
ALPHA: A Learning-Enabled High-Performance
Network-on-Chip Router Design for

Heterogeneous Manycore Architectures
Yuan Li , Student Member, IEEE and Ahmed Louri, Fellow, IEEE

Abstract—Heterogeneous manycores comprised of CPUs, GPUs and accelerators are putting stringent demands on network-

on-chips (NoCs). The NoCs need to support the combined traffic, including both latency-sensitive CPU traffic and throughput-sensitive

GPU and accelerator traffic. We study the characteristics of the combined traffic, and observe that (1) the limited injection bandwidth is

the main obstacle to throughput improvement, and (2) the latency due to local and global contention accounts for a significant portion of

the network latency. We propose a router architecture named ALPHA for heterogeneous manycores. ALPHA introduces two new

optimizations: (1) increasing injection bandwidth to improve throughput, and (2) resolving local and global contention to reduce network

latency. Specifically, ALPHA increases the injection bandwidth through modifications to injection link, crossbar switch and buffer

organization in the injection port of the router; ALPHA identifies the upcoming local contention and resolves it by optimally selecting

traffic routes; ALPHA detects and alleviates the global contention by utilizing a supervised learning engine for traffic analysis,

prediction, and adjustment. Simulation results using Rodinia benchmark show that ALPHA provides 28 percent throughput increase,

24 percent latency reduction, 22 percent execution time speedup, and 19 percent energy efficiency improvement, compared to the

baseline router.

Index Terms—Heterogeneous manycore, network-on-chip, router, supervised learning

Ç

1 INTRODUCTION & MOTIVATION

HETEROGENEOUS manycores have been shown to be able to
achieve better energy efficiency and higher perfor-

mance as compared to homogeneous manycores, due to the
fact that they leverage on-chip specialization [1], [2], [3], [4],
[5], [6], [7], [8]. Because of the differences in microarchitec-
tures and programming models, different types of cores in a
heterogeneousmanycore system can have distinct traffic pat-
terns and sensitivities to network throughput and latency.
For example, GPU cores involve more point-to-point stream-
ing traffic and are sensitive to throughput [9], [10], [11], [12],
[13], [14], while CPU cores involve more coherence traffic
and are sensitive to latency [15], [16], [17], [18], [19]. In order
to simultaneously meet the communication demands of the
different cores, high-throughput and low-latency network-
on-chips (NoCs) are critical.

Conventional NoC and router designs for heterogeneous
manycores focus on alleviating interference between the
throughput-sensitive GPU traffic and the latency-sensitive
CPU traffic [4], [20], [21], [22]. These designs either isolate
different types of traffic through network partitioning [4],
[20], or combine network partitioning with prioritization
techniques which enable fast propagation of a certain type

of traffic in the network [21], [22]. Although prior designs
greatly alleviate the interference problem, they introduce
some negative impacts on NoC performance. For example,
network partitioning may result in poor network utilization
and hence low throughput [20], while prioritization techni-
ques introduce extra latency due to their complicated alloca-
tion schemes [23], [24], [25]. The negative impacts of the
conventional designs on NoC performance motivate us to
explore other throughput and latency optimization oppor-
tunities beyond traffic interference alleviation techniques.

Throughput Improvement. Previous works mainly employ
two approaches to improve NoC throughput: (1) develop-
ing better crossbar switch allocation schemes [26], [27], [28],
[29], and (2) increasing injection bandwidth [10], [11]. To
explore the opportunities of improving NoC throughput,
we run the Rodinia benchmark suite [30], [31] on a heteroge-
neous manycore system connected by an 8 � 8 2D mesh
NoC with baseline two-stage wormhole routers, each of
which includes 2 virtual channels (VCs), 4 flit buffers per
VC, and an ideal crossbar switch allocation scheme. The
ideal crossbar switch allocation scheme, which guarantees
that an output port of a router is utilized as long as there is
at least one request for it [32], represents the optimization
limit of the first approach. We evaluate the average buffer
utilization which indicates the NoC throughput as in Fig. 1,
and average injection queue length as in Fig. 2.

We make two observations: (1) throughput improvement
delivered by allocation scheme optimization is minimal in
heterogeneous manycores, as the network is under-utilized
(buffer utilization� 1) in Fig. 1, even with the ideal crossbar

� The authors are with the Department of Electrical and Computer Engineer-
ing, George Washington University, Washington, DC 20052 USA.
E-mail: {liyuan5859, louri}@gwu.edu.

Manuscript received 4 June 2019; revised 28 Feb. 2020; accepted 5 Mar. 2020.
Date of publication 17 Mar. 2020; date of current version 8 June 2021.
(Corresponding author: Yuan Li.)
Recommended for acceptance by D. Atienza.
Digital Object Identifier no. 10.1109/TSUSC.2020.2981340

274 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2021

2377-3782 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0001-5067-5522
mailto:liyuan5859@gwu.edu
mailto:louri@gwu.edu

switch allocation scheme; (2) the limited injection band-
width is the throughput bottleneck, as we infer low network
throughput from Fig. 1 on one hand, and observe long injec-
tion queue in Fig. 2 on the other hand. These two observa-
tions motivate us to efficiently increase injection bandwidth
while keeping the cost minimal, since previous works incur
excessive overheads [10], [11].

Latency Reduction. The overall latency consists of two parts
[15]: transfer latency and contention latency. The transfer
latency refers to the latency incurredwhen traversing the links
and the router pipelines, assuming there is no contention over
shared network resources. A large number of techniques have
been proposed to reduce the transfer latency. Some techni-
ques reduce the number of hops with high-radix routers [33],
[34] or bypass channels [35], while others reduce the latency
of traversing router pipeline by overlapping some pipeline
stages [36], [37], [38]. These techniques are sufficient when
traffic load is relatively low and contention is less intensive.
However, the traffic load is usually high in heterogeneous
manycores because of the throughput-sensitive GPUs and
accelerators.We run the Rodinia benchmark suite on a hetero-
geneous manycore system connected by an 8 � 8 2D mesh
NoC with baseline two-stage wormhole routers, and observe
that the contention latency takes up on average 55 percent of
the network latency as shown in Fig. 3. Therefore, in order to
further reduce the network latency, the transfer latency reduc-
tion techniques need to be augmented with efficient conten-
tion identification and resolving schemes.

Contention can be classified into two types [39]: local
contention and global contention. An example of local con-
tention is shown in Fig. 4a where two input ports send traf-
fic to the same output port simultaneously. The local
contention is expected to occur more frequently when the
injection bandwidth increases, as the injection port alone
can produce a contention as shown in Fig. 4b. An example
of global contention is shown in Fig. 4c where contention
occurs at a remote router. While identifying local contention
is relatively easy, identifying global contention is challeng-
ing and often expensive [16], [39], [40], [41].

Proposed Router Architecture. To this end, we propose
ALPHA, a NoC router design that is simultaneously

optimized for throughput and latency performance in het-
erogeneous manycores. ALPHA achieves high throughput
by increasing the injection bandwidth, and low latency by
resolving both local and global contention. The main contri-
butions of this paper are:

� We extensively study the characteristics of the com-
bined traffic in heterogeneous manycores, and
observe that (1) the limited injection bandwidth is
the major obstacle to throughput improvement, and
(2) the latency due to local and global contention
over the shared network resources takes up a signifi-
cant portion of the network latency.

� Based on these observations, we propose ALPHA, a
router architecture specifically designed for heteroge-
neous manycores. ALPHA introduces two new opti-
mizations: (1) increasing injection bandwidth to
improve throughput, and (2) resolving both local and
global contention to reduce network latency. Specifi-
cally, ALPHA increases the injection bandwidth
through architectural modifications to the injection
link, the crossbar switch, and the buffer organization
in the injection port of the router; ALPHA identifies
the upcoming local contention at the crossbar switch
and resolves it by optimally selecting traffic routes;
ALPHA also utilizes a supervised learning engine to
detect the global contention through traffic analysis
and prediction, and alleviate the global contention by
adaptively adjusting the traffic injection process.

� We evaluate the proposed router architecture using
both synthetic traffic and the Rodinia benchmark
suite. The simulation results using synthetic traffic
show that ALPHA delivers 51 percent throughput
increase and 38 percent latency reduction. The simu-
lation results using the Rodinia benchmark suite
show that ALPHA provides 28 percent throughput
increase, 24 percent latency reduction, 22 percent
execution time speedup, and 19 percent energy effi-
ciency improvement, as compared to the baseline
router architecture.

Fig. 1. Average buffer utilization when running the Rodinia benchmark
suite, normalized to maximal buffer utilization. 1 in Y axis represents that
the NoC buffers are fully utilized.

Fig. 2. Average injection queue length in network interface when running
the Rodinia benchmark suite.

Fig. 3. Breakdown of overall network latency when running the Rodinia
benchmark suite.

Fig. 4. Examples of (a) local contention (b) local contention due to
increased injection bandwidth (c) global contention.

LI AND LOURI: ALPHA: A LEARNING-ENABLED HIGH-PERFORMANCE NETWORK-ON-CHIP ROUTER DESIGN FOR... 275

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

2 BASELINE ARCHITECTURE

Heterogeneous Manycore Architecture. A typical heteroge-
neous manycore architecture is shown in Fig. 5a. This archi-
tecture consists of latency-sensitive CPU cores, throughput-
sensitive GPU cores, and memory controller (MC) nodes.
MC nodes include memory controllers, shared L2 cache
banks and directory controllers. All the cores and MC nodes
are connected through network interfaces (NIs) by a NoC.
The mixed placement of CPU and GPU cores in this hetero-
geneous manycore architecture is similar to [4], [21], [42],
while placing MC nodes in network interior is similar to
prior architectures [10], [42], [43].

Baseline Router. Two-stage wormhole routers, as in
Fig. 5b, are implemented to connect all the cores and MC
nodes in the heterogeneous manycore. As we employ
wormhole routing, each traffic packet is either segmented
into a head flit, several body flits and a tail flit, or packaged
in a single head/tail flit, depending on the packet length.
The route information within the head flit is read and proc-
essed by Route Compute (RC) logic. The Virtual Channel
Allocator (VA) is responsible for allocating available virtual
channels (VCs) of downstream routers to requests on a per-
packet basis. The Switch Allocator (SA) assigns available
paths in the crossbar switch to requests on a per-flit
basis. Each input port holds a VC State Table, whose num-
ber of entries equals the number of VCs in that input port.
Each entry in the VC State Table holds the information
about global state (G), output port (R), output VC number
(O), current head and tail pointer (P), and the number of
credits (C).

3 ALPHA ROUTER ARCHITECTURE

The proposed ALPHA router introduces two new optimi-
zations: (1) increasing the injection bandwidth to improve
throughput, and (2) resolving both local and global conten-
tion to reduce network latency. In this section, we explain
the architectural modifications and corresponding control
scheme designs involved in these two optimizations in a step-
by-step manner. First, we describe the necessary modifica-
tions to the injection link, the crossbar switch, and the buffer
organization in the injection port of the router, in order to
increase injection bandwidth. Second, we explain the optimi-
zations involved inALPHA router to resolve local contention,
including modifications to VC State Table and RC/VA/SA

units, and control scheme designs of route selection and
switch allocation. Third, the architecture and functioning
mechanism of the supervised learning engine designed for
alleviating global contention are detailed in the last part of
this section.

3.1 Increasing Injection Bandwidth

ALPHA increases injection bandwidth by (1) increasing the
injection link width, (2) increasing the crossbar switch
dimension, and (3) modifying the buffer organization in the
injection port of the router. These three modifications are
highlighted in Fig. 6 and explained in detail below.

3.1.1 Modification to Injection Link

In order to increase the injection bandwidth, the injection
link in ALPHA is increased to twice as wide as other links.
We do not further increase the injection link width as other
works [10], [11] do, because (1) the successive injected pack-
ets are very likely to share the same destination node due to
data spatial locality, and (2) there are only a few output port
choices for an injected packet if minimal routing is guaran-
teed. For example, there are at most 2 output port choices
from a source node to a destination node in a 2D mesh net-
work under minimal routing constraint. In this case,
increasing the injection link width to over twice the link
width in the baseline router results in trivial performance
improvement while suffering significant overheads.

3.1.2 Modification to Crossbar Switch

In order to fully utilize the extended injection link, we also
extend the number of crossbar inputs from P to P þ 1,
where P is the number of input ports in the router. The
additional crossbar input is connected to the injection port.
Hence, up to two flits in the injection port can traverse the
crossbar switch in one clock cycle. This design corresponds
to the previous modification of increasing the injection link
width. Specifically, the crossbar switch is extended from
5 � 5 to 6 � 5, as a normal router in 2D mesh topology has
5 input ports.

Fig. 5. (a) A typical heterogeneous manycore system connected by a
NoC. (b) Baseline router architecture.

Fig. 6. Modifications in ALPHA to increase injection bandwidth, including
increased injection link, modified crossbar switch, and modified buffer
organization in the injection port. The blurry units remain the same as in
baseline router.

276 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

3.1.3 Modification to Injection Port Buffer Organization

As the bandwidth at the injection link as well as at the
crossbar switch has been increased, the injection port itself
is now the bottleneck to increasing injection bandwidth.
We modify the buffer organization and add additional
MUXs to solve this issue. At the input side, the DEMUX is
replaced by two MUXs. At the output side, an additional
MUX is added and connected to the new input in the
crossbar switch. By doing so, up to two flits can be written
to and read from the buffers in the injection port in one
clock cycle. The ALPHA router’s capability of resolving
local contention (Section 3.2) enables the injected packets
to be timely transmitted without staying in buffers of the
injection port for a long time, diminishing the benefits of
implementing a large number of VCs in the injection port.
In order to reduce overhead, we do not increase the num-
ber of VCs in the injection port.

3.2 Resolving Local Contention

The ALPHA router architecture is able to identify the
upcoming local contention at the crossbar switch, and
resolve it by optimally selecting traffic routes. This local con-
tention resolving function is achieved in three steps. (1) Cal-
culate all possible output ports corresponding to available
routes of an incoming packet. We adopt O1TURN [44] multi-
path routing algorithm because it provides near-optimal
worst-case throughput and does not incur long latency due
to either increased packet hops or hardware complexity.
(2) Collect the output port information of all the VCs which
are competing for crossbar switch resources. (3) Make the
routing decision for the incoming packet based on the infor-
mation from the previous two steps, so that the chance of
local contention is minimized.

To complete these three steps, we further modify the
router architecture from Fig. 6 to include modifications to
the VC State Table, the RC unit, the VA unit, and the SA
unit as shown in Fig. 7. Additionally, new route selection
and switch allocation control schemes are introduced.

3.2.1 Modification to VC State Table

As shown in Fig. 7, sincewe are employingmultipath routing,
the output port state fieldR in the VC State Table is extended
to R and R

0
to accommodate multiple output ports. Besides,

an additional state field S is required for route identification
purpose. Specifically, in a 2Dmesh topology, O1TURNmulti-
path routing employs two minimal routes: the XY route and
the YX route. The state fields R and R

0
store the output ports

for the XY route and the YX route respectively. The state field
S identifies whether XY route or YX route is being utilized.
For a newly injection packet, the state fields R and R

0
are

updated after RC pipeline stage, while the state field S is
updated after the route selection process is finished in VA
pipeline stage. For a packet passing by, the state field S deter-
mines whether the output port stored in R or the output port
stored inR

0
is utilized.

3.2.2 Modification to Routing Computation

As opposed to the baseline router, ALPHA router calculates
the output ports of multiple routes for each packet in the
RC pipeline stage. Specifically, in a 2D mesh topology,
ALPHA router calculates the output ports of both the XY
and YX routes, and updates them to state fields R and R

0
in

the VC State Table. The output ports of the XY and YX
routes can be calculated simultaneously with symmetric
logic. Hence, modification to RC does not incur extra
latency in the RC pipeline stage.

Algorithm 1. Route Selection at the Injection Port

1 v: the number of virtual channels per input port
2 d: the array recording out port occupation mask
3 procedure ROUTESELECTION(v, d)
4 for i 1 to v do
5 if stage of ith VC = SA
6 dþ out port of i th VC 1
7 for i 1 to v do
8 if stage of ith VC = VA
9 if d + xy out port of ith VC = 1
10 if d + yx out port of ith VC = 0
11 out port of i th VC yx out port of i th VC
12 else out port of i th VC xy out port of i th VC
13 end procedure

3.2.3 Modification to Virtual Channel Allocator

Architecture and Algorithm Design. In the ALPHA router, we
add an XY/YX route selection unit to the VC allocator in the
baseline router. This unit performs a two-step operation to
select the right output port for each injected packet, with the
target of avoiding local contention. First, it collects the output
port information of all the VCs, which have been granted next
hop VCs and are competing for crossbar switch resources.
Second, it compares the collected information from the first
step with output port candidates generated by the modified
RC unit, and determines if switching from the primary XY
route to the YX route can avoid the local contention at the
crossbar switch. If so, the injected packet is routed through
the YX route. Otherwise, the injected packet is still routed
through the primary XY route. The route selection algorithm
is described in detail inAlgorithm 1.

Fig. 7. Modifications in ALPHA to resolve local contention, on top of the
router design of increasing injection bandwidth. New modifications include
extendedVCState Table, modifiedRC,modified VA, andmodifiedSA.

LI AND LOURI: ALPHA: A LEARNING-ENABLED HIGH-PERFORMANCE NETWORK-ON-CHIP ROUTER DESIGN FOR... 277

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

Circuit-Level Implementation. The VC allocator performs
matching between requests from the P � V input VCs and
P � V resources, subject to the constraint that any VCs in
the downstream routers requested by a given input VC at
any given time share the same output port. P is the number
of input ports in a router, while V is the number of VCs in
each input port. Fig. 8a shows the circuit-level implementa-
tion of the input-first two-stage VC allocator in the baseline
router. In the first stage, each input VC first determines
which VC at the downstream router to bid on through the
V : 1 arbiter. In the second stage, all the requests are for-
warded through DEMUXs to P � V : 1 arbiters to determine
the requests that have won VCs in the downstream routers.
Grants for each input VC are grouped and reduced to
V -wide vector that indicates the granted VC.

Fig. 8b shows how the route selection unit fits into the
original VC allocator in the baseline router. The route selec-
tion unit only applies to VCs in the injection port. The VCs
in other input ports remain the same as in the baseline
router in Fig. 8a. In the route selection unit, the output port
information of each VC is first collected by a bitwise-OR
gate, then compared with the output port information out
of both the XY route and the YX route of current VC. Once a
decision of whether utilizing the XY route or the YX route is
made, it serves as the control signal of the MUX to forward
the output port information of the utilized route to the con-
trol end of the DEMUX.

The critical path of the added route selection unit is from
the VC allocation output of previous clock cycle to the con-
trol end of the DEMUX. Synthesis result from Synopsys
Design Compiler shows that the propagation delay of the
route selection unit is 3 percent longer than the delay of the
2:1 arbiter at the first stage. Hence, the propagation delay of

the added route selection unit has been mostly overlapped
by the original first-stage arbiter.

3.2.4 Modification to Switch Allocator

Architecture and Algorithm Design. As the dimension of the
crossbar switch has increased, the number of requests at SA
increases. To process the possible extra request from the
injection port, the SA keeps searching for the second valid
request after finding the first valid request. In this way, at
most two requests from the injection port can be granted,
enabling more than one VC in the injection port to access
the crossbar switch in one clock cycle.

However, the arbitration could be unfair and lead to per-
formance degradation when there is only one valid request
from VCs in the injection port. In this case, the only request
in the injection port will be treated as both the primary
request and the secondary request, and sent for allocation
twice, giving it a better chance to win the allocation than
requests from other input ports. To avoid this unfairness,
ALPHA introduces a Single Request Detection (SRD) unit,
which monitors the number of valid requests in the injection
port, and disables the function of searching for the second
valid request when only one valid request exists. The switch
allocation algorithm is described in Algorithm 2.

Algorithm 2. Select SA Requests at the Injection Port

1 v: the number of virtual channels per input port
2 round_robin: arbiter’s round robin pointer
3 procedure SWITCHREQSELECTION(v, round_robin)
4 r round robin round robin
5 for i 1 to v do
6 if stage of round_robinth VC = SA
7 one req outportofround robinthVC
8 round robin i
9 break
10 round robin ðround robinþ 1Þ%v
11 request cnt 0
12 for i 1 to v do
13 if stage of ith VC = SA
14 request cnt reqeust cntþ 1
15 if request_cnt > 1
16 for i 1 to v do
17 r round robin ðr round robin� 1Þ%v
18 if stage of r_round_robinth VC = SA
19 two req outportofr round robinthVC
20 break
21 end procedure

Circuit-Level Implementation. The switch allocator per-
forms matching between requests from the V input VCs at
each of the router’s P input ports, and available crossbar
slots, subject to the constraint that at most one VC per input
port can receive a grant. Fig. 9a shows the circuit-level
implementation of the input-first two-stage switch allocator
in the baseline router. In the first stage, the V : 1 arbiter
determines a winner among all active VCs at each input
port. In the second stage, the winning VCs’ requests are
then forwarded to the appropriate output ports, where P : 1
arbitrations take place among requests from different input
ports. Grants for each input port are grouped and reduced
to V -wide vector that indicates the winning input VC.

Fig. 8. Circuit-level implementation of VC Allocator in (a) baseline router,
and (b) ALPHA router with the route selection unit.

278 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

Furthermore, the outputs of the second-stage arbiters
directly drive the control signals to the crossbar switch.

Fig. 9b shows the three modifications to switch allocator
in the ALPHA router architecture. (1) ALPHA router imple-
ments an additional V : 1 arbiter in the first arbitration stage
to process the possible extra request from the injection port.
This additional arbiter shares the round robin pointer with
the original arbiter, however, has opposite priority logic.
Hence, if the original arbiter searches for the valid request
in the clockwise order, the additional arbiter will search for
the valid request in the counter-clockwise order. In this
way, at most two valid requests from the injection port can
be forwarded to the second arbitration stage. (2) An SRD
unit is added to monitor the number of valid requests from
VCs in the injection port. This unit outputs logic 0 and
masks the outputs of the additional V : 1 arbiter through a
bitwise-AND gate, when there is only one valid request. (3)
All the P : 1 arbiters in the second arbitration stage are
replaced by ðP þ 1Þ : 1 arbiters due to increased crossbar
switch dimension. The first two modifications only apply to
the injection port, while the third modification applies to
the entire SA.

Since the additional V : 1 arbiter has symmetric circuit
design as the original V : 1 arbiter, it does not incur extra
propagation delay. We synthesize the SRD unit and the
ðP þ 1Þ : 1 arbiter with Synopsys Design Compiler, assuming
that P and V equal 5 and 2 respectively. Synthesis result
shows that the propagation delay of the SRDunit is 53 percent
shorter than that of the V : 1 arbiter at the first stage, and the

delay of the ðP þ 1Þ : 1 arbiter is 7 percent longer than that of
the original P : 1 arbiter at the second stage. The extra delay
of the ðP þ 1Þ : 1 arbiter does not affect the maximal achiev-
able operating frequency because switch allocator has shorter
propagation delay thanVC allocator [36].

3.2.5 Deadlock-Free Design

Employing O1TURN multipath routing is prone to dead-
locks because all four turns are permitted, leading to poten-
tial cycles on the link acquisition graph [45]. We utilize
escape VC [46] technique to resolve potential deadlocks.
Other deadlock-free techniques such as VC partitioning [47]
and bubble flow control [48] are also compatible with the
ALPHA router architecture.

3.3 Learning-Enabled Traffic Injection Control to
Alleviate Global Contention

The global contention problem in NoCs has been explored
in many previous works. Some works perform adaptive
routing to route traffic around the contention regions [37],
[41], [49], [50], [51]. Adaptive routing is less effective when
network load is high, as it does not throttle intensive traffic
injection at sources but rather works with the traffic that has
been injected into the network. Other works employ source
throttling when contention is detected [16], [40], [52], [53].
The challenges of source throttling lie in (1) identifying
global contention, and (2) adjusting the network load to
achieve optimal system performance.

To meet these two challenges, we implement a Learning-
Enabled Injection Controller (LIC) in each router as shown in
Fig. 10. LIC acquires knowledge of system status by extracting
information from core, router input ports, and SA unit. The
collected information is then fed into a supervised learning
engine to (1) identify the global contention through traffic
analysis and prediction, (2) investigate the impact of network
load on system performance, and (3) optimally adjust the traf-
fic injection process. In the remaining part of this section, we
first describe a new metric named SA Grant Rate, which is
used to indicate global contention. We then explain the LIC
architecture and the corresponding training and inference

Fig. 9. Circuit-level implementation of switch allocator in (a) baseline
router, and (b) ALPHA router with the additional V : 1 arbiter, the SRD
unit, and ðP þ 1Þ : 1 arbiters.

Fig. 10. The complete ALPHA router architecture with the Learning-
Enabled Injection Controller (LIC) designed to resolve global contention.

LI AND LOURI: ALPHA: A LEARNING-ENABLED HIGH-PERFORMANCE NETWORK-ON-CHIP ROUTER DESIGN FOR... 279

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

processes. Area overhead and compute latency are calculated
in detail in the end.

3.3.1 Global Contention Indication

Previousworks utilizemultiplemetrics to indicate contention,
including available buffers [37], available VCs [49], output
queue size [51], and starvation rate [16], [40]. We introduce a
new metric named SA Grant Rate, which is the ratio of the
number of granted SA requests (Ngranted SA request) to the num-
ber of total SA requests (Ntotal SA request) as in Equation (1). We
utilize this metric because the crossbar switch is the key
shared network resource in the NoC. The SA Grant Rate
below threshold indicates contention at the crossbar switch.
The threshold is empirically set to 0.9. We analyze the impact
of threshold value on systemperformance in Section 6.

SAGrantRate ¼ Ngranted SA request

Ntotal SA request
(1)

3.3.2 LIC Architecture

LIC utilizes a 3-layer feed-forward artificial neural network
(ANN), as shown in Fig. 11, to realize supervised learning
based injection process control. The three layers are the
input layer, the hidden layer, and the output layer. I, J , and
K represent the number of neurons in the input layer, the
hidden layer, and the output layer respectively. wi;j repre-
sents the synapse weight between neuron i and j.

Input Layer. There are 10 neurons (I ¼ 10) in the input
layer because we feed 10 different features to the ANN. The
features are normalized to be within the range of (0, 1).

Hidden Layer. We implement 8 neurons (J ¼ 8) in the
hidden layer based on the trade-off between ANN accuracy
and implementation cost. Neurons in the hidden layer use
the Sigmoid function as the activation function.

Output Layer. The output layer consists of 3 neurons
(K ¼ 3), each of which corresponds to a traffic injection
mode. Neurons in the output layer use the Relu function as
the activation function.

3.3.3 LIC Input Features

All the features that we have selected are listed in Table 1,
and categorized into five categories: (1) prior mode, (2)
global traffic, (3) local traffic, (4) CPU status, and (5) GPU
status. By exploiting features from these five categories, LIC
can adjust the traffic injection process with an awareness of

core microarchitecture, application execution status, and
network traffic load.

Microarchitecture Awareness. We implement differentiated
LIC designs in routers attached to different types of cores.
Specifically, features from Category 1, 2, 3 and 4 are fed into
LICs in routers attached to CPU cores, while features from
Category 1, 2, 3 and 5 are fed into LICs in routers attached
to GPU cores. We choose different features to represent the
run-time status of CPU and GPU cores because of their dis-
tinct microarchitectures and programming models. Addi-
tionally, we do not implement LICs in the routers attached
to MC nodes. This is because the MC nodes only contain
passive modules (memory controllers, cache banks, etc.)
and do not initiate communication.

Application Awareness. LIC takes run-time application
execution status into consideration when adjusting the traf-
fic injection process. Previous works [16], [40], [53] utilize
features in Category 4 or their combinations to represent the
run-time status of CPU cores. As shown in Category 5, in
addition to L1 cache miss count, we introduce two new fea-
tures, namely active warp count and coalesced data access
count, to represent the run-time status of GPU cores. Previ-
ous work [4] has employed the active warp count to regu-
late GPU traffic. Furthermore, coalesced data access is a
unique and important feature to characterize GPU execu-
tion [10], [54].

Traffic Awareness. The features in Category 2 and 3 repre-
sent the global and local traffic information respectively. In
order to extract more global traffic information, we propose
a light-weight piggy-back approach inspired by Internet-
based contention detection schemes [55], [56]. This app-
roach spreads contention information by selectively adding
tags to traffic packets. A packet is tagged when it traverses
a router whose SA Grant Rate is below a certain threshold.
A router acquires more knowledge of the global network
traffic by monitoring the ratio of tagged packets to total
incoming packets.

Precise Contention Quadrant Location. Prior works [16],
[40], [53] often apply source throttling without the knowl-
edge of precise contention location. By combining multipath
routing with the piggy-back approach, our design is able to

Fig. 11. The 3-layer feed-forward ANN architecture in LIC.

TABLE 1
Supervised Learning Features

Category Feature

1 prior mode maximal injection rate in previous epoch

2 global traffic X+ incoming tagged packet rate in YX route
X - incoming tagged packet rate in YX route
Y+ incoming tagged packet rate in XY route
Y - incoming tagged packet rate in XY route

3 local traffic local injection packet count
local SA Grant Rate

4 CPU status L1D cache miss count
L1I cache miss count
instruction count

5 GPU status L1 cache miss count
active warp count
coalesced data access count

280 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

determine the contention in each quadrant separately and
only throttle traffic going to quadrants with intensive con-
tention. Fig. 12 demonstrates an example of how our design
determines the contention in the upper-right quadrant. The
tagged packets in XY route in the Yþ input port come from
the upper-half plane with blue dashed lines as in Fig. 12a.
The tagged packets in YX route in the Xþ input port come
from the right-half plane with red dashed lines as in
Fig. 12b. Contention in the upper-right quadrant then can
be determined by monitoring both the incoming tagged
packets rate in XY route in Yþ input port, and the incoming
tagged packets rate in YX route in Xþ input port, as shown
in Fig. 12c.

3.3.4 LIC Output Modes

The three neurons in the output layer of the ANN in LIC cor-
respond to three control modes the LIC can choose from: (1)
turbo injectionmode, (2) normal injectionmode, and (3) throt-
tled injection mode. Each of the three neurons outputs the
probability of choosing the corresponding mode, and LIC
always chooses themodewith the highest probability value.

Algorithm 3. Create Label for a Training Set

1 ~M : mode in prior epoch
2 n: number of routers in the heterogeneous manycore
3 GR½n�: SA Grant Rate of each router in current epoch
4 p GR½n�: SA Grant Rate of each router in prior epoch
5 Cth: threshold value for contention identification
6 procedure CREATELABEL(~M , n, GR, p GR, Cth)
7 for i 1 to n do
8 if GR½i� > Cth

9 return ~L downgradefrom ~M
10 for i 1 to n do
11 temp 1 temp 1þGR½i�
12 temp 2 temp 2þ p GR½i�
13 avg GR temp 1=n
14 avg p GR temp 2=n
15 if avg GR > avg p GR
16 return ~L ~M
17 return ~L upgradefrom ~M
18 end procedure

Turbo Injection Mode. This mode takes full advantage of
the increased injection bandwidth. In this mode, each router
transmits up to two injected flits per clock cycle.

Normal Injection Mode. In this mode, a router processes the
injected traffic in the same manner as the baseline router.
Only one injected flit can be transmitted per clock cycle.

Throttled Injection Mode. We apply an 85 percent throt-
tling rate in this mode, which means a node is allowed to
inject traffic only in 15 percent of total clock cycles. We
choose this throttling rate in order to achieve optimal sys-
tem performance. The analysis of the impact of throttling
rate on system performance is presented in Section 6.

3.3.5 LIC Training Process

LIC performs the training process off-line with an epoch step
of 10K clock cycles. We randomly choose 200M execution
clock cycles out of each application in the Rodinia bench-
mark suite. Since we select 12 applications from this bench-
mark suite, there are in total 240K training samples. Each
training sample ð~X; ~LÞ includes an input feature vector ~X
and a label vector ~L. The algorithm to create a label in a train-
ing set is described in Algorithm 3. There are three possible
labels (1, 0, 0), (0, 1, 0) and (0, 0, 1), representing the turbo
injection mode, the normal injection mode, and the thrott-
led injection mode respectively. The synapse weights are
updated at each epoch step using back propagation algo-
rithm [57]. The learning gain factor h is set to be 0.01 because
accuracy is more important than the time cost in the off-line
training process. After the training process, the synapse
weights are storedwithin each router for inference purpose.

3.3.6 LIC Inference Process

We set the epoch step to 10K, which is smaller than in other
works [16], [40], [53], because (1) a smaller epoch step helps
to capture transient traffic patterns and apply more precise
traffic injection control, and (2) switching from one injection
mode to another does not incur any penalties. Since the
ANN compute latency accounts for a significant portion of
an epoch step, we utilize two separate sets of epochs for
monitoring features and applying traffic injection control.
LIC collects feature information at the end of each monitor
epoch, and applies a new injection mode at the beginning of
each control epoch. The offset between these two sets of
epochs, as shown in Fig. 13, may lead to performance degra-
dation because the control decisions are made on outdated
feature information. A small epoch step leads to more sig-
nificant offset between two sets of epochs, and hence more
possible performance degradation. We set the epoch step to
10K clock cycles. We analyze the impact of epoch step size
on system performance in Section 6.

3.3.7 Implementation Cost & Compute Latency

Implementation Cost. The implementation cost of LIC consists
of three parts: integer counters for feature monitoring pur-
pose, SRAM cells to store synapse weights, and an arithme-
tic logic unit (ALU). We implement 14 16-bit integer

Fig. 12. Precise contention quadrant location enabled by the multipath
routing and the piggy-back approach in our LIC design. R represents the
router under examination.

Fig. 13. The monitor epochs and control epochs are offset by ANN com-
pute latency.

LI AND LOURI: ALPHA: A LEARNING-ENABLED HIGH-PERFORMANCE NETWORK-ON-CHIP ROUTER DESIGN FOR... 281

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

counters to monitor features. There are 104 synapse wei-
ghts in the proposed ANN architecture, each of which is
stored in a 16-bit SRAM cell in IEEE 754 half-precision
binary floating-point format. The ALU is designed to only
perform multiplication, addition and division operations as
well as activation functions.

Compute Latency. The ANN compute latency is calculated
based on latency data of different arithmetic operations pro-
vided by [58]. The floating-point multiplication, addition
and division operations consume 5, 3 and 44 clock cycles
respectively. The total ANN compute latency is less than
1.5K clock cycles.

4 METHODOLOGY

We implement a heterogeneous manycore system with
ALPHA routers in the Gem5-GPU simulator [59]. DSENT2.0
simulator [60] is used to calculate the power consumption
based on the data extracted from Gem5-GPU. We use Syn-
opsys Design Compiler and a 45 nm open-source library to
evaluate the area overhead and calibrate the static power
consumption result acquired from DSENT2.0. Table 2
shows the configuration of our baseline heterogeneous
manycore system.

Applications. In addition to utilizing multiple synthetic
traffic patterns, we evaluate the ALPHA router architecture
with 12 applications selected from the Rodinia benchmark
suite in Gem5-GPU simulator in full-system mode. The
Rodinia benchmark suite is specifically designed for hetero-
geneous systems, exhibiting various types of parallelism,
data-access patterns, and data-sharing characteristics.

Different Configurations for Evaluation. We compare the
ALPHA router design with five other router architectures
or NoC configurations. Baseline configuration, which lever-
ages multiple latency reduction techniques [36], [37], [38],
includes regular 2-stage wormhole routers. VIX [32] config-
uration includes routers with virtual input crossbar design,
which attempts to improve switch allocation. DIP [10] con-
figuration includes routers with dual injection ports, which
is a straightforward approach to increase the injection band-
width. O1TURN [44] configuration evenly distributes
injected traffic to XY route and YX route. OSCAR [21] specif-
ically targets heterogeneous manycores. It dynamically

allocates network bandwidth to CPU and GPU traffic
through asynchronous batch scheduling. In our evaluation,
we use the same setup as in the original design to adjust the
batch composition ratio every 200K cycles.

5 EXPERIMENT RESULTS

We present and analyze the results acquired from both syn-
thetic traffic simulation and full-system simulation using
the Rodinia benchmark suite in this section. We also analyze
the area overhead of ALPHA router design as compared to
other five configurations.

5.1 Results From Synthetic Traffic Simulation

We compare the ALPHA router design with four other con-
figurations under different network load conditions using
multiple synthetic traffic patterns. The LIC in ALPHA
router is disabled to keep the comparison fair, as it may
affect the injection rate. OSCAR is not included in this simu-
lation as it is specifically designed for systems that simulta-
neously involve multiple traffic patterns. The bit-reverse
and transpose traffic patterns are used to simulate the
intense point-to-point streaming traffic generated by GPU
cores, while the uniform-random traffic pattern is used to
simulate the relatively uniform-distributed traffic generated
by CPU cores. For each synthetic traffic pattern, we examine
both network latency and throughput, as shown in Fig. 14.

We make four observations when examining the network
latency results from three different synthetic traffic patterns.
(1) ALPHA router design does not reduce network latency
when the network load is low, as compared to other config-
urations. (2) ALPHA router reduces network latency by 38
and 34 percent in bit-reverse traffic and transpose traffic
respectively, as traffic becomes more intensive and network
load reaches a similar level as in real heterogeneous applica-
tions. The significant reduction in network latency mainly
results from the contention resolving function of the
ALPHA router design. (3) VIX delivers low network latency
when network load is high in uniform-random traffic
because it improves crossbar switch allocation. (4) DIP suf-
fers from high network latency in all three traffic patterns.
This is because it fails to timely transmit the injected traffic
out of the source router.

ALPHA router architecture achieves higher throughput
in all three traffic patterns compared to other configura-
tions. The throughput increases by 51 percent in bit-reverse
traffic, 47 percent in transpose traffic, and 10 percent in uni-
form-random traffic. In bit-reverse and transpose traffic pat-
terns, O1TURN provides higher throughput than Baseline,
VIX, and DIP, because it exploits route diversity and hence
postpones network saturation.

5.2 Results From Full-System Simulation

We evaluate the ALPHA router design in full-system mode
with 12 applications selected from the Rodinia benchmark
suite. We compare the ALPHA router design with all five
other configurations by examining network latency, thro-
ughput, execution time speedup, and energy efficiency.

Network Latency. We make four observations from the net-
work latency comparison between ALPHA router design and
four other configurations, which is shown in Fig. 15. (1)

TABLE 2
Baseline Architecture Configurations

282 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

ALPHA router design reduces network latency by 24, 18, 20,
21, and 24 percent, as compared to Baseline, VIX, DIP,
O1TURN, and OSCAR respectively. This is because the
ALPHA router effectively resolves both local and global con-
tention. (2) ALPHA performs extremely well in applications
with high network load and hence high probability to incur
contention. These applications include SC, NW, MUM, and
BFS which suffer from high cache miss rate, as well as BP and
SRAD which involve a large volume of CPU-GPU communi-
cation between the serial CPU phases and the parallel GPU
kernels. (3) O1TURN delivers the least latency reduction, as
evenly distributing traffic to multiple routes does not neces-
sarily help resolve contention and hence reduce latency. (4)
The reserved VC for CPU traffic in OSCAR, though mitigates
starvation of CPU traffic, leads to long average latency.

Throughput. Throughput is defined as the average num-
ber of flits ejected from the network in a unit time period,
which is shown in

Throughput ¼
Xn
i¼1

Ni

 !
� Texec

�1; (2)

n is the number of routers in the network, Ni is the number
of flits ejected from router i, and Texec is the application exe-
cution time. Fig. 16 shows the normalized throughput
results for all configurations. ALPHA router design
achieves 28, 17, 18 percent, higher throughput than Base-
line, VIX, and O1TURN configurations respectively. DIP
outperforms VIX and O1TURN, which conforms to our
prior observation that the limited injection bandwidth is the
major obstacle to throughput improvement. The perfor-
mance difference between DIP and ALPHA results from the
fact that ALPHA utilizes the increased injection bandwidth
more effectively by resolving local contention.

Execution Time Speedup. The execution time speedup is
obtained by calculating the ratio of the application execu-
tion time of the Baseline configuration to the application
execution time of other configurations (VIX, DIP, O1TURN,
OSCAR, and ALPHA). The execution time speedup of the
Baseline configuration itself is always 1. As shown in
Fig. 17, the ALPHA router design achieves up to 22 percent
execution time speedup as compared to other configura-
tions. In applications including intensive CPU execution
phases such as KM and NW, the speedup mainly comes

Fig. 14. Network latency and throughput results from synthetic traffic (a)bit-reverse (b)transpose, and (c) uniform-random.

Fig. 15. Normalized network latency comparison between the ALPHA router design and other configurations. All network latency values are normal-
ized to network latency in the Baseline configuration.

LI AND LOURI: ALPHA: A LEARNING-ENABLED HIGH-PERFORMANCE NETWORK-ON-CHIP ROUTER DESIGN FOR... 283

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

from network latency reduction. In some other applications
that offload execution to GPU cores such as HS and SC, the
speedup mainly comes from throughput improvement.
There are also applications which involve both serial CPU
phases and parallel GPU kernels (BP, SRAD, etc.). Both
latency reduction and throughput improvement contribute
to execution time speedup in these applications in the
ALPHA router design. OSCAR achieves execution time
speedup by allowing critical packets such as CPU packets
to be timely transmitted to their destinations.

Energy Efficiency. We define energy efficiency as the
reciprocal of energy consumption of running an application,
which is shown in

Energy Efficiency ¼ ½ðPstatic þ PdynamicÞ � Texec��1: (3)

Pstatic and Pdynamic are static and dynamic power consump-
tion respectively, and Texec is the application execution
time. Fig. 18 shows the energy efficiency measurements for
all configurations studied and normalized to the Baseline
configuration. The ALPHA router design improves energy
efficiency by 19 percent, compared to the Baseline configu-
ration, while the maximal energy efficiency improvement
of other configurations is 10 percent (DIP). The energy effi-
ciency improvement of the ALPHA design results from
both reducing execution time and alleviating local and
global contention.

5.3 Area Estimation

We estimate the router area in different configurations
using Synopsys Design Compiler and a 45 nm open-source
library. Table 3 lists the area of each router module and the
overall router area for different configurations. There is
modest mismatch between the sum of the area of all router
modules and the overall router area, depending on the
employed place and route strategy. ALPHA router design
incurs 5.4 percent area overhead compared to the Baseline
configuration, due to modifications to the RC unit, the VA
unit, the SA unit, and the crossbar switch, as well as the
additional LIC. However, the area of ALPHA router is still
5 percent and 10 percent smaller compared to VIX and DIP
configurations respectively. This is because we keep our
designs of increasing injection bandwidth and resolving
local contention light-weight. O1TURN configuration incurs
the least area overhead as it only involves limited modifica-
tions to the RC unit and the VA unit.

6 DESIGN ANALYSIS

In this section, we examine the performance of the ALPHA
router in detail, and explain several critical design choices.

Contention Resolving Function. Both DIP and ALPHA
increase the injection bandwidth as compared to the Base-
line configuration. We examine the network contention in
DIP and ALPHA by analyzing the SA Grant Rate shown in

Fig. 16. Normalized throughput comparison between the ALPHA router design and other configurations. All throughput values are normalized to
throughput in the Baseline configuration.

Fig. 17. Execution time speedup of VIC, DIP, O1TURN, and ALPHA configurations over the Baseline configuration. Speedup of the Baseline configu-
ration itself is always 1.

Fig. 18. Normalized energy efficiency comparison between the ALPHA router design and other configurations. All energy efficiency values are nor-
malized to energy efficiency in the Baseline configuration.

284 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 19, and make two observations. (1) Increasing the injec-
tion bandwidth leads to intensive network contention, as
the geometric mean of SA Grant Rate in DIP drops to
around 87 percent. The SA Grant Rate is relatively high in
applications with low network load such as LC and KM,
while it is low in applications with high network load such
as BP and HW. (2) The contention resolving design in
ALPHA is effective, because the SA Grant Rate in ALPHA
is 7 percent higher than in DIP. ALPHA performs well in
applications with high network load. For example, ALPHA
achieves 15 and 11 percent higher SA Grant Rate than DIP
in BP and HW applications respectively.

Injection Mode Breakdown. Fig. 20 shows the breakdown of
injection modes in ALPHA design in different applications.
We capture the ratio of the number of clock cycles utilized
by each injection mode to the total application execution
clock cycles. The turbo injection mode is frequently used in
most applications, indicating the necessity of increasing
injection bandwidth. The throttled injection mode is barely
used in applications such as LC and LUD. These applica-
tions either involve a high fraction of CPU execution or
have low cache miss rate. Some other applications (HS,
MUM, and BFS, etc.) frequently use the throttled injection
mode to reduce network load and hence avoid intensive
network contention.

SA Grant Rate Threshold. A router is considered congested
when its SA Grant Rate is below a threshold Cth in the
ALPHA design. We evaluate the impact of this threshold
Cth on system performance, and observe that the optimal
system performance is achieved when the threshold Cth is

set to 0.9, as shown in Fig. 21. A small Cth may not be sensi-
tive enough to identify contention, while a large Cth limits
the benefit of utilizing the increased injection bandwidth.

Throttling Rate in Throttled Injection Mode. We also exam-
ine the impact of throttling rate in the throttled injection
mode on system performance. The optimal system perfor-
mance is obtained when the throttling rate is set to 0.85 as
shown in Fig. 22. This throttling rate effectively reduces the
network load and avoids contention while incurring mini-
mal negative impact on system performance in the throttled
injection mode.

LIC Epoch Size & Hidden Layer Neuron Count. We evaluate
the impact of the LIC epoch step size on system perfor-
mance and present the results in Fig. 23a (normalized to the
10K epoch step size case). The optimal system performance
is obtained when the LIC epoch step size is 10K. Imple-
menting more neurons in LIC hidden layer leads to system

TABLE 3
Area Estimation

Area [mm2]

Configuration Flit Buffer/Logic RC Unit VA Unit SA Unit Crossbar VC Table LIC Batch Scheduling Total Increase by %

Baseline 0.1860 0.0004 0.0091 0.0046 0.0178 0.0012 - - 0.2303 -
VIX 0.1860 0.0004 0.0091 0.0092 0.0356 0.0012 - - 0.2556 11.0%
DIP 0.2232 0.0004 0.0091 0.0055 0.0178 0.0012 - - 0.2710 17.7%
O1TURN 0.1860 0.0009 0.0093 0.0046 0.0178 0.0012 - - 0.2321 0.78%
OSCAR 0.1860 0.0004 0.0091 0.0058 0.0178 0.0012 - 0.0064 0.2367 2.78%
ALPHA 0.1860 0.0009 0.0094 0.0055 0.0214 0.0012 0.0173 - 0.2427 5.38%

Fig. 19. The SA Grant Rate comparison in DIP and ALPHA.

Fig. 20. The injection mode breakdown in ALPHA design.

Fig. 21. Geometric mean of execution time with different SA Grant Rate
threshold Cth, normalized to Cth ¼ 1.

Fig. 22. Geometric mean of execution time with different throttling rate,
normalized to throttling rate of 0.97.

Fig. 23. The impact of (a) LIC epoch step size and (b) hidden layer neu-
ron count on system performance.

LI AND LOURI: ALPHA: A LEARNING-ENABLED HIGH-PERFORMANCE NETWORK-ON-CHIP ROUTER DESIGN FOR... 285

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

performance improvement at the cost of large LIC area.
From Fig. 23b (normalized to the 6 neurons case), we
observe that implementing 8 neurons has a good balance
between system performance and area overhead.

LIC Effectiveness. We compare the proposed LIC with
another global contention identification mechanism named
HAT [53]. To keep the comparison fair, HAT is implemented
on top of the design described in Section 3.2 and Fig. 7. We
extend the range of throttling rate to adapt to the increased
injection bandwidth while maintaining the adjustment epoch
size of 100K cycles as in [53]. Fig. 24 shows that ALPHA
achieves 3.6 percent execution time reduction as compared to
HAT. ALPHA outperforms HAT for several reasons: (1)
ALPHA adjusts injection rate at a finer time interval because
it includes neither centralized control nor complicated com-
putations; (2) ALPHA’s injection rate control is on per-core
basis while HAT applies a universal injection rate to all throt-
tled cores; and (3) ALPHA can identify the contention in each
quadrant separately and only throttle traffic going to quad-
rants with intensive contention.

7 RELATED WORK

Increase Throughput. Prior works mainly focus on optimizing
the crossbar switch allocation scheme to improve throughput
[26], [28], [61]. Theseworks usually involve complicated alloca-
tor design such as the iterative allocator [27] or wavefront allo-
cator [29]. Rao et al. [32] propose to improve the crossbar switch
allocation by feeding more SA requests to the allocator. Other
works improve throughput by enhancing the injection process
[10], [11]. Xue et al. [62] improve throughput by exploiting user-
cooperated network coding. We observe that the limited injec-
tion bandwidth is the major obstacle to throughput improve-
ment, and propose a light-weight design to tackle this obstacle.

Reduce Network Latency. Conventional works have con-
centrated on reducing the transfer latency by reducing the
number of hops [33], [34], [35], [63] or overlapping router
pipeline stages [36], [37], [38], [64]. Monemi et al. [65] apply
some latency reduction techniques to their NoC prototype
development. Prior latency reduction techniques are effec-
tive when network load is relatively low. We observe that
the network load is usually high in heterogeneous many-
cores and the contention latency takes up a significant por-
tion of the overall network latency. We propose multiple
contention resolving techniques to reduce the contention
latency, hence reduce the overall network latency.

Multipath Routing. Multipath routing has been widely
explored in the networking community [44], [66]. Tang et al.
[67] propose the repetitive turn model, which combines
multiple routing algorithms with low routing pressures, to
improve network performance. Murali et al. [68] propose a
multipath routing technique with the in-order guarantee by

implementing a lookup table at the switch of reconvergent
nodes. Yang et al. [69] propose a simultaneous dual-path
routing algorithm, which is beneficial when transmitting
large-size packets. The multipath routing scheme we have
employed in this work differs from previous schemes
because (1) we select a route based on the local contention
information instead of evenly or randomly distributing traf-
fic to all available routes, and (2) the employed multipath
routing scheme yields maximal benefit only when com-
bined with the increased injection bandwidth.

Learning-Enabled NoC Design. Multiple machine learning
techniques have been introduced to perform design trade-
off or predict traffic in NoCs. These works target to achieve
high power efficiency [70], [71], [72], [73], [74], [75], [76], and
enable fault-tolerant design [74], [77], [78]. Xiao et al. [79]
exploit neural network and reinforcement learning to opti-
mize task mapping in a heterogeneous system. Qian et al.
[80] use kernel-based support vector regression method to
predict the NoC performance. We apply the supervised
learning technique to detect the global contention through
traffic analysis and prediction, and adaptively select injec-
tionmode to optimize system performance.

8 CONCLUSION

The NoCs for heterogeneous manycores are expected to be
optimized for the combined traffic from latency-sensitive
CPUs and throughput-sensitive GPUs and accelerators. We
extensively analyze the characteristics of the combined traffic,
and observe that (1) the limited injection bandwidth is the
major obstacle to throughput improvement, and (2) the latency
due to local and global contention over the shared network
resources takes up a significant portion of the overall network
latency. Based on our observations, we propose ALPHA, a
NoC router design that is simultaneously optimized for
throughput and latency performance in heterogeneous many-
cores. ALPHA increases the injection bandwidth through
architectural modifications to the injection link, the crossbar
switch and the buffer organization in the injection port of the
router. ALPHA resolves the local contention by combining a
contention detection design with multipath routing. Further-
more, ALPHA implements a supervised learning engine to
detect the global contention through traffic analysis and pre-
diction, and alleviate it by adaptively adjusting the traffic injec-
tion process. Our simulation results show that the ALPHA
router outperforms the baseline router and other state-of-art
router designs in terms of latency, throughput, execution time
speed and energy efficiency. We conclude that ALPHA is an
effective router design for heterogeneousmanycores.

ACKNOWLEDGMENTS

This research was partially supported by National Science
Foundation Grants CCF-1547035, CCF-1547036, and CCF-
1702980. We sincerely thank the anonymous reviewers for
their excellent feedback.

REFERENCES

[1] E. S. Chung, P. A. Milder, J. C. Hoe, and K. Mai, “Single-chip het-
erogeneous computing: Does the future include custom logic,
FPGAs, and GPGPUs?” in Proc. 43rd IEEE/ACM Int. Symp. Micro-
architecture, 2010, pp. 225–236.

Fig. 24. Execution time comparison of HAT and ALPHA.

286 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

[2] M. Arora, S. Nath, S. Mazumdar, S. B. Baden, and D. M. Tullsen,
“Redefining the role of the cpu in the era of CPU-GPU integra-
tion,” IEEE Micro, vol. 32, no. 6, pp. 4–16, Nov. 2012.

[3] S. Mittal and J. S. Vetter, “A survey of CPU-gGPU heterogeneous
computing techniques,” ACM Comput. Survey, vol. 47. no. 4,
pp. 69:1–69:35, Jul. 2015.

[4] O. Kayiran et al., “Managing GPU concurrency in heterogeneous
architectures,” in Proc. 47th IEEE/ACM Int. Symp. Microarchitec-
ture, 2014, pp. 114–126.

[5] G. Venkatesh et al., “Conservation cores: Reducing the energy of
mature computations,” in Proc. 15th Architect. Support Program.
Languages Operating Syst., 2010, pp. 205–218.

[6] S. Yehia, S. Girbal, H. Berry, and O. Temam, “Reconciling spe-
cialization and flexibility through compound circuits,” in Proc.
15th IEEE Int. Symp. High-Perform. Comput. Architecture, 2009,
pp. 277–288.

[7] J. Power et al., “Heterogeneous system coherence for integrated
CPU-GPU systems,” in Proc. 46th Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2013, pp. 457–467.

[8] H. Zheng and A. Louri, “A versatile and flexible chiplet-based
system design for heterogeneous manycore architectures,” in
Proc. 57th ACM/IEEE Des. Autom. Conf., pp. 1–6, 2020.

[9] J. Cong, M. Gill, Y. Hao, G. Reinman, and B. Yuan, “On-chip inter-
connection network for accelerator-rich architectures,” in Proc.
52nd ACM/EDAC/IEEE Des. Autom. Conf., 2015, pp. 8:1–8:6.

[10] A. Bakhoda, J. Kim, and T. M. Aamodt, “Throughput-effective on-
chip networks for manycore accelerators,” in Proc. 43rd IEEE/
ACM Int. Symp. Microarchitecture, 2010, pp. 421–432.

[11] X. Cheng, Y. Zhao, H. Zhao, and Y. Xie, “Packet pump: Overcom-
ing network bottleneck in on-chip interconnects for GPGPUs,” in
Proc. 55th ACM/ESDA/IEEE Des. Autom. Conf., 2018, pp. 84:1–84:6.

[12] H. Jang, J. Kim, P. Gratz, K. H. Yum, and E. J. Kim, “Bandwidth-
efficient on-chip interconnect designs for GPGPUs,” in Proc. 52nd
ACM/EDAC/IEEE Des. Autom. Conf., 2015, pp. 9:1–9:6.

[13] H. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu, “Providing cost-effec-
tive on-chip network bandwidth in GPGPUs,” in Proc. 30th IEEE
Int. Conf. Comput. Des., 2012, pp. 407–412.

[14] K. H. Kim, R. Boyapati, J. Huang, Y. Jin, K. H. Yum, and E. J. Kim,
“Packet coalescing exploiting data redundancy in GPGPU
architectures,” in Proc. 31st ACM Int. Conf. Supercomputing, 2017,
pp. 6:1–6:10.

[15] L. S. Peh and N. E. Jerger,On-Chip Networks. San Rafael, CA, USA:
Morgan & Claypool, 2009.

[16] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu, “Next genera-
tion on-chip networks: What kind of congestion control do we
need?” in Proc. 9th ACM SIGCOMM Workshop Hot Topics Netw.,
2010, pp. 12:1–12:6.

[17] Y. Yao and Z. Lu, “Opportunistic competition overhead reduction
for expediting critical section in NoC based CMPs,” in Proc. 43rd
ACM/IEEE Int. Symp. Comput. Architecture, 2016, pp. 279–290.

[18] H. Zheng andA. Louri, “EZ-pass: An energy performance-efficient
power-gating router architecture for scalable NoCs,” IEEE Comput.
Architecture Lett., vol. 17, no. 1, pp. 88–91, Jan. 2018.

[19] Y. Chen and A. Louri, “An approximate communication frame-
work for network-on-chips,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 6, pp. 1434–1446, Jun. 2020.

[20] J. Lee, S. Li, H. Kim, and S. Yalamanchili, “Adaptive virtual
channel partitioning for network-on-chip in heterogeneous archi-
tectures,” ACM Trans. Des. Autom. Electron. Syst., vol. 18, no. 4,
pp. 48:1–48:28, Oct. 2013.

[21] J. Zhan, O. Kayiran, G. H. Loh, C. R. Das, and Y. Xie, “OSCAR:
Orchestrating STT-RAM cache traffic for heterogeneous CPU-
GPU architectures,” in Proc. 49th IEEE/ACM Int. Symp. Microarchi-
tecture, 2016, pp. 28:1–28:13.

[22] A. K. Mishra, O. Mutlu, and C. R. Das, “A heterogeneous multiple
network-on-chip design: An application-aware approach,” in Proc.
50th ACM/EDAC/IEEEDes. Autom. Conf., 2013, pp. 36:1–36:10.

[23] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Application-
aware prioritization mechanisms for on-chip networks,” in Proc.
42nd IEEE/ACM Int. Symp. Microarchitecture, 2009, pp. 280–291.

[24] Y. Jin, E. J. Kim, and T. M. Pinkston, “Communication-aware glob-
ally-coordinated on-chip networks,” IEEE Trans. Parallel Distrib.
Syst., vol. 23, no. 2, pp. 242–254, Feb. 2012.

[25] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “A�ergia: Exploit-
ing packet latency slack in on-chip networks,” in Proc. 37th ACM/
IEEE Int. Symp. Comput. Architecture, 2010, pp. 106–116.

[26] Y. Chang, Y. S. Huang, M. Poremba, V. Narayanan, Y. Xie, and
C. King, “TS-router: On maximizing the quality-of-allocation in
the on-chip network,” in Proc. 19th IEEE Int. Symp. High-Perform.
Comput. Architecture, 2013, pp. 390–399.

[27] N. McKeown, “The iSLIP scheduling algorithm for input-queued
switches,” IEEE/ACM Trans. Netw., vol. 7, no., pp. 188–201,
Apr. 1999.

[28] G. Michelogiannakis, N. Jiang, D. Becker, and W. J. Dally,
“Packet chaining: Efficient single-cycle allocation for on-chip
networks,” in Proc. 44th IEEE/ACM Int. Symp. Microarchitecture,
2011, pp. 83–94.

[29] Y. Tamir and H. C. Chi, “Symmetric crossbar arbiters for vlsi com-
munication switches,” IEEE Trans. Parallel Distrib. Syst., vol. 4,
no. 1, pp. 13–27, Jan. 1993.

[30] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron, “A characterization of the rodinia benchmark suite
with comparison to contemporary CMP workloads,” in Proc. IEEE
Int. Symp. Workload Characterization, 2010, pp. 1–11.

[31] S. Che et al., “Rodinia: A benchmark suite for heterogeneous
computing,” in Proc. IEEE Int. Symp. Workload Characterization,
2009, pp. 44–54.

[32] S. Rao, S. Jeloka, R. Das, D. Blaauw, R. Dreslinski, and T. Mudge,
“Vix: Virtual input crossbar for efficient switch allocation,” in Proc.
51st ACM/EDAC/IEEEDes. Autom. Conf., 2014, pp. 103:1–103:6.

[33] J. Kim, W. J. Dally, B. Towles, and A. K. Gupta, “Microarchitecture
of a high-radix router,” in Proc. 32nd ACM/IEEE Int. Symp. Com-
put. Architecture, 2005, pp. 420–431.

[34] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: A cost-effi-
cient topology for high-radix networks,” in Proc. 34th ACM/IEEE
Int. Symp. Comput. Architecture, 2007, pp. 126–137.

[35] A. Kumar, L. S. Peh, P. Kundu, and N. K. Jha, “Express virtual
channels: Towards the ideal interconnection fabric,” in Proc. 34th
ACM/IEEE Int. Symp. Comput. Architecture, 2007, pp. 150–161.

[36] L. S. Peh and W. J. Dally, “A delay model and speculative archi-
tecture for pipelined routers,” in Proc. 7th IEEE Int. Symp. High-
Perform. Comput. Architecture, 2001, pp. 255–266.

[37] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. R. Das,
“A low latency router supporting adaptivity for on-chip inter-
connects,” in Proc. 42nd ACM/IEEE Des. Autom. Conf., 2005,
pp. 559–564.

[38] R. Mullins, A. West, and S. Moore, “Low-latency virtual-channel
routers for on-chip networks,” in Proc. 31st ACM/IEEE Int. Symp.
Comput. Architecture, 2004, pp. 188–197.

[39] B. Fu and J. Kim, “Footprint: Regulating routing adaptiveness in
networks-on-chip,” in Proc. 44th ACM/IEEE Int. Symp. Comput.
Architecture, 2017, pp. 691–702.

[40] G. P. Nychis, C. Fallin, T. Moscibroda, O. Mutlu, and S. Seshan,
“On-chip networks from a networking perspective: Congestion
and scalability in many-core interconnects,” ACM SIGCOMM
Comput. Commun. Rev., vol. 42, no. 4, pp. 407–418, Oct. 2012.

[41] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion aware-
ness for load balance in networks-on-chip,” in Proc. 14th IEEE Int.
Symp. High-Perform. Comput. Architecture, 2008, pp. 203–214.

[42] A. Mirhosseini, M. Sadrosadati, B. Soltani, H. Sarbazi-Azad, and
T. F. Wenisch, “Binochs: Bimodal network-on-chip for cpu-gpu
heterogeneous systems,” in Proc. 11th IEEE/ACM Int. Symp. Netw.-
on-Chip, 2017, pp. 7:1–7:8.

[43] D. Abts, N. E. Jerger, J. Kim, D. Gibson, and M. H. Lipasti,
“Achieving predictable performance through better memory con-
troller placement in many-core CMPs,” in Proc. 36th ACM/IEEE
Int. Symp. Comput. Architecture, 2009, pp. 451–461.

[44] D. Seo, A. Ali, W. T. Lim, N. Rafique, and M. Thottethodi, “Near-
optimal worst-case throughput routing for two-dimensional mesh
networks,” in Proc. 32nd ACM/IEEE Int. Symp. Comput. Architec-
ture, 2005, pp. 432–443.

[45] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” J.
ACM, vol. 41, no. 5, pp. 874–902, Sep. 1994.

[46] J. Duato, “A new theory of deadlock-free adaptive routing inworm-
hole networks,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 12,
pp. 1320–1331, Dec. 1993.

[47] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in
multiprocessor interconnection networks,” IEEE Trans. Comput.,
vol. C-36, no. 5, pp. 547–553, May 1987.

[48] V. Puente, R. Beivide, J. A. Gregorio, J. M. Prellezo, J. Duato, and
C. Izu, “Adaptive bubble router: A design to improve perfor-
mance in torus networks,” in Proc. Inte. Conf. Parallel Process.,
1999, pp. 58–67.

LI AND LOURI: ALPHA: A LEARNING-ENABLED HIGH-PERFORMANCE NETWORK-ON-CHIP ROUTER DESIGN FOR... 287

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

[49] W. J. Dally and H. Aoki, “Deadlock-free adaptive routing in multi-
computer networks using virtual channels,” IEEE Trans. Parallel
Distrib. Syst., vol. 4, no. 4, pp. 466–475, Apr. 1993.

[50] E. Baydal, P. Lopez, and J. Duato, “A family of mechanisms for
congestion control in wormhole networks,” IEEE Trans. Parallel
Distrib. Syst., vol. 16, no. 9, pp. 772–784, Sep. 2005.

[51] A. Singh, W. J. Dally, A. K. Gupta, and B. Towles, “Goal: A load-
balanced adaptive routing algorithm for torus networks,” in Proc.
30th ACM/IEEE Int. Symp. Comput. Architecture, 2003, pp. 194–205.

[52] E. Baydal, P. Lopez, and J. Duato, “A congestion control mecha-
nism for wormhole networks,” in Proc. 9th Euromicro Workshop
Parallel Distrib. Process., 2001, pp. 19–26.

[53] K. K. Chang, R. Ausavarungnirun, C. Fallin, and O. Mutlu,
“Hat: Heterogeneous adaptive throttling for on-chip networks,”
in Proc. 24th IEEE Int. Symp. Comput. Architecture High Perform.
Comput., 2012, pp. 9–18.

[54] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and
T. M. Aamodt, “Analyzing cuda workloads using a detailed GPU
simulator,” in Proc. IEEE Int. Symp. Performance Anal. Syst. Softw.,
2009, pp. 163–174.

[55] S. Floyd, “TCP and explicit congestion notification,” ACM SIG-
COMM Comput. Commun. Rev., vol. 24, no. 5, pp. 8–23, Oct. 1994.

[56] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high
bandwidth-delay product networks,” ACM SIGCOMM Comput.
Commun. Rev., vol. 32, no. 4, pp. 89–102, Aug. 2002.

[57] S. Haykin, Neural Networks: A Comprehensive Foundation. Upper
Saddle River, NJ, USA: Prentice Hall, 1994.

[58] A. Fog, “Lists of instruction latencies, throughputs andmicro-opera-
tion breakdowns for intel, amd and viaCPUs,” 2018. [Online]. Avail-
able: http://www.agner.org/optimize/instruction_tables.pdf

[59] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood,
“gem5-gpu: A heterogeneous CPU-GPU simulator,” IEEE Comput.
Architecture Lett., vol. 14, no. 1, pp. 34–36, Jan. 2015.

[60] C. Sun et al., “Dsent - a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in
Proc. 6th IEEE/ACM Int. Symp. Netw.-on-Chip, 2012, pp. 201–210.

[61] D. U. Becker and W. J. Dally, “Allocator implementations for net-
work-on-chip routers,” in Proc. Conf. High Perform. Comput. Netw.
Storage Anal., 2009, pp. 52:1–52:12.

[62] Y. Xue and P. Bogdan, “User cooperation network coding
approach for NoC performance improvement,” in Proc. 9th Int.
Symp. Netw.-on-Chip, 2015, pp. 1–8.

[63] Z. Qian, P. Bogdan, G. Wei, C. Y. Tsui, and R. Marculescu, “A traf-
fic-aware adaptive routing algorithm on a highly reconfigurable
network-on-chip architecture,” in Proc. 8th Int. Conf. HW/SW Co-
Design Syst. Synthesis, 2012, Art. no. 161–170.

[64] A. Kumary, P. Kunduz, A. P. Singhx, L. S. Peh, and N. K. Jhay, “A
4.6tbits/s 3.6 GHz single-cycle NoC router with a novel switch
allocator in 65 nm CMOS,” in Proc. 25th IEEE Int. Conf. Comput.
Des., 2007, pp. 63–70.

[65] A. Monemi, J. W. Tang, M. Palesi, and M. N. Marsono, “Pronoc: A
low latency network-on-chip based many-core system-on-chip
prototyping platform,” Microprocessors Microsystems, vol. 54,
pp. 60–74, Oct. 2017.

[66] T. Nesson and S. L. Johnsson, “Romm routing on mesh and torus
networks,” in Proc. 7th ACM Symp. Parallel Algorithms Architec-
tures, 1995, pp. 275–287.

[67] M. Tang, X. Lin, and M. Palesi, “The repetitive turn model for
adaptive routing,” IEEE Trans. Comput., vol. 66, no. 1, pp. 138–146,
Jan. 2017.

[68] S. Murali, D. Atienza, L. Benini, and G. De Micheli, “A multi-path
routing strategy with guaranteed in-order packet delivery and
fault-tolerance for networks on chip,” in Proc. 43rd ACM/IEEE
Des. Autom. Conf., 2006, pp. 845–848.

[69] Y. S. Yang, H. Deshpande, G. Choi, and P. V. Gratz, “SDPR:
Improving latency and bandwidth in on-chip interconnect through
simultaneous dual-path routing,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 37, no. 3, pp. 545–558, Mar. 2018.

[70] J. Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, “Up by their
bootstraps: Online learning in artificial neural networks for CMP
uncore power management,” in Proc. 20th IEEE Int. Symp. High-
Perform. Comput. Architecture, 2014, pp. 308–319.

[71] S. Van Winkle, A. K. Kodi, R. Bunescu, and A. Louri, “Extending
the power-efficiency and performance of photonic interconnects
for heterogeneous multicores with machine learning,” in Proc.
24th IEEE Int. Symp. High-Perform. Comput. Architecture, 2018,
pp. 480–491.

[72] D. DiTomaso, A. Sikder, A. Kodi, and A. Louri, “Machine learning
enabled power-aware network-on-chip design,” in Proc. Des.
Autom. Test Europe Conf., 2017, pp. 1354–1359.

[73] M. Clark, A. Kodi, R. Bunescu, and A. Louri, “Lead: Learning-
enabled energy-aware dynamic voltage/frequency scaling in
nocs,” in Proc. 55th ACM/ESDA/IEEE Des. Autom. Conf., 2018,
pp. 82:1–82:6.

[74] K. Wang, A. Louri, A. Karanth, and R. Bunescu, “Intellinoc: A
holistic design framework for energy-efficient and reliable on-
chip communication for manycores,” in Proc. 46th ACM/IEEE Int.
Symp. Comput. Architecture, 2019, pp. 1–12.

[75] H. Zheng and A. Louri, “An energy-efficient network-on-chip
design using reinforcement learning,” in Proc. 56th Des. Autom.
Conf., 2019, pp. 47:1–47:6.

[76] Q. Fettes, M. Clark, R. Bunescu, A. Karanth, and A. Louri,
“Dynamic voltage and frequency scaling in NoCs with supervised
and reinforcement learning techniques,” IEEE Trans. Comput.,
vol. 68, no. 3, pp. 375–389, Mar. 2019.

[77] D. DiTomaso, T. Boraten, A. Kodi, and A. Louri, “Dynamic
error mitigation in NoCs using intelligent prediction techni-
ques,” in Proc. 49th IEEE/ACM Int. Symp. Microarchitecture,
2016, pp. 31:1–31:12.

[78] K.Wang, A. Louri, A. Karanth, andR. Bunescu, “High-performance,
energy-efficient, fault-tolerant network-on-chip design using rein-
forcement learnin,” in Proc. Des. Autom. Test Eur. Conf., 2019,
pp. 1166–1171.

[79] Y. Xiao, S. Nazarian, and P. Bogdan, “Self-optimizing and self-
programming computing systems: A combined compiler, com-
plex networks, and machine learning approach,” IEEE Trans. Very
Large Scale Integration Syst., vol. 27, no. 6, pp. 1416–1427, Jun. 2019.

[80] Z.Qian,D. Juan, P. Bogdan,C. Tsui,D.Marculescu, andR.Marculescu,
“SVR-NoC: A performance analysis tool for network-on-chips using
learning-based support vector regression model,” in Proc. Des. Autom.
Test EuropeConf., 2013, pp. 354–357.

Yuan Li (Student Member, IEEE) received the
BS degree in physics from the University of Sci-
ence and Technology of China, in 2010, and the
MS degree in microelectronics from the Univer-
sity of Newcastle upon Tyne, in 2011. He is cur-
rently working toward the PhD degree in
computer engineering at the George Washington
University. His research interests include com-
puter architecture, interconnection networks,
accelerator-rich heterogeneous manycore sys-
tems, and emerging memory technologies.

Ahmed Louri (Fellow, IEEE) received the PhD
degree in computer engineering from the Univer-
sity of Southern California, Los Angeles, Califor-
nia, in 1988. He is the David and Marilyn
Karlgaard Endowed chair professor of electrical
and computer engineering with the George
Washington University, and the director of the
High Performance Computing Architectures and
Technologies Laboratory. From 2010 to 2013, he
served as a program director with the National
Science Foundations (NSF) Directorate for com-

puter and information science and engineering. His conducts research
in the broad area of computer architecture and parallel computing, with
emphasis on interconnection networks, optical interconnects for scalable
parallel computing systems, reconfigurable computing systems, and
power-efficient and reliable network-on-chips (NoCs) for multicore archi-
tectures. He is a fellow of the Institute of Electrical and Electronics Engi-
neers (IEEE), and currently serving as the editor-in-chief of the IEEE
Transactions on Computers.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

288 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 6, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:01:44 UTC from IEEE Xplore. Restrictions apply.

http://www.agner.org/optimize/instruction_tables.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

