow.

[2] Zidong Du et al. Shidiannao: Shifting vision processing closer to the sensor. In
proc.of ISCA. IEEE, 2015.

[3] Yu-Hsin Chen et al. Eyeriss: An energy-efficient reconfigurable accelerator for
deep convolutional neural networks. IEEE journal of solid-state circuits, 2016.

[4] Carole-Jean Wu et al. Machine learning at facebook: Understanding inference at
the edge. In proc.of HPCA. IEEE, 2019.

[5] Alex Krizhevsky et al. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems, 2012.

[6] David Snyder et al. X-vectors: Robust dnn embeddings for speaker recognition.
In proc. of ICASSP. IEEE, 2018.

[7] Vivienne Sze et al. Efficient processing of deep neural networks: A tutorial and
survey. In Proc.of the IEEE, 2017.

[8] H. Kwon et al. Maeri: Enabling flexible dataflow mapping over dnn accelerators
via reconfigurable interconnects. In Proc. of ASPLOS, 2018.

[9] Mingyu Gao et al. Tangram: Optimized coarse-grained dataflow for scalable nn
accelerators. In Proc.of the ASPLOS. ACM, 2019.

[10] Yu-Hsin Chen et al. Eyeriss v2: A flexible accelerator for emerging deep neural
networks on mobile devices. IEEE JETCES, 2019.

[11] Hyoukjun Kwon et al. Understanding reuse, performance, and hardware cost of
dnn dataflow: A data-centric approach. In Proc.of Micro. ACM, 2019.

[12] Angshuman Parashar et al. Timeloop: A systematic approach to dnn accelerator
evaluation. In Proc.of the ISPASS. IEEE, 2019.

[13] Xuan Yang et al. Interstellar: Using halide’s scheduling language to analyze dnn
accelerators. In Proc.of the ASPLOS. ACM, 2020.

[14] Chia-Hsin Owen Chen et al. Smart: A single-cycle reconfigurable noc for soc
applications. In proc.of DATE. IEEE, 2013.

[15] Hao Zheng et al. Adapt-noc: A flexible network-on-chip design for heterogeneous
manycore architectures. In proc.of HPCA. IEEE, 2021.

[16] Hao Zheng et al. A versatile and flexible chiplet-based system design for hetero-
geneous manycore architectures. In Proc.of DAC. IEEE, 2020.

[17] Eric Qin et al. Sigma: A sparse and irregular gemm accelerator with flexible
interconnects for dnn training. In Proc. of HPCA. IEEE, 2020.

[18] Lizhong Chen et al. Mp3: Minimizing performance penalty for power-gating of
clos network-on-chip. In Proc.of HPCA. IEEE, 2014.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. In Proc.of the ICLR, 2014.

[20] Kaiming He et al. Deep residual learning for image recognition. In Proc.of the
CVPR. IEEE, 2016.

[21] Olaf Ronneberger et al. U-net: Convolutional networks for biomedical image
segmentation. In Proc.of MICCAI. Springer, 2015.

[22] Andrzej Jajszczyk. Nonblocking, repackable, and rearrangeable clos networks:
fifty years of the theory evolution. In Communications Magazine. IEEE, 2003.

[23] Soroush Ghodrati et al. Planaria: Dynamic architecture fission for spatial multi-
tenant acceleration of deep neural networks. In proc.of MICRO. IEEE, 2020.

[24] Chen Sun et al. Dsent-a tool connecting emerging photonics with electronics for
opto-electronic networks-on-chip modeling. In Proc.of the NOCS. IEEE, 2012.

Session 4B: VLSI for Machine Learning and Artifical Intelligence 2 GLSVLSI ’22, June 6–8, 2022, Irvine, CA, USA

292

	Abstract
	1 Introduction
	2 Adapt-Flow Architecture
	2.1 Proposed Flexible Interconnect
	2.2 Dataflow Selection Strategy
	2.3 Dataflow Mapping for Adapt-Flow Architecture

	3 Evaluation Methodology
	3.1 Simulation Setup
	3.2 Execution Time Analysis
	3.3 Energy Consumption
	3.4 Area Overhead

	4 Conclusions
	References

