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Abstract— The divider is one of the most complex hardware
units in Stochastic Computing (SC); even though several new
designs have been presented to reduce the computation latency
of the conventional divider, all of them still require a considerable
number of clock cycles. Moreover, they incur in low performance
due to the employed arithmetic computational scheme. In this
paper, a Delta Sigma Modulator (DSM) based stochastic divider
is proposed. As an entirely digital circuit, the proposed divider
offers the best computation latency and accuracy over all existing
stochastic dividers found in the technical literature (with a typical
reduction between 66.8% and 96.9% in the number of clock
cycles and a reduction from 10−3.4 to 10−3.9in the average
mean square error for a 10-bit resolution). An SC-based Neural
Network (NN) is considered as an initial case study to evaluate the
advantages of the proposed design in an emerging application;
results show that the proposed divider enables an SC-based NN to
achieve a higher classification accuracy and hardware efficiency
than existing designs. To show the flexibility of the proposed
divider design, its application to Sobol-based sequences is also
presented; also in this case, its superiority over other designs
is confirmed. These features make the proposed design very
attractive for hardware-constrained platforms; moreover, such a
novel design approach that incorporates ideas from analog/mixed
signal circuit design into a digital circuit design, can motivate
other researchers to design efficient SC designs using similar
schemes.

Index Terms— Stochastic computing, divider, Delta Sigma
modulator, neural network.
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I. INTRODUCTION

TODAY’S computing systems involve large volume of data
(to be stored or computed). However, their operations

face major challenges in terms of hardware complexity; for
example, for Machine Learning (ML) applications, a Neural
Network (NN) may require millions of neurons [1], so com-
puting a very large number of arithmetic operations and thus
incurring in a large overhead for implementation. Therefore,
better designs are pursued for reducing the computation com-
plexity (e.g., approximated or quantized schemes for NNs [2])
and meeting the need of low hardware overhead when used
in hardware-constrained platforms (e.g., Internet of Things
devices). An alternative solution targets the hardware imple-
mentation directly by utilizing emerging computing circuits;
this approach does not need to modify the algorithm and
is able to be integrated with algorithmic improvements to
further reduce the hardware overhead [3], thus making it more
attractive for efficient implementations.

A promising computing paradigm is Stochastic Computing
(SC); it was firstly proposed in the 1960s [4] and recently
has attracted significant attention for implementing power-
ful computing systems (which require a large number of
arithmetic operations) like NNs [5], image processing [6],
[7], digital filters [8], [9] and decoding of complex error
correction codes [10], [11] due to its low computational
complexity. SC utilizes the probability of occurrence of “1”
in a random binary bit stream (typically generated by using
a linear feedback shift register (LFSR)) to represent a real
value. Therefore, different from conventional binary arithmetic
implementations, SC arithmetic units perform arithmetic com-
putation by utilizing very simple logic schemes; for example,
a single AND (XNOR) gate performs multiplication in the
unipolar (bipolar) SC representation [12]. Moreover, SC also
offers high error tolerance against bit-flip errors, making it
attractive for safety-critical applications. Since arithmetic oper-
ations are performed on several SC sequences, these sequences
are usually constrained with zero or low correlation for
retaining an acceptable computation accuracy [12]; although
some designs exploit the correlation of different sequences
for SC [13], [14], they only focus on few arithmetic units.
Therefore, they cannot be utilized to implement a system
that involves many other arithmetic operations, limiting their
application potential; such designs are not considered in this
paper.

SC values are analyzed based on probability, so the possible
range of values represented by SC is [0, 1] for unipolar
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computation or [-1, 1] for bipolar computation. This may
cause an accuracy loss in some applications that perform
computation over the entire real number range (e.g., NNs);
to address this issue, extended stochastic logic (ESL) [15]
dividing two SC sequences is often employed for extending
the computation range. As the size of ESL is nearly double
compared to the standard SC units, a hybrid design combining
both is usually employed to reduce the hardware overhead
(e.g., such as the hybrid SC-based NN of [16]). In such case,
a divider is required for converting ESL to a traditional SC
sequence.

The divider is probably the most challenging block among
basic SC units. Unlike a multiplier or an adder that is imple-
mented by applying simple combinational logic gates, the
design of a conventional divider is usually more complicated
and realized using a feedback loop for providing an acceptable
computational accuracy [12]. By feeding the temporarily cal-
culated quotient into the input of the loop, an up/down counter
in the loop adjusts the number of “1” in the SC sequence in
a one-by-one fashion to approach the correct result; therefore,
once the loop is stable, the calculated quotient is considered
accurate and used as output. However, the computation latency
of such conventional divider is extremely slow because the
loop requires a significant number of clock cycles (each bit is
processed in a clock cycle) to converge; when the SC sequence
represents a small value (i.e., most bits in the sequence are
“0”), it is difficult to capture the difference between the input
and output of the loop, so requiring more bits to stabilize the
entire process.

To reduce the computation latency, a binary searching (BS)
scheme [12] has been utilized to adjust the intermediate result
by progressive precision and determining each bit of the N-bit
SC probability associated with the quotient, i.e., identify the
possible range of the result in half-by-half fashion (this process
is discussed in detail in the next section). This makes the loop
to converge faster; this scheme is then improved by utilizing
triple modular redundancy (TMR) for further reducing the
number of clock cycles, while maintaining the same accu-
racy [16]. However, such BS-TMR based divider still requires
N iterations to calculate the quotient. To address this issue,
a decimal searching and TMR (DS-TMR) based divider has
been recently designed [17] to adjust the intermediate result
with progressive precision by determining each bit of the real
value, so in a region-by-region fashion. In this case, only two
iterations are required for the loop to be stable with no loss
in computation accuracy; however, this divider still requires
significantly more than 2N clock cycles. Moreover, the fast
convergence in the DS-TMR based divider requires a larger
circuit area; this has limited impact on the entire system if the
divider is rarely used, but it is not acceptable if it accounts for
a significant part.

In addition to latency, another issue of all current dividers
is the limited accuracy; this is a disadvantage of the up/down
counter utilized in the loop. This unit adjusts the SC sequence
as per the difference between each input and output bits of the
loop; therefore, no refined adjustment due to the accumulated
difference between several input and output bits is available,
and thus the result may not be very accurate. Hence, it is
of interest to investigate other feedback loop schemes for a
stochastic divider.

Recently, as a widely used mixed-signal circuit, a Delta
Sigma Modulator (DSM) has been utilized for SC to generate
SC sequences [18], [19]; however, the DSM-based sequences
may suffer from high correlation that degrades the computation
accuracy. The disadvantages of existing dividers (as previously
discussed) and the interest of utilizing a design with structures
traditionally used in non-digital circuits (like DSM) have
motivated this paper to propose a fast stochastic divider relying
on DSM. The main contributions of this paper are as follows:

• A DSM-based negative feedback loop is utilized to design
a fast and accurate stochastic divider (which is entirely a
digital circuit).

• The proposed stochastic divider requires the smallest
number of clock cycles for calculation among all current
dividers (e.g., at a reduction between 66.8% and 96.9%
when N = 10) and thus, having the lowest computation
latency;

• The proposed stochastic divider also improves computa-
tion accuracy over all stochastic dividers found in the
technical literature (e.g., it reduces the average mean
square error from 10−3.4 to 10−3.9 when N = 10);

• An SC-based NN is studied as a first case study to
evaluate the advantages of using the proposed divider in
emerging applications; results show that for the consid-
ered datasets, the SC-based NN with the proposed divider
provides the best classification accuracy and PALPC (the
product of area, latency, power and number of clock
cycles) results.

• In addition to LFSR-based sequences, the divider is also
implemented and evaluated by considering Sobol-based
sequences; the results show that the proposed design
offers the best figure of metric in both computational
accuracy and hardware overhead compared to current
dividers when using such sequences.

The rest of the paper is organized as follows. In Section II,
DSM and SC design are briefly reviewed. Section III presents
the proposed DSM-based divider; it also analyzes its conver-
gence and the theoretical number of clock cycles required for
performing a calculation. Then, the performance of the pro-
posed design is evaluated and compared with current dividers
in Section IV. In Section V, an SC-based NN implemented
with different dividers is investigated and assessed as the first
case study to evaluate the advantages of the proposed design.
To further show the flexibility of the proposed design, its Sobol
version is discussed in Section VI as a second case study.
Finally, the paper ends in Section VII with the conclusion.

II. PRELIMINARIES

A. Delta Sigma Modulator (DSM)

A Delta Sigma Modulator (DSM) is usually designed as part
of a Delta-Sigma Analog to Digital Converter (�� ADC) for
analog/mixed-signal circuits [20] and signal processing [21].
The block diagram of a standard first-order discrete time DSM
is shown in Figure 1 (a); it is made of a one-bit Digital to
Analog Converter (DAC) (that converts the digital signal back
to an analog signal to establish a negative feedback loop),
an integrator (that checks the accumulated differences between
the original and the converted digital signals), and a one-
bit ADC (that is usually implemented by a comparator and
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Fig. 1. A first-order DSM: (a) its simplified block diagram; (b) an example
of signal conversion.

checks the integrator result with a reference voltage (e.g., 0)).
By using such scheme, a DSM correctly converts an input
analog signal to a digital bit-stream composed of binary bits
(i.e. ‘1’ and ‘0’); the pulse density is related to the input
signal amplitude (Figure 1 (b)), i.e., a higher density of “1”s
is generated in the output bit-stream for an input signal with
a higher amplitude/value (so similar to the case of SC).

Therefore, DSM has been considered to directly operate as a
stochastic number generator (SNG) [18]. However, due to the
conversion mechanism of DSM [20], its use as an SNG tends
to generate a sequence consisting of repeated segments; more-
over, a segment tends to be fixed for a given input/sampled
value. So, such type of sequences has two features: i) the
“1”s in the entire sequence are not randomly distributed;
ii) correlation exists between different sequences. Therefore,
when using DSM as an SNG, the generated sequences face the
issue of degrading the computation accuracy in subsequent
arithmetic computations; moreover, the applicability of such
SNG is limited, because it can only be utilized in sensor’s
interfaces that convert an analog signal (sampled from a
sensor) to a stochastic sequence (for subsequent processing
by an SC core).

In the next sections of this paper, the structure of DSM is
utilized in the design of a stochastic divider; as windowed sto-
chastic sequences keep changing when calculating a quotient
sequence, then the issue of using DSM (as an SNG discussed
previously) is not encountered in the proposed divider.

B. Stochastic Computing and Current Stochastic Dividers

Prior to introducing SC-related works, the terminology used
in this paper is presented for clarification:

• A real value refers to the value considered in traditional
binary computation (represented in the format of integer,
floating-point, etc.);

• A stochastic sequence refers to the bit-stream of “1” and
“0”;

• The probability in SC is represented by an N-bit binary
sequence and refers to the probability of the occurrence
of “1” in the stochastic sequence. SC utilizes such
probability to represent a real value; for unipolar compu-

tation, the real value associated to a stochastic sequence
is equal to the value of its probability p while for bipolar
computation, it is equal to 2·p-1;

Figure 2 illustrates the SC process; note that bipolar
computation is considered in the remaining of this paper,
because both positive and negative values are involved in the
computation for most applications (like NNs, as first case
study in Section V). The probability (e.g., p(x) or p(y)) is
related to a given real value and is input to a stochastic
number generator (SNG) for generating a stochastic sequence
(e.g., x or y) prior to all arithmetic computations; in such
SNG, a random number generator (RNG) generates an N-bit
binary sequence that is compared with the input probability
p to generate a stochastic bit (“1” if it is larger than p
and “0” otherwise) per clock cycle. After 2N clock cycles,
a stochastic sequence related to the given real value is obtained
(in which the probability of the occurrence of “1” is equal
to p). Typically, the RNG is implemented using a LFSR,
but recent works [22], [23] have shown that low-discrepancy
sequences (e.g., Sobol) offer either a higher computation
accuracy for some SC circuits (when compared with LFSR-
based sequences), or a faster speed at the same accuracy; how-
ever, they cannot provide satisfactory accuracy for finite-state
machine (FSM)-based units. As introduced in the previous
subsection, DSM can also be used to realize an SNG, but the
generation of sequences is problematic due to unsatisfactory
distributions (as introduced previously) and hence, its limited
applicability.

The basic SC arithmetic units mostly include two categories:
combinational units (e.g., multiplier, adder, etc) and sequential
units (e.g., divider, FSM-based units like the tanh function,
etc.); more details of these units are given in [12]. The divider
is one of the most complex SC units; it is required for
conversion between ESL sequences (that utilize the division
of two SC sequences to extend the possible range of bipolar
computations from [-1, 1] to (−2N−1, 2N−1)) and standard SC
sequences when implementing a hybrid SC-based NN [16].
In such applications, the divider is in the critical computation
path of the NN that determines the time required to complete
an inference (i.e., its complexity affects the latency of the
entire system), so some designs have been proposed to reduce
the computation latency of the divider, because a conventional
design requires a significant number of clock cycles to perform
this calculation. Next, stochastic dividers (with uncorrelated
sequences as considered in this paper) found in the technical
literature are briefly reviewed.

1) Conventional Stochastic Divider: The conventional sto-
chastic divider with the input dividend sequence y and the
divisor sequence x is also shown in Figure 2; it mainly
includes the following logic:

• AD flip-flop (DFF) that generates a sequence having
the same probability as the input sequence x but it is
uncorrelated to x ;

• Three SC multipliers (i.e., XNOR gates) that perform
p(y) · p(x), p(x) · p(x) and p(x)2 · p(z), where p is
the probability of an SC sequence and z is the current
calculated division sequence (i.e., p(z) = p(y)/p(x));
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Fig. 2. Illustration of stochastic computing showing its basic arithmetic units.

• An up/down counter that initially generates a SC probabil-
ity p of 0 and increases/decreases it as per the comparison
between its input bits for p(y) · p(x) and p(x)2 · p(z);

• A SNG that generates SC bits as per the updated proba-
bility of the counter.

The calculated division sequence z is fed back into the
divider, so a negative feedback loop is formed, in which
p(x)2 · p(z) keeps track of p(y) · p(x). Hence, once the loop
achieves stability, the result of p(x)2 · p(z) is considered as
equal to the one for p(y) · p(x). Therefore, the current p(z)
is the final calculated quotient and z consists of the last 2N

bits (with p(z)) as division sequence.
However, since the probability related to the quotient is

adjusted by increasing/decreasing a “1” in each clock cycle
(i.e., in a one-by-one fashion), the stabilization of the con-
ventional stochastic divider requires considerable time (e.g.,
46341 clock cycles on average when N = 10 [17]), especially
for inputs with a small value (i.e., there are many “0” in
the sequence, so it is hard for the counter to capture the
difference between p(x)2·p(z) and p(y)·p(x)). Thus, different
approaches (as briefly described next) have been presented to
improve the convergence process.

2) Binary Searching and Triple Modular Redundancy
(BS-TMR)-Based Stochastic Divider: To achieve a reduction in
latency, a binary searching (BS) method has been proposed to
determine the probability in the up/down counter in a half-by-
half fashion [12]. In such case, each bit of the N-bit probability
is obtained by utilizing an increase/decrease step. This is
2N−2 in the first iteration, which is then scaled down by a
factor of two (i.e., 2N−3, 2N−4, …1) in each of the next N-1
iterations. Therefore, partial bits can be used for a decision in
the counter, because in each iteration, the goal is to estimate if
the probability belongs to one half of the possible range. After
this process, the divider works in the conventional fashion
(a so-called stabilization phase) and continues to further adjust
the estimated results with a step of 1 (i.e., in the conventional
fashion) to achieve stability.

Fig. 3. A BS-TMR based bipolar stochastic divider [16].

However, such method still requires a significant number
of cycles to achieve the final result, because the partial
bits for the estimate may introduce an accuracy loss due to
fluctuation errors (these errors need to be compensated during
the operation in the conventional fashion). To address this issue
and shown in Figure 3, a triple modular redundancy (TMR)
scheme is used to generate three different and independent
sequences for each probability; a majority voting among the
three paths is then used to generate a correct estimate result.
Even though such BS-TMR-based stochastic divider [16] can
achieve the same accuracy as the conventional design at a
shorter convergence process (e.g., 9214 clock cycles on aver-
age when N = 10 [16], [17]), it still requires N iterations to
perform the calculation, so proportional to the SC resolution.

3) Decimal Searching and Triple Modular Redundancy
(DS-TMR)-Based Stochastic Divider: To further decrease the
converging time of the stochastic divider, a recently proposed
DS-TMR-based design (as shown in Figure 4) overcomes
the problem of the BS-TMR-based divider and reduces the
required iterations to avoid the relation with N [17]. In such
divider, the adjustment step for the up/down counter depends
on the SC resolution. For example, for N = 10, the real value
represented by SC has a resolution of 0.002 (i.e., with three
decimal bits); in this case, by setting nine target probabilities
(in nine counters) to separate the value range associated with
each decimal bit into ten regions, then this divider estimates
the number for a decimal bit during an iteration. This searching
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Fig. 4. A DS-TMR based bipolar stochastic divider [17].

approach operates in a region-by-region fashion, because in
each iteration a progressive region of the possible range is
determined. Note that the divider requires only two iterations
to estimate the upper two decimal bits of the quotient; after
that, it works in the conventional fashion (i.e., the stabilization
phase, which is the same as for the BS-TMR-based divider) to
further adjust the calculated result and obtain the last decimal
bit. Like the BS-TMR-based divider, a small number of bits are
used in each iteration and a TMR-based scheme is employed
to deal with fluctuation errors for a satisfactory computation
accuracy.

Even though the DS-TMR-based divider significantly
reduces the computation latency (e.g., 4300 clock cycles on
average when N = 10 [17]) and permits a constant output flow
for pipelining at architectural level (it only requires two iter-
ations for computation, so independent of N), the number of
clock cycles is still significantly higher than other basic units
(like multiplication or addition) that perform a calculation in
2N cycles. Therefore, when using such a divider in a given
implementation involving different arithmetic operations (as in
an SC-based NN), the critical computation path of the NN (as
well as the total computation energy) is increased. Moreover,
the DS-TMR-based divider requires nine TMR blocks, so the
hardware area is also significantly larger than that for the
conventional and BS-TMR-based dividers.

Therefore, to efficiently implement SC, there is a need
for a better stochastic divider with lower area and latency,
so overcoming the issues exhibited in current designs.

III. PROPOSED STOCHASTIC DIVIDER

Next, a novel stochastic divider is presented; it exploits the
design principle of DSM, but it is an entirely digital circuit.
This divider converges fast and offers a high accuracy.

A. Design of Proposed DSM-Based Stochastic Divider

The proposed divider design is illustrated in Figure 5.
Unlike the other bipolar stochastic dividers described in

Algorithm 1 The Calculation Process of Counter in the
Feedback Generation Block
1: if z = 1
2: Counter = Counter + ABit - DBit;
3: else
4: Counter = WinLen - Counter + ABit - DBit;
5: end
6: feedback = Counter;
7: Dacc = Dacc+ Input - feedback;

Fig. 5. The proposed DSM-based divider.

section II.B, the proposed bipolar DSM-based divider follows
the methodology of designing an unipolar divider; it is realized
by forming a negative feedback between p(y) and p(x) · p(z),
instead of between p(y) · p(x) and p(x)2 · p(z). This ensures
that the loop works correctly when a sequence x is related to
a negative dividend value in the bipolar computation [12]. The
reason for establishing such feedback is to avoid the so-called
dead zone of the DSM [20]; this refers to the scenario when
the input amplitude is extremely low, and the DSM tends
to incorrectly converge to it. This occurs when the value of
p(y) · p(x) is closer to a stochastic probability of 0 than p(x),
so such input with a small amplitude is highly likely to make
the circuit enter the dead zone (especially when both p(y) and
p(x) are close to 0); thus, it severely impacts the performance
of the divider. Moreover, stochastic computation for very small
values tends to have a limited accuracy.

As per Figure 5, the proposed divider circuit includes the
following blocks:

• Sign estimate (SE) block: since the proposed loop is
based on a unipolar computation, the sign of the dividend
value (i.e., represented by the sequence x) needs to be
determined for performing a bipolar computation. This is
realized in the SE block that continues to monitor the
sequence x in a timing window (this refers to a few
continuous sequence bits); the sign of sequence x (sign_x)
is estimated as positive if more than half the bits observed
in the window is “1”, and negative if less than half; for
the case in which the same number of “1” and “0” is
observed, this SE block operates for one more window
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Algorithm 2 The Process of Generating z
1:if sign_x is positive
2: if Dacc >= 2N−1

3: z= 1;
4: else
5: z = 0;
6: end
7:elseif sign_x is negative
8: if Dacc >= 2N−1

9: z= 0;
10: else
11: z = 1;
12: end
13:else
14: Re-compute sign_x for another WinLen;
15:End

to make a decision. Once the sign is determined, this
block is disabled. The length of the window WinLen to
meet a satisfactory computation accuracy is analyzed in
section IV.

• Dividend estimate block: this block consists of WinLen
DFFs and a counter that checks the number of “1” in the
divisor sequence y per window (i.e., related to p(y)).

• A feedback generation block: this block consists of
WinLen DFFs that process the sequence x per window,
two XNOR gates for multiplying x and z, and a counter
that generates the feedback result. This counter checks the
number of “1” in the multiplication result of WinLen x
and z bits; once the WinLen+1thx bit arrives, the counter
is updated by just processing the ABit (the multiplication
of WinLen+1thx and WinLen+1thz) and subtracting the
DBit (the multiplication of the 1stx and WinLen+1thz)
according to the sign_x found by the SE block (this
process is given in Algorithm 1).

• Subtractor, accumulator and comparator: the subtractor
checks the difference between p(y) (which is related to
the result obtained in the dividend estimate block) and
p(x) · p(z) (which is related to the result obtained in the
feedback generation block). The accumulator (so acting
as an integrator of the DSM circuit shown in Figure 1
(a)) accumulates the detected difference in each window
and uses the accumulation result as the outcome Dacc;
this is then compared in a comparator c with 2N -1 (refers
to a stochastic probability of 0) to identify whether p(y)
is larger than the estimated p(x) · p(z). For the different
cases of sign_x, the comparator generates the next z bit
(using Algorithm 2).

As discussed above, the negative feedback loop is finally
established and as per the accumulated differences, the output
sequence is adjusted at each window/clock such that p(x) ·
p(z) approaches p(y). Once the feedback loop is stable (in
2N +WinLen-1 clock cycles, as proved in the next subsection),
the quotient sequence is also obtained.

Note that once the first WinLen input bits are fed
into the circuit, the window updates at each clock cycle
(e.g., the second window consists of the 2ndx bit up to

WinLen+1thx bit); so, the counter in the feedback generation
block operates by only processing the previous counter result
with Abit and Dbit (instead of calculating the multiplication of
WinLen x bits and z bits) starting from the 2nd window; this
significantly reduces the computation complexity (and thus,
the hardware overhead). During this calculation process, the
proposed divider does not require a SNG (which accounts
for a considerable hardware overhead); this compensates for
the overhead introduced by the additional blocks compared
to the conventional divider. Overall, the circuit area of the
proposed DSM-based divider is slightly larger than the con-
ventional divider, but significantly smaller than the BS-TMR-
based and DS-TMR-based dividers. This will be evaluated in
section IV.

Due to the convergence analysis of a DSM in the design
of the proposed divider, the estimate calculation result can be
compared with the target result in the loop in multiple bits
(i.e., WinLen) and when adjusted it as per the accumulated
differences (instead of only based on the comparison between
two single bits each time in the existing dividers), the proposed
divider offers a faster convergence process (i.e., a smaller
number of clock cycles to perform a calculation) and a higher
computation accuracy.

B. Proof of Convergence

Next, the convergence of the proposed DSM-based stochas-
tic divider is proved, and the required number of clock cycles
is analyzed.

Define p(z)i as the stochastic probability of the output
sequence z obtained in i bits; the i + 1 bit of sequence z
is given by (refer to Algorithms 1 and 2):

zi+1 = sgn(

i∑
1

((p(y)W inLen_i−p(x)W inLen_i ·p(z)i )) (1)

where p(y)W inLen_i (p(x)W inLen_i ) is the estimated proba-
bility of the dividend sequence y (divisor sequence x) in
the i th window, and the function sgn is 0 when its input is
negative, and 1 otherwise. Since the window sequence is used
to estimate the entire sequence in the proposed design, Eq. (1)
can be approximately updated as follows when i is up to n,
where n̂ denotes the total number of “1” in a n-bit output
sequence z:

zn+1 = sgn
(
n · p (y) − n̂ · p (x) + (

n − n̂
) · p (x)

)
(2)

In the bipolar representation for SC, the probability of a
n-bit output sequence p(z) is calculated as:

p(z)n = 2n̂

n
− 1 (3)

Therefore, the probability of the output sequence with n +
1 bits is calculated as per Eqs. (2) and (3): when p(z)n < p(y)

p(x)

(i.e., 2n̂
n − 1 < p(y)

p(x) ), the result of Eq. (2) is equal to 1

(which increases p(z)n and makes it to approach p(y)
p(x) ). So,

the stochastic probability of the output with n +1 bits is given
by Eq. (4). In this case, the difference between p(z)n+1 and
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p(z)n is calculated by Eq. (5).

p(z)n+1 = 2(n̂+1)

n + 1
− 1 (4)

p(z)n+1 − p(z)n = 2
(
n − n̂

)

n (n + 1)
≤ 2

n + 1
(5)

Otherwise, when Y
X < Zn and the result of Eq. (2) is

equal to 0, Eqs. (4) and (5) must be modified as (6) and (7)
respectively.

p(z)n+1 = 2n̂

n + 1
− 1 (6)

p(z)n+1 − p(z)n = 2n̂

n (n + 1)
≤ 2

n + 1
(7)

Therefore, as the length of the output sequence n increases,
both Eqs. (5) and (7) approach 0, i.e., the output result of the
divider converges. Moreover, the number of clock cycles can
be determined; since the data resolution of an n-bit stochastic
sequence is 2/n (e.g., 0.002 for an n-bit of 210 sequence), once
the result of Eq. (5) or (7) is smaller than 2/n, the calculation
process of the divider is completed. Therefore, the DSM-based
divider only needs up to n+WinLen-1 clock cycles to calculate
the result for n-bit sequences, because the results of Eq. (5)
or (7) are always smaller than 2/n.

IV. EVALUATION

In this section, the proposed DSM-based stochastic divider
is implemented; its performance is evaluated and compared
with the designs discussed previously (including the conven-
tional divider, BS-TMR-based divider, and DS-TMR-based
divider).

A. Convergence and Accuracy

Figure 6 shows the convergence and computation accuracy
of different dividers by considering the dividend sequence y
with p(y) = 0.8 and the divisor sequence x with p(x) = 0.9 as
an example, for the SC resolution with N = 10; the simulation
results (details are presented in section VI) show that a WinLen
of 27 is sufficient to provide a satisfactory accuracy for the
proposed divider, so this value is selected in the evaluation
work in this subsection. As shown in this figure, the proposed
divider starts outputting the quotient SC sequence after WinLen
clock cycles; it converges fast and after 2N +WinLen-1 (1151
in this case) clock cycles, the quotient reaches the target
value and does not significantly vary anymore. The conven-
tional divider requires the largest number (4096) of clock
cycles to generate the quotient sequence; then the BS-TMR-
based and the DS-TMR-based dividers follow as requiring
3072 and 1434 clock cycles, respectively. Note that only
the conventional divider and the proposed divider generate a
stochastic sequence directly, while the other dividers generate
a stochastic probability for the calculated quotient. Thus, they
require an additional 2N (i.e., 1024 in this example) clock
cycles starting from the stabilization phase to generate the
corresponding stochastic sequence when the quotient is used
for any other subsequent computation [17].

In the second experiment, the evaluation of the average case
with N = 10 for 10000 random input pairs is pursued; the

Fig. 6. Quotient estimate by using different stochastic dividers for 0.8/0.9
(the conventional, BS-TMR-based, DS-TMR-based, and the proposed divider
require 4096, 3072, 1434, and 1151 bits respectively to obtain the 1024-bit
quotient sequence).

TABLE I

PERFORMANCE METRICS OF DIFFERENT STOCHASTIC DIVIDERS (N= 10)

mean square error (MSE) is used as a metric to compare the
accuracy of the different dividers. Table I shows the average
number of clock cycles to perform the calculation and the
MSE of the different designs; all current dividers have the
same MSE while the proposed divider achieves the highest
accuracy with the smallest number of clock cycles (a reduction
between 66.8% and 96.9%). This is expected to account for
DSM as employed in the proposed divider design and per
previous discussion.

Next, the comparison of the MSE results for different
dividers when the input dividend and divisor have different
value ranges, is pursued. The results for different stochastic
dividers are plotted in Figure 7; Figure 7 shows that the MSE
is larger when the inputs are near the center of the entire
possible range for all dividers. This is expected because the
fundamental operation of a divider is based on multiplication,
which has a lower computational accuracy for inputs centered
in the possible range (as indicated also in [24]). Moreover, the
proposed design is also shown to achieve better MSE results
than other designs.

In the last experiment, the convergence process and MSE
of the proposed DSM-based divider for SC resolution under
different values of N (from 8 to 12) with 10000 random inputs
pairs is evaluated. The estimated convergence point (ECP) is
defined as the point of the MSE curve starting to approach
a stable value, so it can be considered as the worst accuracy
performance of the divider (i.e., only a slightly better MSE can
be achieved after ECP). As shown in Figure 8, the proposed
divider calculates the quotient with an ECP slightly larger than
2N (the theoretical value discussed in section III.B) for all
cases; this is due to the distribution of LFSR-based stochastic
sequences that cannot be fully uniform (the theoretical analysis
is applicable only to the ideal scenario). In all cases, the
proposed divider is faster and more accurate compared to all
current dividers (the work of [17] shows that the DS-TMR-
based divider, with the best computation performance among
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Fig. 7. MSE of different dividers for inputs in different value ranges: (a) the conventional divider; (b) the BS-TMR-based divider; (c) the DS-TMR-based
divider; (d) the proposed DSM-based divider.

Fig. 8. Convergence of the proposed divider (with WinLen = 7) at different
values of N.

TABLE II

SYNTHESIS RESULTS OF DIFFERENT DIVIDERS

all these three dividers, cannot achieve a MSE of 10−3 until
N = 9 with more than 211clock cycles, and an MSE of 10−4.1

until N = 12 with more than 214 clock cycles).

B. Hardware Overhead

Different stochastic dividers with N = 10 are implemented
in HDL; the designs are synthesized using the Synopsys
Design Compiler by mapping to an ASAP 7 nm library [25]
for evaluating and comparing the hardware overhead. Note
that the proposed design is fully synthesized, because it is an
entirely digital circuit. The clock frequency of the circuits is
set to 200 MHz as an example, but higher frequencies can also
be selected (this has no impact on the qualitative comparison
results).

Table II shows the synthesis results for different stochas-
tic dividers in terms of circuit area, computation latency
and number of clock cycles for performing an entire cal-
culation, and power dissipation. For comparison purposes,
a Newton-Raphson based single-precision floating-point (FP)
divider [26] (as one of the most used traditional binary/non-SC
dividers) is also implemented and evaluated.

As per Table II, the conventional stochastic divider requires
the smallest area due to its simple circuity, but it has the largest

latency because it requires a significant number of clock cycles
to perform the computation. Among all existing stochastic
divider designs that strive to improve the computation latency
evaluated in Table II, the proposed divider offers the smallest
latency and number of clock cycles (with a reduction of 96.4%
in latency and 96.9% in clocks compared to the conventional
design). Next there is the DS-TMR-based divider (with a
reduction of 95.5% in latency and 90.7% in clocks compared
to the conventional design) and then the BS-TMR-based
divider (with a reduction of 88.1% in latency and 80.1% in
clocks compared to the conventional design). The proposed
divider also requires the smallest hardware area and power
dissipation compared to the BS-TMR-based and DS-TMR-
based dividers (with a reduction of 58.5% and 91.7% in area
and 55% and 90.9% in power, respectively).

Compared to the FP divider, the proposed design achieves
a reduction of 86.1% in area and 82.0% in power dissipation;
this confirms the advantage of SC in terms of hardware
overhead. Even though it requires a longer computation latency
and larger number of clock cycles (which is an inherent
issue of SC), the proposed design also significantly reduces
the difference between the FP divider and existing stochastic
dividers (as shown in Table II) under these metrics.

Overall, the proposed stochastic divider is superior to all SC
designs found in the technical literature because it requires
the lowest hardware overhead in a comprehensive manner,
while providing the highest computation accuracy due to its
DSM-based scheme. These advantages make the proposed
divider very attractive for SC based high-performance imple-
mentation in hardware-constrained applications. Moreover,
this novel design addresses computation accuracy and latency
(compared to the conventional computing scheme) when divi-
sion is required in an SC implementation. The implications of
using the proposed as well as other dividers in an SC-based
NN as a first case study, are presented next.

V. FIRST CASE STUDY: SC-BASED NEURAL NETWORKS

As discussed previously, the advantages in terms of error-
tolerance and hardware computational complexity make sto-
chastic computing (SC) very attractive when implementing
systems that require many arithmetic operations such as Neural
Networks (NNs) [5]. By introducing a limited computational
accuracy loss (in many cases no loss), a SC implementation
has been shown to significantly reduce hardware overhead for
different types of NNs. As one of the most widely used type of
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Fig. 9. A Multi-Layer Perceptron (MLP): (a) the network; (b) one neuron computation with ESL implementation (for the first hidden layer in a hybrid
SC-based MLP design); (c) one neuron computation with standard SC implementation (for the 2nd to the last hidden layers and the output layer in a hybrid
SC-based MLP design).

NNs, the Multi-Layer Perceptron (MLP) offers high flexibility
when learning the mapping from inputs to outputs, so it is
capable of dealing with nearly all types of data. In addition,
an MLP can also be combined with other types of NNs to
provide significant performance improvements in ML [27].
Therefore, the MLP is considered in this paper as case study,
and an existing SC-MLP design [16] is utilized to evaluate the
advantages of the proposed divider.

The block diagram of an MLP is shown in Figure 9 (a); it
consists of one input layer, one or more hidden layers and one
output layer, among which each two neighbor layers are fully
connected. As per Eq. (8), to obtain the value of the nth neuron
in the i + 1th layer (that is a hidden or output layer), every
neuron (m in total) in its previous layer (i.e., the i th layer) is
assigned with a specific weight w and its multiply-accumulate
result is combined with an assigned bias value b of the i th

layer. This is then activated by a function �; for calculating
the output neuron (s), the activation result is utilized to provide
a learning result (e.g., a predicted class if the NN performs a
classification task).

Neuronn,i+1 = �
(∑m

j=1
wi

j,n · Neuron j,i + bi
)

(8)

Recently, an efficient hybrid SC design has been proposed
for implementing MLPs [16]. To incur a limited accuracy
loss in the computation result of an SC-based MLP, extended
stochastic logic (ESL, implementation details are provided
in [16]) is employed in the mapping between the input layer
and the first hidden layer to extend the computational range
at an acceptable hardware overhead. Therefore, as shown in
Figure 9 (b), a stochastic divider is required for converting the
ESL sequences back to standard SC sequences for computation
in subsequent layers (Figure 9 (c)). In such scenario, the
divider accounts for a small fraction of the entire network
if the network is large (because it is only used for one layer);
however, it is in the critical computation path, so the latency
of the divider impacts the latency and power dissipation of
the NN.

Next, the inference process of three pre-trained MLPs
(associated to three widely-used datasets [28]–[30] given in
Table III) is implemented based on the hybrid SC design (with
N = 10) by utilizing different dividers. The classification

TABLE III

MLP FEATURES FOR DIFFERENT DATASETS (TEN CLASSES)

TABLE IV

CLASSIFICATION ACCURACY OF DIFFERENT SC-BASED

MLP IMPLEMENTATIONS

accuracy and hardware overhead of the SC-based MLP is
evaluated and compared next.

A. Classification Accuracy

Table IV reports the classification accuracy of SC-based
MLPs with different dividers; results show that the MLPs
with the conventional divider, BS-TMR-based divider and
DS-TMR-based divider achieve the same classification accu-
racy in all cases, because these three types of dividers have
the same computation accuracy (Table I). As the proposed
divider has a higher accuracy, then the MLP with such divider
achieves the best accuracy (an increase in a range of 0.6% to
1.2% for the considered networks); it also reduces the accuracy
loss between the FP version (in Table III) and the SC version
(e.g., from 1.3% down to 0.5%). The SC circuits are used to
implement the NNs that in this case study they are pre-trained
by FP numbers in Matlab; the accuracy of all SC-based MLPs
can be further improved by using SC to also implement the
training process. This is not further considered in this paper,
because we target the effectiveness of the proposed divider
compared to other stochastic dividers found in the technical
literature.
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TABLE V

SYNTHESIS RESULTS OF DIFFERENT MLP IMPLEMENTATIONS

B. Hardware Overhead

Next, the SC-based MLPs are implemented in HDL and
synthesized (using the same method as for all dividers and
at a 200 MHz clock frequency) for evaluating the hardware
overhead. Table V shows the circuit overhead, the number
of clock cycles (which depends on the divider because it is
the most complex unit on the critical computation path of
the MLP) and a system-level combined metric PALPC (the
product of area, latency, power and number of clock cycles)
for each SC-based MLP design, as well as those for the
traditional FP version for comparison purposes (these results
are from [17]). As per Table V, all SC-based MLPs are shown
to be superior to the FP version in each evaluation metric
except for the SC version with the conventional divider for
the computation latency, and thus the PALPC (because this
divider’s calculation is rather time consuming). Then among
all SC-based MLPs, the NN with the proposed divider achieves
the best result in latency, power and number of clock cycles,
by incurring in an extremely small additional area (up to 0.6%)
and power per cycle (up to 0.1%) compared to the MLP with
a conventional stochastic divider that has the best results in
these two metrics. Hence it has the lowest PALPC for the
entire inference; it is only up to 0.6% of the FP version, 0.1%
of the SC version with the conventional divider, 4.0% of the
SC version with the BS-TMR-based divider, and 15.8% of the
SC version with the DS-TMR-based divider.

Overall, the proposed divider permits an SC-MLPs to have
the best accuracy and hardware efficiency compared to exist-
ing designs. Note that even though the proposed stochastic
divider incurs in larger area and power dissipation than the
conventional stochastic divider (as evaluated in section IV.B),
its impact on the entire area/power of SC-based MLPs is
rather negligible as discussed above. Therefore, the increased
area/power does not limit the applicability of the proposed
design for such implementation in area/power-constrained
platforms; conversely, it makes the SC implementation more
attractive for power-constrained designs due to the signifi-
cantly reduced number of clock cycles (substantially saving
energy consumption for performing a classification task, as an
example).

VI. SECOND CASE STUDY: SOBOL-BASED

STOCHASTIC DIVIDER

The proposed stochastic divider is flexible to be utilized for
other types of SC sequences such as the Sobol-based sequence;
even though this type of sequence offers better performance
for some SC units, it cannot provide a satisfactory accuracy for
some FSM-based units (e.g., a tanh function) [23]), and thus,
it is not acceptable in SC implementation for NN). Therefore,
only the stochastic divider itself using Sobol-based sequences
is discussed in this section to show the effectiveness of the
proposed design for other potential applications in which a
Sobol-based SC implementation is attractive.

Different from an LFSR-based sequence, the Sobol-based
sequence has a unique nature due to its recursive generation
method [22], in which each pseudo-random number is obtained
as per the previous number. This makes the distribution of
Sobol-based random numbers more uniform than the LFSR
version. Therefore, Sobol-based sequences require a shorter
length to achieve a similar accuracy as the LFSR version; as
indicated in [22], [23], a higher computation accuracy can be
finally offered when implementing some basic SC units (e.g.,
the adder, multiplier, and divider). However, as shown in Fig-
ure 10 (a), the Sobol-based stochastic generation gate (SNG)
is more complex than the LFSR version; it consists of an
address generator (used to detect the least significant zeros),
a storage array (that stores many intermediate variables for
Sobol sequence generation), an XOR gate and D flip-flop
(for recursively generating quasi-random numbers), and a
comparator (for SC sequence generation). Therefore, such
SNG incurs in a larger hardware overhead.

The computation accuracy of the proposed divider using
both types of sequences (LFSR and Sobol) is compared
when selecting different lengths for the window. Consider
Figure 11, the MSE of the Sobol version performs better due
to the better distribution property of Sobol-based sequences,
especially when the window length is smaller. Figure 12 shows
the convergence process and the MSE results of the proposed
divider (with WinLen of 7) using Sobol-based sequences
with a different value of N . Compared to the LFSR version
(Figure 8), a higher accuracy (i.e., smaller MSE) is achieved
in all cases as expected, and a faster convergence ECP (a more
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Fig. 10. Sobol-based stochastic computing: (a) a stochastic generator gate;
(b) a stochastic divider of [22] with 2x parallelization.

Fig. 11. MSE at different values of window length when N=10.

Fig. 12. Convergence of the proposed divider (using Sobol-based sequence,
with Winlen of 7) at different values of N.

Fig. 13. ECP deviation of the proposed divider from the theoretical value
when using different types of stochastic sequence.

detailed comparison is given in Figure 13) that better fits the
theoretical analysis provided in section III.B, is obtained.

TABLE VI

COMPARISON OF STOCHASTIC DIVIDERS WHEN USING
SOBOL-BASED SEQUENCE(N=10)

Since the Sobol-based sequence generation is inherently
parallelizable, a parallel stochastic divider that maintains the
same accuracy but with a faster convergence process compared
to the non-parallelization scheme, has been designed in [22].
As shown in Figure 10 (b), a 2x parallelization configuration
additionally requires a parallel SNG (instead of a standard
one) for generating two parallel sequences, two half adders
for encoding these sequences and three extra XNOR gates for
performing multiplication on different sequences, compared to
the standard divider design (as shown in Figure 2).

Next, the performance of different dividers using Sobol-
based sequences (with N = 10), including the conventional
scheme (i.e., with non-parallelization), the parallel scheme
(with 2x parallelization) of [23], and the proposed DSM-
based design, are evaluated and compared in terms of MSE
and hardware overhead. The results are given in Table VI;
compared to the conventional design, the parallel scheme
keeps the same accuracy, while reducing the number of clock
cycles by half at the cost of a very small additional area and
power. The proposed divider achieves the best value in each
metric; this again is due the DSM-based scheme that enables
a faster convergence and a higher accuracy as discussed previ-
ously. Note that all dividers using Sobol-based sequences offer
better MSE results than LFSR-based sequences due to their
better distribution property of the sequences; therefore, such
sequences seem to have good potential for implementing high-
accuracy SC systems that do not require any FSM-based units.

In addition to LFSR/Sobol-based stochastic sequences, there
are also few other types of sequences like the deterministic
sequences [31], [32]. Such sequences are generated by deter-
ministically arranging the position of “1”s following a specific
rule; then, a completely accurate result can be achieved when
using these sequences to perform arithmetic operations such
as multiplication or addition. Hence, deterministic sequences
are expected to offer a better MSE than LFSR/Sobol-based
sequences for each divider design, because the fundamental
operation of a divider is based on multiplication as introduced
previously. However, such approach requires long sequences
to achieve a complete accuracy and thus, a larger latency
and energy consumption for performing each arithmetic com-
putation. Therefore, the deterministic SC approach tends to
be more attractive for implementing a system that does not
have error resilience and requires an accurate result; for a
system with high performance and that can tolerate small
errors (like ML inference using NNs), its use needs to be
further investigated.

VII. CONCLUSION

In this paper, a fast and accurate stochastic divider has
been proposed. By employing a DSM-based negative feedback
loop to design a novel scheme, the proposed divider requires
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the smallest number of clock cycles to perform a division
calculation compared to all stochastic dividers found in the
technical literature; the convergence and theoretical number
of clock cycles required by the proposed design has been
analyzed. Moreover, since the DSM-based loop enables a
more accurate adjustment on an intermediate result during the
computation process, the proposed divider also offers a higher
computational accuracy.

The DSM-based divider has been then firstly implemented
and evaluated by comparison with LFSR-based sequences (as
the widely used sequence type); the results (e.g., for N = 10)
have shown that compared to an MSE of 10−3.4 achieved by
existing dividers, the proposed divider offers a better result
of 10−3.9 while requiring the smallest number of clock cycles
(i.e., a reduction in a range of 66.8% to 96.9%). Hardware
synthesis results have shown that even though the proposed
divider requires additional area and power compared to the
conventional design (which has the smallest circuit size but is
considerably slower), it is significantly faster and also better
than the other existing dividers in all figures of merit. An SC-
based neural network has also been presented as a case study
to evaluate the advantages of the proposed divider in an
ML application. The evaluation results have shown that the
network with the proposed divider is superior to all other
versions (utilizing with current dividers) in both classification
accuracy and hardware overhead. To show the flexibility of
the proposed design, other types of stochastic sequences like
Sobol have also been considered; it also provides the best
performance by all figures of merit considered compared to
existing Sobol-based dividers.

This paper has exploited analog and/or mixed-signal circuit
structures and designs to realize a purely digital SC unit; this
would likely trigger further research in SC also along this
direction.
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