This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE
Transactions on Emerging Topics in Computing

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING 1

A Technique for Approximate Communication
in Network-on-Chips for Image Classification

Yuechen Chen, Member, IEEE, Shanshan Liu, Member, IEEE, Fabrizio Lombardi, Fellow, IEEE,
and Ahmed Louri, Fellow, IEEE

Abstract— Approximation is an emerging design methodology for reducing power consumption and latency of on-chip
communication in many computing applications. However, existing approximation techniques either achieve modest
improvements in these metrics or require retraining after approximation. Since classifying many images introduces intensive on-
chip communication, reductions in both network latency and power consumption are highly desired. In this paper, we propose an
approximate communication technique (ACT) to improve the efficiency of on-chip communications for image classification
applications. The proposed technique exploits the error-tolerance of the image classification process to reduce power
consumption and latency of on-chip communications, resulting in better overall performance for image classification. This is
achieved by incorporating novel quality control and data approximation mechanisms that reduce the packet size. In particular, the
proposed quality control mechanisms identify the error-resilient variables and automatically adjust the error thresholds of the
variables based on the image classification accuracy. The proposed data approximation mechanisms significantly reduce packet
size when the variables are transmitted. The proposed technique reduces the number of flits in each data packet as well as the
on-chip communication while maintaining an excellent image classification accuracy. Cycle-accurate simulation results show that
ACT achieves 23% in network latency reduction and 24% in dynamic power reduction as compared to existing approximate

communication techniques with less than 0.99% classification accuracy loss.

Index Terms— Image Classification, Network-on-Chips (NoCs), Approximation.

L 4

INTRODUCTION

1

Image classification applications widely use deep convo-
lutional neural networks (CNNs) and are deployed from

cloud to edge computational frameworks for a variety of

scenarios, such as search engines and self-driving cars [1],

[2]. As the complexity of these applications and the resolu-

tion of images continue to increase, conventional homoge-

neous architectures (such as multicore CPU / GPU) are con-
strained due to excessive communication latencies and sig-
nificant power dissipation [3]-[5]. To efficiently process
these applications, heterogeneous architectures have been

proposed with pre-processing and inference cores [3]-[8].

e Pre-processing cores are designed to prepare data by
resizing the raw image and then normalizing the value
for each pixel into a specific range.

e Inference cores are designed to fetch the processed data
and parameters of the CNN model to perform infer-
ence.

Network-on-chips (NoCs) have been widely used to effi-
ciently connect cores, memory interfaces, and caches in
these architectures [9]. Recent research [3], [10] has shown
that with a heterogeneous architecture, data transfer can
account for up to 34% of the execution time and up to 40%
of the overall chip power consumption. Since image classi-
fication applications can tolerate errors in the parameters
and the inputs, approximation techniques have been pro-
posed for reducing data transfer, thus reducing network la-
tency and power consumption [11], [12]. Existing

o Y. Chen and A. Louri are with the George Washington University, Wash-
ington, DC 20052. E-mail: yuechen@gwu.edu, louri@guwu.edu.

o S. Liu and F. Lombardi are with the Northeastern University, Boston, MA
02115. E-mail: ssliu@coe.neu.edu, lombardi@coe.neu.edu

approximation techniques can be categorized as follows:

e Existing approximate communication techniques [13]-
[18] reduce communication latency and power con-
sumption by utilizing packet approximation in NoCs.
However, existing techniques only rely on the relative
error for data approximation. Since relative error toler-
ance is limited for image classification applications,
only few packets can be approximated using existing
approximate communication techniques.

e Existing CNN approximation techniques [19]-[23] re-
duce the size of the model using quantization or prun-
ing. However, these techniques do not specifically tar-
get image classification. Moreover, as quantizing and
pruning the parameters can significantly reduce the
classification accuracy, existing techniques require the
model to be retrained prior to inference. The retraining
process requires substantial time to complete while in-
curring considerable power consumption.

To address the above issues, an approximate communica-
tion technique (ACT) that enhances communication effi-
ciency for image classification is proposed for heterogene-
ous systems; it leverages the error-tolerance of the image
classification application to reduce the transmitted packet
size, thus reducing power consumption and network la-
tency. ACT utilizes two approximate communication
schemes: an approximate communication for the pre-pro-
cessing cores (ACT-P) and an approximate communication
for the inference cores (ACT-I). Each scheme includes qual-
ity control and data approximation mechanisms to lever-
age the error tolerance in multiple steps of the image clas-
sification process. Specifically, the contributions of this pa-
per are as follows.

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

/
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2025 at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Transactions on Emerging Topics in Computing

e The proposed approximate communication technique
(ACT) is utilized in the pre-processing cores (ACT-P)
and the inference cores (ACT-I) to reduce network la-
tency and dynamic power consumption for image clas-
sification applications by leveraging the error tolerance
of the application.

e The ACT is implemented with software-hardware co-
design.

e Performance evaluation results show that compared to
the existing approximate communication techniques,
ACT reduces network latency and dynamic power con-
sumption by 23% and 24%, respectively, with less than
0.99% classification accuracy loss.

This paper is organized as follows. Section 2 presents a
background for the proposed technique; Section 3 outlines
the basic operational principles of the ACT. The implemen-
tation is presented in detail in Section 4, while Section 5
deals with its extensive evaluation. Section 6 concludes this
manuscript.

2 BACKGROUND

Approximation techniques are widely used to enhance the

efficiency of image classification applications and CNNs

[19]-[25]. Existing approximation techniques can be cate-

gorized into two types based on on-chip communication:

e Approximate communication techniques to reduce
power and latency of communication during the execu-
tion of an application

e Approximation techniques for the CNN model to re-
duce the model size prior to the execution

These techniques will be reviewed next as relevant to the

proposed scheme.

2.1 Approximate Communication Techniques

Approximate communication is considered to be an effec-
tive approach to improve network performance when an
application can tolerate errors [13]-[18]. With a reduced ac-
curacy during communication, approximation techniques
significantly reduce network latency and the power con-
sumption for on-chip communication.

Fig. 1 shows an approximate communication NoC [13]-
[18] implemented in a heterogeneous multicore system
[3]-[8] with an L2 shared cache for CNN inference. The
data approximation module in the network interface re-
duces the packet size by truncation or lossy compression
according to the approximation information, which in-
cludes variable error tolerance and type (e.g., integer or
floating-point). Consider a cache miss during a memory
load or store operation by an X86 CPU for image pre-pro-
cessing.

e Miss on load operation:

When a cache miss occurs during a memory load opera-
tion, a read request packet is sent to the memory or the
shared cache through the NoC. The memory or shared
cache uses a read reply packet to send the required data
back to the core. If the memory load can be approximated,
then the read request also carries approximation infor-
mation. Subsequently, the data approximation module at
the memory/shared cache node reduces the size of the
read reply packet accordingly. The approximated read re-
ply packet carries the approximated data and the approx-
imation information to the core. When the approximated

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

A
@
-4
2 cPU inference|
g Core Core
NI L1 | [N L1 | [N L1]
S | pata Data
E Approx Recov
]
5 T
=
X | Packet Packet
g Encoder| |Decoder
2
=l
‘ Packet]

Network Interface (NI)
Packet Data
Encoder Approx

Read Req.
Packet Data —{ Read Req.,|
Figure 1: Heterogeneous multicore architecture with an approximate com-

munication NoC.
100%

Read Rep.
Write Rep.

Packet

)

£ 2 oox
@ =
® G 98%
< ©
X @ 9%
g?_.se%
£ B g5
2 T 95%
Z2Xx
wﬁgA%
& E 93%
o - N O & & N ;MmO L
22 08888837332 2338383588 &
z od bl e} J
< 20000 22 ddd9N o = £ = O
X XXETITLvosoooe o & o e
FRCECECECEA AR SIS i Z22200c0%k9%o0o082yg
2>>>>08 09 Wzzz20T G222 =2LFfr22 >
< zz 8TT $00ssacz=zassEE<
T o S wa rere 9900 g b
O c ¢ cxox =273
£S5 3333 go==es
£ £
w

Figure 2: Network latency reduction by employing the existing approximate
communication technique [18] to different image classification applications.

read reply reaches the core, the data recovery module re-
covers the approximated data to the original length in ac-
cordance with the approximation information.

e Miss on store operation:

When a cache miss occurs during a memory store opera-
tion, the data is incorporated into a write request packet
and sent to the memory or shared cache through the NoC.
The data approximation module reduces the size of the
write request packet according to the approximation infor-
mation if the memory store can be approximated. The ap-
proximated write request packet carries the approximated
data and approximation information to the memory or
shared cache node. When the approximated write request
reaches the memory or shared cache node, the data recov-
ery module recovers the approximated data to the original
length in accordance with the approximation information.
After the memory or shared cache has received the data, a
write reply is sent back to the core to confirm a successful
memory write.

Various data approximation methods [14], [15], [17], [18],
[26] have been proposed to reduce the packet size accord-
ing to the approximation information. However, existing
techniques achieve a limited improvement when CNNs
are utilized for image classification applications because
the parameters of the model and the inputs cannot be ap-
proximated using methods based on the relative error. Fig.
2 shows the network latency reduction normalized to the
network with no approximation (baseline) for the existing
approximate communication framework (ACF) [18]. This
figure indicates that ACF only reduces network latency by
less than 5% when applied to various state-of-the-art

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee0r§/publicationsﬁstandards/publications/rights/indexhtml for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,202

at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Transactions on Emerging Topics in Computing

image classification applications[27]-[38] as executed on
heterogeneous multicore architectures with an NoC.
2.2 CNN Approximation Techniques

Quantization and pruning methods are widely used for
deep CNNs in image classification applications to reduce
communication traffic and computation [21]. For example,
in [23], the size of the deep neuron network is significantly
reduced using quantization, pruning, and Huffman cod-
ing. Existing image classification applications [27]-[38] are
implemented using Pytorch[39] and TensorFlow[40]
frameworks, which support CNN quantization and prun-
ing on generic inference cores (e.g., CPUs, GPUs, CNN Ac-
celerators). However, existing model approximation tech-
niques have two major limitations.

1. They are developed for generic CNN inference. The
classification system performance improvement meth-
ods have not been explored specifically designed for
image classification. Thus, system performance can be
further improved with dedicated optimization tech-
niques.

2. They require the model to be retrained or fine-tuned be-
fore classifying images, because these techniques incur
a significant reduction in classification accuracy.

This paper aims to approximate the image classification
application during the execution process for communica-
tion efficiency enhancement by incurring only a very lim-
ited impact on accuracy.

3 PROPOSED APPROXIMATE COMMUNICATION
TECHNIQUE

The proposed approximate communication technique
(ACT) reduces network latency and power consumption of
on-chip communication in NoCs. This is mainly accom-
plished by reducing the size of each packet and exploiting
the error-tolerant features of image classification applica-
tions. The image classification applications tolerate two
types of errors [19], [20], [41]: the first type is image con-
trast reduction during image pre-processing; the second
type is quantization errors in the fully connected layer dur-
ing model inference. Thus, ACT includes two sets of ap-
proximate communication techniques to leverage two
types of error tolerance.

The approximate communication for image pre-processing
(ACT-P) includes quality control and data approxima-
tion mechanisms.

o The quality control mechanism dynamically adjusts the
image contrast and monitors the accuracy of the appli-
cation to balance it with the communication efficiency.

o The data approximation mechanism for image pre-pro-
cessing reduces the data size by reducing the image
contrast.

2. The approximate communication for model inference (ACT-
I) includes quality control and data approximation
mechanisms.

o The quality control mechanism monitors the values of
the variables when a fully connected layer is pro-
cessed.

o After recording the maximum/minimum values of
the variables by the quality control mechanism, the
data approximation mechanism utilizes data quantization
to reduce data size.

3

o e . e S ——
e & - — - — = i Y
5705 %] : =
g g
< 60%
< ® ® P Py
§ [& <
s 50%
K
G 40%
ks
© 30%

0 -23 -45 -68 -90 -113 -135 -158

Contrast Reduction Level (C)
e AlexNet - .@= - VGG19 ShuffleNet X1.0

e GOOglENEE DenseNet201 = =A = ResNet152

Figure 3: Classification accuracy versus contrast reduction level (C).
Raw Image

Contrast

g

Pre-process

Level (C)
Raw Image

Quality Control

{ £
w
I'e
l's
1 S
1S
12 Inference Method for
1 § Image Pre-
2 rocessin
: = Compare P g
| Bl Results with
wv
| & True Value
1 (&)
& Model
! E Accuracy
ST e

— e = = = -

Figure 4: Proposed quality control mechanism for image pre-processing.

3.1 Approximate Communication for Image Pre-
processing (ACT-P)

Recent research has shown that image classification ap-
plications are resilient to contrast reduction on the raw im-
age prior to inference [19], [41]. In this paper, it is assumed
that the level of contrast C ranges from —255 to infinity.
When C = 0, there is no adjustment to the image, but when
C € (—=255,0), the image contrast is reduced. When C =
—255, all values of the pixels (R, G, B) in an image are 128,
making the image of a solid grey color. Hence, Eq. (1) de-
scribes the relationship between the contrast correction fac-
tor F and the level of contrast C.

259(C+255
= 255E259—C; (1)
As per F above, the contrast reduction for each pixel is per-
formed by Eq. (2), in which the variable P is the value of a
color of a pixel (in a range from 0 to 255), and P’ represents
the corresponding value with contrast reduction.

P’ = round(F(P — 128) + 128))

Fig. 3 shows the classification accuracy for a few widely-
used image classification applications[2] versus the level of
contrast reduction; image classification applications can
tolerate 23 levels of contrast reduction (i.e., C = —23) with
negligible accuracy reduction (0.07% accuracy reduction
on average). Fig. 3 also shows that different image classifi-
cation applications have different accuracy tolerance for
image contrast reduction; for example, for a classification
accuracy loss of up to 1%, AlexNet [28] can tolerate 23 lev-
els of contrast reduction, while VGG19 can tolerate -90 lev-
els. Thus, a quality control mechanism is needed to select
the appropriate contrast reduction level for the different
image classification applications to avoid a significant loss
in classification accuracy.

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

/
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2025 at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Transactions on Emerging Topics in Computing

4

3.1.1 Quality Control

A quality control mechanism for image pre-processing is
utilized to maintain the accuracy of image classification.
Fig. 4 shows the proposed design of the quality control for
image classification. This mechanism adjusts the contrast
level during the testing process. This is the last step prior
to the classification of the images by the application. Test-
ing includes three phases.

1. The raw images in the test data set are processed by the
core. Different from the images that the application pro-
cesses, the data set contains the query data (raw image)
and the true value for each image (label).

2. The model inference is then accomplished by fetching
the processed data and the classification model.

3. Finally, the generated result is processed by the core to
compare it with the true value. The model accuracy is
calculated by comparing the predictions generated by
the model with the true value.

The quality control mechanism utilizes the accuracy calcu-
lated by the core to adjust the image contrast. When con-
sidering the potential accuracy reduction caused by apply-
ing approximate communication for model inference, the
accuracy reduction due to the image contrast reduction is
limited to less than 1%. The proposed quality control
mechanism supports eight contrast reduction levels that
are shown in the left column of Table 1. Thus, the following
novel procedure is proposed to determine the image con-
trast reduction level:

1. During the first phase of the test process, the classifica-
tion accuracy of the image application is calculated
with no image contrast reduction. The classification ac-
curacy is calculated as in Eq. (3).

Number of Correct Classifications (3)

Total number of Classificaitons

The correct classification is defined as the image cate-
gory (e.g., cat, dog, car) with the highest probability (as
predicted by the model); this must be exactly the same
as the expected answer (label).

2. The quality control mechanism gradually reduces the
image contrast levels by choosing a contrast reduction
level according to the left column of Table 1 until there
is more than 1% loss (as threshold) in the classification
accuracy compared to the estimated base accuracy in
the next testing process.

3. The value prior to the last contrast reduction level is
chosen for image classification. For example, if the clas-
sification error exceeds 1% at level -68, the lower con-
secutive level (-45 according to Table 1) is selected for
image classification.

Section 5.5 discusses the impact on classification accuracy

if different accuracy loss thresholds are chosen. During im-

age classification, the true value for each query image is

not available, so the contrast reduction level is fixed and
registered in the network interface prior to the classifica-
tion.

3.1.2 Data Approximation

The data approximation mechanism reduces the amount
of transmitted data for image contrast reduction. The so-
called base-delta approximation mechanism is proposed to
take advantage of the reduced image contrast for data re-
duction. Since the difference in values between pixels in an
image is small, the base-delta compression mechanism can

Classification Accuracy =

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

,_. - Contrast - -
it.mx'[._a it et 8bit | ® ® o [8hit 00""?“7
[—— - I Q)
[X] oo x| —_— X| e ee
I T —128-128F 128-128F
+ LR B + e e e
l I _':_ Contrast 1 /_] Contrast
R ion? Reduction?
= =
- ==
(a) Contrast Reduction Disabled (b) C R : 1

Figure 5: Design of data approximation for image pre-processing.

Table 1: Relationships Between Quality Control Supported Contrast Re-
duction Level (C) and Contrast Correction Factor (F).
Supported Contrast Reduction Contrast Correction Factor (F)

Level (C)

0 1

-23 0.835
-45 0.701
-68 0.581
-90 0.480
-113 0.388
-135 0.309
-158 0.236

significantly reduce the number of bits needed to represent
each pixel. Moreover, the proposed image contrast reduc-
tion process further reduces the difference between pixels,
so the data size can be substantially reduced by only trans-
mitting the difference between pixels. Fig. 5 shows the de-
sign of the proposed base-delta approximation mechanism
for image pre-processing. The data approximation process
consists of two steps.

Step 1: The image contrast reduction operation is acti-
vated with a contrast reduction level.

Step 2: The multipliers and adders then adjust the value
for each pixel based on Eq. (1) and Eq. (2).

To reduce its complexity, ACT-P supports eight levels of
image contrast reduction. Table 1 shows the mapping of
the conversion of the supported contrast reduction level
(C) into the contrast correction factor (F). The first 8-bit data
is chosen as the base; the remaining data is represented as
the distance to the base. Fig. 5 (a) shows the approximation
process when the image contrast reduction is deactivated
(Contrast Reduction Level = 0). The data bypass the con-
trast reduction operation and is compressed with full accu-
racy. Fig. 5 (b) shows the approximation process when the
image contrast reduction is activated.

For example, suppose a packet contains three pixels with
values 128 (10000000), 192 (11000000), and 100 (1100100).
Also, these values can tolerate -68 levels of contrast reduc-
tion. After approximation, the packet only contains 128
(10000000), -38 (1100110), and 6 (110), respectively. After
the compressed data arrives at the destination, the data is
recovered by adding the delta and the base.

3.2 Approximate Communication for Model
Inference (ACT-I)

[22] has shown that the classification accuracy reduction
in image classification applications is negligible after ap-
plying quantization to the parameters and activation of the
fully connected layers (inputs). As floating-point data type
is widely used in image classification applications [27]-[38]

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

/
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,202% at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Transactions on Emerging Topics in Computing

to represent parameters and activation, the quantization
process consists of mapping a floating-point value x €
[a, B] to a b-bitinteger x, € [a,, B,]; this is computed as per
Eq. (4) (where c and d are variables).

Xq = floor(%x —-d)

)

Note that when performing quantization, the floating-
point 0 must be mapped to a b-bit integer 0. Thus, the rela-
tionship between ¢, d and the ranges of x and x, are given

as follows.

{ﬁ=d&+d) 5)

a=c(ay +d)

In Eq. (5), @ and 8 are the minimum and maximum of the
floating-point value, respectively. a, and f, are the mini-
mum and maximum of the integer value (i.e., quantized
floating-point value), respectively. ¢ and d are the two var-
iables that must be solved for the quantization process.
Eq. (6) illustrates the solution for Eq. (5).

B-a
c=—-—
Bq—aq
==

[22] has shown that the accuracy reduction caused by
quantizing the IEEE standard 32-bit floating-point data
into 8-bit integers in fully connected layers is negligible.
This is shown in Fig. 6 for different image classification ap-
plications in which the parameters and inputs of the fully
connected layers are quantized. The quantization process
only reduces the classification accuracy by 0.022% on aver-
age. This observation suggests that data quantization is an
attractive solution to significantly reduce on-chip commu-
nication when the model has fully connected layers.

However, as per Eq. (6), the range of x (i.e., « and 8) must
be considered when performing data quantization. Since
data (i.e., x) exceeding the range is basically clipped (by
truncation) during the quantization process, the range
must be dynamically determined for different data items.
Otherwise, many data items could be clipped, thus nega-
tively impacting the model accuracy. Therefore, a novel
quality control mechanism is developed to estimate the
range of inputs and parameters in the proposed scheme.

Also, once the data range is determined, floating-point
operations (such as multiplication, division, and subtrac-
tion) must be performed to map the data (as per Eqs. (4)
and (6)). These operations are not always acceptable be-
cause they could incur significant communication over-
heads for latency and power consumption. Therefore, the
proposed data approximation mechanism uses a variable i
to quantize data, as described next.

3.2.1 Quality Control

Fig. 7 shows the proposed process of quality control for
model inference. The proposed quality control mechanism
constantly monitors the parameters and inputs of the fully
connected layer. To reduce the complexity of data quanti-
zation, a new variable i is introduced based on the follow-
ing observations.

Observation 1: Quantization maps data from the original
range to another range with different granularity, thus
causing quantization errors. For example, when

5
0.12%
0.10%
@
30.08%
3
a0.06%
© 0.04%
5
il | .
Xo.oo%lllll | ITsl__. 1 P | I
H N WOONO # & cdcd DT OATANNOTCSONON O
o= 23998000 CWNW>NOTDO@dm W
%wwowggﬁ%ﬂﬂﬂﬁﬁggﬂﬂ:ﬁ"-‘-u.cz.t-'UE
39000 R0 z=2=20000%x0800229g
2>>>>00 WMz>z22290%zzsc202r222 3
zz 9T T TP VLW WRZUNRRGEEL
T3 gfiiicccfiglgiagny
EE 8322 Ere=ss
£ <
w n

Figure 6: Quantization of fully connected layer affects classification accuracy.
Inputs Parameters

Quality Control Method
For Model Inference

Model Inference

Results
Figure 7: Quality control mechanism for image classification model infer-
ence.

[s31)][Expo(30:23)[Manti(22:0) | [s@1)]Expo(30:23)[Manti(22:0) | i

@1 ——Y . [e(22:17)
‘A-nn Adder

T

6(22:17)

Mapping Mapping
Logic

¥3(2:0)
[s) [Expo(e:6)] Manti(5:0)

32(31:0) 32(31:0)

5(9) [Expo(8:6)] Manti(5:0)
T we——

To Packet Encoder To Packet Encoder

(a) Data Approximation Disabled (b) Data Approximation Enabled

Figure 8: Hardware design of data approximation for model inference.

quantizing 32-bit floating-point data into 8-bit integers, the
granularity of the data range increases from 1/16777216 to
1/255; in this case, the error originates from the decimal
part.

Observation 2: For an integer, a deviation within (0, 1)
(i.e., adding the integer with a decimal value) is only re-
flected on a few lower mantissa bits in its floating-point
representation, and it has an almost negligible impact on
all upper bits. Moreover, the changed mantissa bits are sep-
arated from the upper bits related to the sign and the inte-
ger part of the data.

Observation 3: The expansion of a floating-point value
by 2! times only changes its exponent bits (where i is a pos-
itive integer). Consider Egs. (7) and (8) that calculate the
value of a 32-bit floating-point data D [43] and the corre-
sponding enlarged value with 2° times respectively; only
the exponent value increases by i, while the sign and man-
tissa remain the same.

D = (—1)sign . gexponent=127 . (1 4+ mantissa) (7)
D - 2i — (_1)sign . 2(exponent+i)—127 . (1 + mantissa) (8)

Therefore, as per the above observations, a conventional
data quantization approach can be replaced by expanding
the original data by 2! times and then rounding it down
(i.e., mapping the floating-point data to an integer).

Thus, when the quality control mechanism receives the
minimum (&) and the maximum (B) values of the weights
and biases, i is calculated based on a and the f using

Eq. 9).

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

/
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,202% at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Transactions on Emerging Topics in Computing

6

Table 2: Mapping Between 8-bit Exponent Patterns and 3-bit Symbols.

Integer Exponent Patten Symbol
0 00000000 000
20 01111111 001
[2!,22) 10000000 010
[22,23) 10000001 011
[23,24) 10000010 100
[24,2%) 10000011 101
[25,2) 10000100 110
[26,27) 10000101 111
i = log2(max(|al,|B1)) ©)

However, the dynamic range of the inputs is not fixed be-
cause the query image is changed after each image classi-
fication. Thus, the inputs of the fully connected layer are
constantly monitored during the image classification to es-
tablish the dynamic range of the input to calculate i.

To reduce the hardware overhead, i is limited to 8 bits,
and the initial i values for the inputs and parameters are
calculated during the image classification application test-
ing and registered in the network interface before pro-
cessing images. Since the increase of the value range leads
to a decrease of i, the quality control mechanism automat-
ically reduces i by 1 when an input value exceeds the dy-
namic range during the classification. Then, the data ap-
proximation mechanism reduces the data size based on i.
3.2.2 Data Approximation

The proposed data approximation mechanism quantizes
data by enlarging the original data by 2’ times and then
rounding it down. Thus, the quantization error is bounded
within a few lower mantissa bits. Only the sign bit, the ex-
ponent bits, and a few upper mantissa bits need to be trans-
mitted because they are separated from the lower bits.
Moreover, to perform the multiplication with 2¢, a binary
sequence of i needs to be added to the exponent part, i.e.,
only a binary addition operation is required, rather than
floating-point arithmetic operations. As the ranges of in-
puts and parameters of the fully connected layers can be
determined by utilizing the quality control mechanism
proposed in the previous section, then the value of i is ad-
justed to guarantee that the quantized data belong to an
integer range with an acceptable granularity (so to provide
a good classification accuracy, such as the 8-bit integer
range [20]).

To further reduce the size of the transmitted data, the ex-
ponent part is compressed by mapping the data patterns
into symbols with a shorter length. Since all integers within
the range of [2/, 2/*1) share the same exponent pattern as
per Eq. (7) (where j =1, 2, ..., 127), then only a few patterns
are used for representing the quantized data that belongs
to a range significantly smaller than the entire floating-
point field. For example, when quantizing data into the 8-
bit integer range, only eight exponent patterns may appear
(i.e., 00000000 for value 0, 01111111 for value 2°, 10000000
for values within [2!, 22), 10000001 for values within [22,
23), etc.). In this case, 3-bit symbols that provide eight dif-
ferent combinations can be used for mapping all possible
exponent patterns (and so transmitted), thus reducing the

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

size for each exponent from 8 to 3 bits.

Next, an example of quantizing 32-bit floating-point val-
ues within [-0.0903250, 0.0882086] (i.e., the range of param-
eters for one fully connected layer of the trained
VGG11[29]) into 8-bit integers is shown as an application
of the proposed mechanism. To perform quantization, the
original data is enlarged by 2° (i.e., i = 10) times because
i = 11 makes the quantized data exceeding the range of [-
127, 127]. Therefore, only 15 bits, including 1 sign bit, 8 ex-
ponent bits, and 6 upper mantissa bits are sufficient for all
quantized data. Then, the exponent part is further com-
pressed by utilizing 3-bit symbols as per the mapping
given in Table 2 because only eight exponent patterns are
used to represent the quantized data. Overall, the data size
is reduced from 32 bits to 10 bits by employing the pro-
posed mechanism, achieving a reduction of 68.75%.

The hardware design for the proposed data approxima-
tion mechanism for data quantization is illustrated in Fig.
8. Once data approximation is enabled, an 8-bit adder is
utilized to perform the binary addition between the origi-
nal exponent and the binary sequence of i obtained by the
quality control logic for quantization (i.e., enlarge the data
by 2! times); then the mapping hardware compresses the
quantized exponent (Table 2) to further reduce the data
size. Finally, the approximated data is sent to the packet
encoder for transmission. Note that once the data arrives
for neuron computation, the compressed exponent is de-
compressed according to Table 2, and a few bits with 0 are
padded to the mantissa to recover the format of the quan-
tized data back into the standard 32-bit floating-point for-
mat for subsequent computation.

4 IMPLEMENTATION OF THE APPROXIMATE
COMMUNICATION TECHNIQUE (ACT)

An architecture based on hardware-software co-design is
proposed in this section to implement ACT for image clas-
sification applications. The proposed implementation in-
cludes a software interface and an architectural design. The
software interface is designed to identify the variables that
need to be monitored or approximated during image clas-
sification. The network interfaces in the heterogeneous ar-
chitecture are augmented with data approximation and
quality control.

4.1 Software Interface for Approximate
Communication

ACT approximates pixels in the images when the pre-
processing cores convert the raw image. Also, ACT quan-
tizes the inputs and parameters when the inference cores
process the fully connected layers. Hence, ACT monitors
and approximates the pixels, inputs, and parameters when
the image classification application is executed on the het-
erogeneous architecture. Two specialized instructions are
developed to identify these variables in the source code
and the on-chip communication. When the application de-
signer programs the pre-processing cores, the variables
(which store the images) are separately annotated in the
application. For the pre-processing cores that are X86
CPUgs, once the program is compiled into X86 instructions,
then the load-and-store of an image pixel (mov dist, src) is
replaced with (amov dist, src) for the network interface to

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

/
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,202% at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Transactions on Emerging Topics in Computing

identify the image pixels that can be approximated. Simi-
larly, the loading process of the parameters and the inputs
for the fully connected layer (Id dist, src) are replaced us-
ing specialized instructions (ald dist, src). During the exe-
cution of an application, these new instructions allow the
network interface to identify these variables in the requests
or replies.

4.2 Architecture Design of ACT

The ACT arguments the network interfaces (NIs) for the
pre-processing cores, model inference cores, shared cache,
and memory controller with specific hardware for approx-
imation and recovery (Fig. 1). Since the approximation
logic needs to handle different data at different nodes, the
approximation and recovery logics are specifically de-
signed according to the functionality of the node, such as
pre-processing or model inference.

4.2.1 Approximate Network Interface (Pre-processing
Cores)

To support the ACT-P, the data approximation logic ap-
proximates image pixels according to the contrast reduc-
tion level. Since images must be processed by the pre-pro-
cessing core, the write requests and read replies carry im-
age pixels and data in these packets can be approximated.

Fig. 9 shows the proposed approximation logic for the
pre-processing core. The approximation logic includes the
data approximation logic and the quality control logic to
adjust the image contrast. The design of the data approxi-
mation logic for a pre-processing core is described in Sec-
tion 3.1.2. For clarity, only the control signal for the quality
control logic is shown in Fig. 9. The quality control logic
monitors the write requests. If the write requests contain
raw images, then the quality control logic instructs the data
approximation logic to approximate the requests according
to the current contrast reduction level. 3 bits are used to
represent the contrast reduction level to support 8 contrast
reduction levels (0 to -158). If the write request cannot be
approximated, the data approximation logic applies base-
delta compression without contrast reduction (level 0).
Then, the quality control logic checks the length of the
write requests. If the length is larger than the original write
request (Approx. Size > Org. Size), the original request is
sent to the packet encoder. Once the memory or shared
cache has received the data, a write reply is sent back to the
core to confirm a successful memory write.

During the image load, the quality control logic attaches
the information of contrast reduction mode (3 bits) to the
read requests. Once the read reply packet arrives at the
core, the data recovery logic recovers the data into its orig-
inal form if the packet is compressed. Otherwise, the data
recovery logic directly sends the read reply to the core. The
data recovery logic for the pre-processing cores decom-
presses the data by adding the delta back to the base.
4.2.2 Approximate Network Interface (Model Inference

Cores)

Since the core directly loads and stores data from/to
memory or shared cache, the read and write requests are
generated by the node and sent to the memory controller
or shared cache. To support ACT-I, the data approximation

Read
Req.
 ——
+| Attach Contrast Level
Cont]
ZOI'ITI dL /If;; Lev.T Approx. Size > IO Pafket
ore and L1 : Org. Size ?
Quality Control Logic >
Cont,|
Lev.
Write Data Approx. Logic for
Regq. Pre-processing Core

Figure 9: Approximaéiorg logic for pre-processing cores.
ea

To Mem/

Shared
Cache?

i

Quality Control Logic

To Packet

Encoder

From
Core and L1

i

Data Approx. Logic
SRR For Model Inference

Figure 10: Approximation logic for model inference cores.

Read

Data Approx. Logic For Model
Rep. - PP g

Inference
Data Approx. Logic For

Pre-processing Core
Cont.

h

From
Memory/
Shared
Cache

1

Image
Pixel?

To Packet
Encoder
-

Lev.

| Quality Control Logic |
To
cPu?| i

e F|
Figure 11: Approximation logic for memory controllers and shared caches.
logic monitors the write requests and read replies to up-
date the dynamic range of the parameters and the inputs
for the fully connected layer.

Fig. 10 shows the proposed approximation logic for the
model inference. The quality control logic monitors all re-
quests and replies to update i for the inputs; it also controls
two demultiplexers and the data approximation logic.
Since the destination of the write request could be another
node for model inference or a memory controller or a
shared cache, i (monitored at a specific node) can be the
dynamic range of a section of the inputs for the fully con-
nected layer. To find the dynamic range of the inputs for
the entire layer, the following procedure is proposed. (1)
The quality control logic attaches i of the inputs to the read
request packet if the destination of the packet is the
memory controller or shared cache. (2) The quality control
logic constantly monitors the i of the write reply packets
from the memory controller or shared cache. If the received
i is smaller than the current i, the value of i for the inputs
in the current node is updated. Therefore, the i in the
memory controller and shared cache node has the dynamic
range of all the inputs when the core loads the data. When
the core stores the result, the i in each node is updated with
the i in the memory controller and shared cache.

As a model inference core needs to fetch images, param-
eters, and inputs, the data recovery logic contains two de-
compression functions. The decompression function for
images is the same function used in the pre-processing
core. The decompression function for the parameters and
inputs recovers the data based on Table 2, and a few bits
(of values 0’s) are padded to the mantissa to recover the
format of the quantized data back into the standard 32-bit
floating-point format for subsequent computation.

Attach i

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

/
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,202% at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Transactions on Emerging Topics in Computing

8

4.2.3 Approximate Network Interface (Memory
Controller and Shared Cache)

Since the memory controller and shared cache handles
requests from both pre-processing and model inference
cores, this interface performs data approximation and re-
covery functions for both tasks. Also, the network interface
carries the quality control logic for both pre-processing and
model inference.

Fig. 11 shows the approximation logic for the memory
controller and shared cache. The approximation logic con-
sists of the data approximation and quality control logic.
The quality control logic monitors the read request packets
for the i value from the node for inputs. If the i value is
smaller than the value stored in the quality control logic,
the stored i is updated. The updated i is attached to the
write replies to update i stored in the network interface at
the node for model inference. The quality control logic also
monitors the read request packets for receiving the contrast
level for the read reply packet approximation. When the
read reply has the data for image pre-processing or model
inference, the corresponding data approximation logic is
activated to approximate the data based on the contrast
level or i. Similar to the quality control logic in the pre-pro-
cessing core, the quality control logic checks the length of
the read reply to the pre-processing core; if the length is
greater than the original read reply after base-delta com-
pression, the original reply is sent to the packet encoder.

Since the traffic contains the pixels, model parameters,
and inputs, the data recovery logic has the recovery func-
tions for both model inference and pre-processing.

5 EVALUATION

In this section, the performance of the approximate com-
munication technique (ACT) is evaluated by using the
SMAUG[3] simulator. The SMAUG simulation model is
modified to support the ACT and heterogeneous architec-
tures for image classification. Table 3 shows the settings for
the SMAUG simulator. The hardware for data approxima-
tion, data recovery, and quality control is implemented in
the network interface. Two heterogeneous architectures
(i.e., CPU/NDLA[3], [4] and ASIC/ACC[5]) are modified
for image classification to show the wide applicability and
effectiveness of the proposed technique. The CPU/NDLA
is based on Simbal4], and the ASIC/ACC is based on
DNPUI5]. The ASIC/ACC system contains seven ASIC
pre-processing cores, an X86 CPU as controller, and seven
CNN processors. Each CNN processor includes an aggre-
gation core and three convolution cores. Thus seven CNN
processors contain seven aggregation cores and twenty-
one convolution cores. All the cores in the two architec-
tures are connected using 6x6 2D mesh NoC. Table 4 shows
the executed image classification applications with their
original classification accuracy[27]-[38](Acc.) and the cor-
responding contrast reduction levels (C).

We evaluate the proposed technique by comparing it with
approximate communication framework (ACF) [18], Ap-
prox-NoC [14], AXBA [17], and the baseline (i.e.,, NoC with
no approximation) from the communication efficiency per-
spective, which includes network latency and dynamic
power consumption.

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING
Table 3: Simulation Environment.

ASIC/ACC

ASIC *7[5]

CPU/NDLA
X86 CPU * 8

Architectures

Pre-Processing Cores

NVIDIA Deep Learning Ac-
celerator(NDLA) * 28 [44]

Model-Inference CNN Processor * 7 [5]

Cores

NoC Parameter Network type: Garnet; Topology: 6 x 6 2D mesh; Data
packet size: 5 Flits; Link width: 128 bits; Routing algorithm:
X-Y routing; Flow Control: Wormhole Switching; Number
of Router Pipeline Stage: 6

32 kB L1 instruction cache; 32 kB L1 data cache; 8-bank

fully shared 16 MB L2 cache

System Parameter

Data Set ImageNet Large Scale Visual Recognition Challenge [2]

Approximation Approximate Communication Framework(ACF) [18];
Approx-NoC [14]; AXxBA [17]; Proposed Technique

Table 4: Image Classification Applications

Techniques

Name Acc. C Name Acc. C
AlexNet[28] 56.55% —45 || ResNet18[32] 69.76% —68
VGG11[29] 69.02% —68 || ResNet34[32] 73.30% —68
VGG13[29] 69.93% —68 || ResNet50[32] 76.15% —68
VGG16[29] 71.59% —68 || ResNetl01[32] 71.37% —45
VGG19[29] 72.38% —90 || ResNetl152[32] 78.31% —45
ShuffleNet 57.7% —45 || Inception V3[34] 81.23% —45
X0.5[30]

ShuffleNet 67.6% —45 || ResNext50[33] 77.8% —68
X1.0[30]

ZFNet[35] 61.6% —68 || ResNext101[33] 78.8% —45
GoogleNet[31] 69.78% —113|| NASNet-4A[36] 74.0% —135
DensNet121[27] 74.65% —135|| AdvProp BO[37] 77.6% —158
DensNet161[27] 76.00% —158|| AdvProp B7[37] 85.2% —158
DensNet169[27] 77.20% —158" EfficientNet BO[38] 76.3% —68
DensNet201[27] 77.65% —135" EfficientNet B7[38] 84.4% —23

5.1 Network Latency

The network latency is defined as the number of clock cy-
cles elapsed between sending a packet at the source node
and the successful delivery of the packet to the destination.
Thus, the network latency includes the time of three proce-
dures: packet generation at the source node, packet trans-
mission in the network, and data extraction at the destina-
tion node. Next, ACT is compared with the baseline, ACF,
Approx-NoC, and AxBA.
e The Heterogeneous system with CPUs for pre-pro-

cessing and NDLA for model inference:

Fig. 12 shows the results for the network latency normal-
ized with respect to the baseline. ACT achieves an average
network latency reduction of 26% and 23% compared to
the baseline and ACF, respectively. This occurs because im-
age classification applications have limited tolerance to the
relative error for a smaller reduction in data size compared
to ACT. The largest network latency reduction achieved by
ACT in the experiment is VGG11 (45% reduction compared
to the baseline), while the smallest network latency im-
provement is obtained for EffcientNet B7 (14% reduction
compared to baseline).

e The Heterogeneous system with ASIC for pre-pro-
cessing and CNN processor for model inference:

Fig. 13 shows the results for the average network latency
normalized with respect to baseline for the heterogeneous
system, which uses ASIC for pre-processing and CNN

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee0r§/publicationsﬁstandards/publications/rights/indexhtml for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,202

at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

2168-6750 (c) 2021 IEEE. Personal use is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Transactions on Emerging Topics in Computing

9
[
$ 90%
2
3
£ 3
5 70%
3
@
2 50%
& & o & & Ul @ & »“’ o & L <«P R
9 N & od g & ¢ o o o P N <°
\#44&4&&»@&&&&** e°e°-°e° e°*°«° &
v §os‘ & & F & L F € ¢ é" S & & & j‘” e"" &8 «3“ «§ ¥
& S FF A
m Approx-NoC BAxXBA BACF OACT
Figure 12: Network latency for CPU/NDLA heterogeneous system (normalized to the baseline).
ESO% +100%
2 £ 8%
5 so0% o 60%
< oA
g70% E £ 0%
2 60% I H 220% I
§50%iﬂddd S o% " -mo - e _em_n b _1_
E000¢ x‘ﬁﬂﬁﬁﬁﬁﬁgﬁﬁﬁou%ﬁ 8% 3 "uwuwxx“lﬁﬁﬁﬁ“’“"’h‘u’ﬁ‘oi’%""‘vw
2>>>>238 ?ﬁﬁﬁﬁggg%%g%gﬁééégﬁ 2 25388 ssNwm22223335222:2:8288¢¢
g SfifiT ezt f: giffieccifglyizgn
_g g a o aao - ‘g E 0o o oo =
“ “ @CPU/NDLA with ACT mASIC/ACC with ACT o @
Figure 13: Network latency for two heterogeneous systems with ACT. The Figure 14: The size of a fully connected layer in the image classification mod-
results of CPU/NDLA and ASIC/ACC with ACTs are normalized with the els.

corresponding baseline systems.

processor for model inference. The ACT achieves an aver-
age network latency reduction of 22% compared to the
baseline. Compared to the heterogeneous system that uses
CPUs for pre-processing, the ACT achieves different im-
provements in network latency when ASICs are used for
pre-processing. This occurs due to the better pre-pro-
cessing data flow. The CPUs’ cache coherence protocol in-
curs in more traffic injected into the network, whereas each
ASIC pre-processing core is designed to directly load im-
ages from shared cache or memory. Thus, more packets can
be approximated for the CPUs, leading to more improve-
ment in network latency than for ASIC.

Compared to the baseline, existing approximate commu-
nication techniques (e.g., Approx-NoC, AXxBA, and ACF)
achieve marginal improvement in network latency (less
than 5% on average), as these techniques only rely on the
relative error to approximate data. As a result, existing
techniques miss the opportunity of data approximation for
image classification applications; however, ACT can
achieve a significant latency reduction due to the dual ap-
proximate communication scheme. Moreover, the pro-
posed technique significantly reduces the network latency
when the model frequently uses the fully connected layer
and can tolerate a significant image contrast loss. For ex-
ample, Fig. 14 shows the size of the fully connected layer
in the image classification models. VGGI11 uses 86% of the
data, which includes inputs and parameters for the fully
connected layers. As Table 4 shows that VGGs can tolerate
-68 levels of contrast reduction (C = —68) with minimal ac-
curacy loss, then the combined effect of two packet approx-
imation mechanisms leads to a high reduction in packet
size when VGG11 is executed on the heterogeneous system
with ACT. Figure 15 shows this effect by plotting the com-
pression rate of the ACT. VGGI11 achieves the highest com-
pression rate (2.42) for the transmitted data packets. This
leads to a significant improvement in network latency;
however, 3% of the data in EfficientNet B7 (EffNet B7 in
Fig. 14) is occupied by the fully connected layer and can
tolerate 23 levels of contrast reduction. Therefore, the pro-
posed technique achieves the smallest network latency

ermitted, but republication/redistribution requires IEEE permission. See http://www.ieee.or

improvement when EfficientNet B7 is executed on the

~
«

GJ
2
§
=2
2
u
'5.
gl no g dEgeERITIIgNOYATIR O
a
» 2 8
© I 8 e 2EENE8EEFRER2EETE883 8
x X X o 9 ¥ L L v o w9 L L oc § 22% %
38828¢ N o888 8z22z223828090209%K 3 g
= >3>3353358 % wzzzz 2228235228 z¢
= $3 $313izliflfvgiiiassEic«
g 2 NN RN ENE RN RN
EE G % & o £ e T <<
gg 0o o oo
& &

Figure 15: The compression rate of the ACT for ASIC/ACC heterogeneous
system.

heterogeneous system.

5.2 Dynamic Power Consumption

Dynamic power includes the power consumed by the
switching activity for all transistors in the NIs and routers.
For all on-chip communication, the results are normalized
with respect to the baseline. Fig. 16 shows the dynamic
power consumption for the CPU/NDLA heterogeneous
system. ACT achieves an average dynamic power reduc-
tion of 29% and 24% compared with the baseline and ACE,
respectively. The power reduction for the rest of the appli-
cations is between 48% and 17% compared to the baseline.
Fig. 17 compares the dynamic power consumption for two
heterogeneous systems with ACT. As ASIC improves data
flow for pre-processing, the proposed technique achieves
the best dynamic power saving for CPU/NDLA compared
to an ASIC/ACC system.

Fig. 18 shows the breakdown of the dynamic power sav-
ing of the ACT to the approximation for the model infer-
ence (ACT-I) and image pre-processing (ACT-P). Since the
EfficientNet B7 is sensitive to contrast reduction, ACT-P
achieves the smallest improvement to dynamic power sav-
ing (16%). However, the AdvProps can tolerate significant
image contrast reduction; thus, ACT-P yields a 24% reduc-
tion in dynamic power. Overall, the average dynamic
power reduction achieved by ACT-P is 21%, while the dy-
namic power saving for ACT-I is determined by the size of
the fully connected layer. ACT-I contributes 30% in dy-
namic power reduction, as AlexNet contains the largest
fully connected layer (96% as per Fig. 14) compared to
other image classification applications. The ACT-I achieves

/
Authorized licensed use fmlted to: The George Washington University. Downloaded on October 24, 2025 at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

publications_standards/publications/rights/index.html for more information.

2168-6750 (c) 2021 IEEE. Personal use is

Transactions on Emerging Topics in Computing

10 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING
g 5 90%
s 2-70%
o
5 o 0 e 1 R H H \ i
e 550% L] Ul
>0
o & & > 5 -s? o? S & & s & 6‘ N & o & o} 4”’ <
& & & & S C\?’ & & e Pod P & & & é & < @ z oQ oQ 0 .{L@
v" < K < < 3&5\ §§ 0&" &SP & && Qf& &5\ & & & J’e Q@,gp \Q&Qn. d,e & e?,,e 2 ss‘ s‘“‘ & «'@ <
& $ m Approx-NoC @AXBA AACF MACT

Figure 16: Dynamic power consumption for CPU/NDLA heterogeneous system (normalized to the baseline).

100%

Figure 17: Dynamic power consumption for two heterogeneous systems. The re-
sults of CPU/NDLA and ASIC/ACC with ACTs are normalized with the corre-

sponding baseline systems.

BB n iR

\J

N
R

-
R

L1

Q

%

Accuracy Loss

L

&

3 c
3 S 90%
o e
a 2 80%
g E
£ 2 70% .
c
b el 1
Z° 5o ol ot ol ol dl W
4 M we auno g 49 92 9T gD o g QR Q
figggcggfEgggggeggasggyanas
T OOO0O0 TKEE5885=222%8855%8838585%
= > >35> 8% % Wz z z z Z2z2 52 92 g g
< =z 2 Q g & 8 2% 2 s g E E
s 333311883353 i3233%¢%
EE s ¢ o o 2 x 2 < <
Eg o o oo -
5 &
B CPU/NDLA with ACT W ASIC/ACC with ACT

2 50%

€

E.QAO%

> 5

a E30%

s 2

220% "

59

= ©O10% I

2

£ 5

59

S 3 0%

20 n o % o H @ 0T O A NN LN QN

€ fEgggsjfffggsgggeasggianss

[Kuwwwxxmzauuuﬂ)‘lllaaﬂ gﬁﬂﬂuu

< k] L g NmEBLILIE=2=22=2080800F8 oo

= 3>>>>38%8 2222235552228z 32 28g¢g
T: giificcEEglygdighn
€ E T & O & g x T <<
_g_g oooo -
o BACT-P OACT-

Figure 18: The breakdown of the dynamic power
CPU/NDLA for ACT-P and ACT-I.

RARNSAN

IH |ﬁ|ﬂ 0. |HIH ﬂ

) o & W g > Y
& 8 F & P & P& &P »@' '@a '»@' & S S & S N
& & & & &) o O 0 0 S O O & & & o‘? z"
L e A A A N R i S e,«‘" & @ A
j,@ § 2 & & & & <& v
B
mCPU/NDLA with ACF [@ASIC/ACC with ACF mCPU/NDLA with ACT [JASIC/ACC with ACT
Figure 19: Accuracy loss for image classification applications.
Q
3 3
g)
& 08 I 4
, | R o O AR N M o
& o Q & & (3 o > e & o) 9) ’
F & & o .\9 .p ool > © &> & ...s > N N <2 O &®
R \\e € & R & & S LA G ¢ &
v & & (,o° gf? of Qf fz & & & & & &S v‘?‘\ ¢ & & &
&& ‘ﬁ L F & F & & v v
o9 mSingle CPU [CPU+Eyeriss ~ mCPU/NDLA with ACT EASIC/ACC with ACT

Figure 20. Speedups in execution time for image classification applications. Single CPU and CPU+Eyeriss are normalized to baseline CPU/NDLA.

the smallest contribution (1%) on EfficientNet B7 due to the
small size of the fully connected layer (3%, as shown in Fig.
14). Overall, the average dynamic power reduction
achieved by ACT-1is 9%. Therefore, ACT achieves a signif-
icant improvement in dynamic power consumption for the
two considered heterogeneous systems due to the effective
packet approximation. The technique can significantly re-
duce packet size using the proposed data approximation
mechanisms. Thus, less activity is observed in the NoC,
leading to significant dynamic power reduction.
5.3 Accuracy Loss

Fig. 19 shows the accuracy loss (i.e., loss of classification
accuracy) for different image classification applications
when ACT and ACF are applied to different heterogeneous
systems. The classification accuracy is measured using the
testing data set of ImageNet [2]. 512 randomly selected im-
ages from the testing data set are used for testing and set-
ting the contrast reduction level. The rest of the images are
used to measure the accuracy loss of the application. The
accuracy loss for all applications is less than 0.99% across
all considered heterogeneous systems for the ACT. How-
ever, ACF has a significantly higher quality loss compared
to ACT. The highest accuracy loss (2.2%) is observed when
NASNet-4A is executed on heterogeneous systems with
ACE. This is mainly due to the low relative error tolerance
of the image classification application. The highest accu-
racy loss (0.85%) is observed when NASNet-4A is executed

Authorized licensed use

with ACT. Moreover, the incurred accuracy loss is con-
sistent across all systems, thus indicating that the proposed
quality control mechanisms are effective in maintaining a
low accuracy loss during approximate communication.
5.4 Overall System Performance Evaluation

The ACT is implemented using Verilog to evaluate the
area, static power, and latency. The entire system is synthe-
sized with 32 nm technology using Synopsys Design Vi-
sion software. The synthesis results show that for each NI,
the proposed hardware implementation incurs in an area
of 4.79 um?. When the supply voltage is 1.0 Volt, the pro-
posed technique incurs a static power overhead of 1.7 mW
for each NI. For a 6x6 2D mesh NoC, the ACT modules oc-
cupy 1.7% of the total NoC area and consume 4.7% of the
total static power consumption. As for the latency, the ap-
proximation process and data recovery for pre-processing
cores require one cycle each. Also, the approximation pro-
cess and data recovery for the mode-inference cores re-
quire one cycle each. As for the overhead of this process, 5
iterations of testing are needed on average for the quality
control mechanism to choose the appropriate contrast re-
duction level. Compared to the overhead of several epochs
of retraining required by CNN approximation techniques
[19]-[23], testing is very efficient. Moreover, testing over-
head can be further reduced for the proposed technique by
using a small test data set or a predetermined contrast re-
duction level.

at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Average NI

reduction on baseline

fermltted but republication/redistribution requires IEEE permission. See http://www.ieee. 0r§/pubhcatlons standards/publications/rights/index.html for more information.
mited to: The George Washington University. Downloaded on October 24,202

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

Transactions on Emerging Topics in Computing

>.80% :__.‘___‘.__.‘___‘____‘_ =%
870% = -— i
é P = = = = P =
;60%
550%
®
,‘.540%
?
830%
=)

20%

1% 2% 3% 4% 5% 6% 7%
Accuracy Loss Threshold

VGG19
DenseNet201

ShuffleNet X1.0
— <A — ResNetl52

e AlexNet - .

eyt GoogleNet

Figure 21: Image classification accuracy versus accuracy loss threshold.

Fig. 20 illustrates the speedup in execution time for image
classification applications when ACT is implemented. The
execution time is defined as the number of clock cycles
elapsed between the CPU receiving the image classifica-
tion request and when the result is computed. A single-
core CPU and CPU+Eyeriss architectures are added to the
comparison to show the need of using heterogeneous ar-
chitecture for image classification. Eyeriss[45] is a
standalone machine-learning accelerator that relies on an
off-chip system interconnect (i.e., PCI Express) to com-
municate with CPUs. The results of single CPU,
CPU+Eyeriss, and CPU/NDLA with ACT are normalized
to the baseline CPU/NDLA. The results of ASIC/ACC
with ACT are normalized to the baseline ASIC/ACC. Due
to the high latency in off-chip communication, CPU+Eyer-
iss is 5% slower on average compared to the baseline
CPU/NDLA heterogeneous system. The improvement in
the execution time for the ACT ranges from 9% to 38% for
the two heterogeneous architectures; especially, the execu-
tion times for VGGI1 are reduced by 38% and 35% for
CPU/NDLA and ASIC/ACC with ACTs, respectively.

Therefore, ACT improves system performance for the
two heterogeneous architectures by implementing the data
approximation mechanism in the on-chip network.

5.5 Sensitivity Study

Fig. 21 shows the accuracy loss of the image classification
applications when the threshold for accuracy loss changes
from 1% to 7%. According to Section 3.2 and Fig. 19, the
type of pre-processing or model-inference core (e.g., NDLA
or CNN Processor) used in a heterogeneous architecture
has no effect on the classification accuracy loss. Thus, the
experiment on the sensitivity analysis is based on the
CPU/NDLA with ACT, as shown in Fig. 21. If the thresh-
old accuracy loss is more than 1%, then the approximation
mechanism incurs more than a 1% accuracy loss for the ap-
plications that are sensitive to image contrast reduction.
Thus, 1% is chosen to be the threshold for the quality con-
trol mechanism for the image pre-processing.

6 CONCLUSION

In this work, we have proposed an approximate commu-
nication technique (ACT) to enhance on-chip communica-
tion efficiency for image classification applications. The
proposed technique leverages the error tolerance of image
classification applications to enhance communication effi-
ciency during the execution of an application. ACT-P and
ACT-I are developed for pre-processing and inference, re-
spectively, thus reducing the transmitted data while

11

maintaining the image classification accuracy. Novel ap-
proximate network interfaces for the pre-processing core,
inference core, memory controller, and shared cache have
been proposed to implement ACT in NoCs. Compared to
existing approximate communication techniques [14], [17],
[18], ACT significantly reduces the transmitted data by ef-
ficiently approximating image classification applications.
Compared to existing CNN approximation techniques
[19]-23], ACT eliminates the retraining process, which is
time and energy-consuming. The detailed evaluation
shows that compared to the state-of-the-art approximate
communication technique (ACF) [18], the proposed ap-
proximate communication technique reduces dynamic
power consumption and network latency by 24% and 23%,
respectively, with less than 0.99% accuracy loss.

ACKNOWLEDGMENT

This research is supported by NSF grants CCF-1953961,
CCF-1812467, CCF-1812495 and CCF-1953980.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, Art. no. 7553, May 2015.

2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in 2009
IEEE Conference on Computer Vision and Pattern Recognition, Jun.
2009, pp. 248-255.

[3] S. (Likun) Xi, Y. Yao, K. Bhardwaj, P. Whatmough, G.-Y. Wei,
and D. Brooks, “SMAUG: End-to-End Full-Stack Simulation
Infrastructure for Deep Learning Workloads,” ACM Trans. Ar-
chit. Code Optim., vol. 17, no. 4, p. 39:1-39:26, Nov. 2020.

[4] Y.S.Shao et al., “Simba: Scaling Deep-Learning Inference with
Multi-Chip-Module-Based Architecture,” in Proceedings of the
52nd MICRO, New York, NY, USA, Oct. 2019, pp. 14-27.

[5] D.Shin, J. Lee, J. Lee, J. Lee, and H.-J. Yoo, “DNPU: An Energy-
Efficient Deep-Learning Processor with Heterogeneous Multi-
Core Architecture,” IEEE Micro, vol. 38, no. 5, pp. 85-93, Sep.
2018.

[6] N.Chandramoorthy et al., “Exploring architectural heteroge-
neity in intelligent vision systems,” in Proceedings of 2015 IEEE
HPCA, Feb. 2015, pp. 1-12.

[7]1 ~ N.Bohm Agostini et al., “Design Space Exploration of Acceler-
ators and End-to-End DNN Evaluation with TFLITE-SOC,” in
2020 IEEE 32nd SBAC-PAD, Sep. 2020, pp. 10-19.

[8] S. Venkataramani ef al., “ScaleDeep: A Scalable Compute Ar-
chitecture for Learning and Evaluating Deep Networks,” in
Proceedings of 201 ISCA, New York, NY, USA, Jun. 2017, pp. 13—
26.

[9] H.Zhengand A. Louri, “Agile: A Learning-enabled Power and

Performance-Efficient Network-on-Chip Design,” IEEE Trans-

actions on Emerging Topics in Computing, pp. 1-1, 2020.

H. Zheng, K. Wang, and A. Louri, “Adapt-NoC: A Flexible Net-

work-on-Chip Design for Heterogeneous Manycore Architec-

tures,” in Proceedings of 2021 IEEE HPCA, Feb. 2021, pp. 723—

735.

[11] H.Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural

[10]

Acceleration for General-Purpose Approximate Programs,” in
Proceedings of 2012 MICRO, Dec. 2012, pp. 449-460.

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

/
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,202% at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE

12

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee0r§/publicationsﬁstandards/publications/rights/indexhtml for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,202

Transactions on Emerging Topics in Computing

S. Mittal, “A Survey of Techniques for Approximate Compu-
ting,” ACM Comput. Surv., vol. 48, no. 4, p. 62:1-62:33, Mar.
2016.

F. Betzel, K. Khatamifard, H. Suresh, D. J. Lilja, J. Sartori, and
U. Karpuzcu, “Approximate Communication: Techniques for
Reducing Communication Bottlenecks in Large-Scale Parallel
Systems,” ACM Comput. Surv., vol. 51, no. 1, p. 1:1-1:32, Jan.
2018.

R. Boyapati,]. Huang, P. Majumder, K. H. Yum, and E. J. Kim,
“APPROX-NoC: A Data Approximation Framework for Net-
work-On-Chip Architectures,” in Proceedings of 2017 ISCA, To-
ronto, ON, Canada, Jun. 2017, pp. 666—-677.

L. Wang, X. Wang, and Y. Wang, “ABDTR: Approximation-
Based Dynamic Traffic Regulation for Networks-on-Chip Sys-
tems,” in Proceedings of 2017 ICCD, Nov. 2017, pp. 153-160.

V. Fernando, A. Franques, S. Abadal, S. Misailovic, and J. Tor-
rellas, “Replica: A Wireless Manycore for Communication-In-
tensive and Approximate Data,” in Proceedings of 2019
ASPLOS, New York, NY, USA, Apr. 2019, pp. 849-863.

J. R. Stevens, A. Ranjan, and A. Raghunathan, “AxBA: an ap-
proximate bus architecture framework,” in Proceedings of 2018
ICCAD, San Diego California, Nov. 2018, pp. 1-8.

Y. Chen and A. Louri, “An Approximate Communication
Framework for Network-on-Chips,” IEEE Transactions on Par-
allel and Distributed Systems, vol. 31, no. 6, pp. 1434-1446, Jun.
2020.

S.F.Dodge and L. J. Karam, “Quality Robust Mixtures of Deep
Neural Networks,” IEEE Transactions on Image Processing, vol.
27, no. 11, pp. 5553-5562, Nov. 2018.

J. Qiu et al., “Going Deeper with Embedded FPGA Platform for
Convolutional Neural Network,” in Proceedings of 2016 FPGA,
New York, NY, USA, Feb. 2016, pp. 26-35.

L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model Compression
and Hardware Acceleration for Neural Networks: A Compre-
hensive Survey,” Proceedings of the IEEE, vol. 108, no. 4, pp.
485-532, Apr. 2020.

T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient
Convolutional Neural Networks Using Energy-Aware Prun-
ing,” 2017, pp. 5687-5695. Accessed: May 27, 2021.

S. Han, H. Mao, and W. J. Dally, “Deep Compression: Com-
pressing Deep Neural Networks with Pruning, Trained Quan-
tization and Huffman Coding,” arXiv:1510.00149 [cs], Feb.
2016.

M. Biasielli, C. Bolchini, L. Cassano, A. Mazzeo, and A. Miele,
“Approximation-based Fault Tolerance in Image Processing
Applications,” IEEE Transactions on Emerging Topics in Compu-
ting, pp. 1-1, 2021.

M. S. Kim, A. A. Del Barrio Garcia, H. Kim, and N. Bagher-
zadeh, “The Effects of Approximate Multiplication on Convo-
lutional Neural Networks,” IEEE Transactions on Emerging Top-
ics in Computing, pp. 1-1, 2021.

S. Xiao, X. Wang, M. Palesi, A. K. Singh, and T. Mak, “ACDC:
An Accuracy- and Congestion-aware Dynamic Traffic Control
Method for Networks-on-Chip,” in 2019 DATE, Mar. 2019, pp.
630-633.

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely Networks,”

Connected Convolutional

[28]

[29]

[30]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING

arXiv:1608.06993 [cs], Jan. 2018.

A. Krizhevsky, “One weird trick for parallelizing convolu-
tional neural networks,” arXiv:1404.5997 [cs], Apr. 2014, Ac-
cessed: Apr. 13, 2021.

K. Simonyan and A. Zisserman, “Very Deep Convolutional
Networks for Large-Scale Image Recognition,” arXiv:1409.1556
[cs], Apr. 2015.

X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An Ex-
tremely Efficient Convolutional Neural Network for Mobile
Devices,” arXiv:1707.01083 [cs], Dec. 2017, Accessed: Aug. 07,
2021.

C. Szegedy et al., “Going deeper with convolutions,” in 2015
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2015, pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” 2016, pp. 770-778.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated Re-
sidual Transformations for Deep Neural Networks,” in 2017
CVPR, Honolulu, HI, Jul. 2017, pp. 5987-5995.

C.Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the Inception Architecture for Computer Vision,”
2016, pp. 2818-2826.

M. D. Zeiler and R. Fergus, “Visualizing and Understanding
Convolutional Networks,” in Computer Vision — ECCV 2014,
vol. 8689, D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Eds.
Cham: Springer International Publishing, 2014, pp. 818-833.
B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning
Transferable Architectures for Scalable Image Recognition,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, Salt Lake City, UT, Jun. 2018, pp. 8697-8710.

C. Xie, M. Tan, B. Gong,]. Wang, A. Yuille, and Q. V. Le, “Ad-
versarial ~ Examples Improve
arXiv:1911.09665 [cs], Apr. 2020.
M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in International Conference
on Machine Learning, May 2019, pp. 6105-6114.

A. Paszke et al., “PyTorch: An Imperative Style, High-Perfor-

Image Recognition,”

mance Deep Learning Library,” Advances in Neural Information
Processing Systems, vol. 32, 2019.

M. Abadi et al., “TensorFlow: A System for Large-Scale Ma-
chine Learning,” 2016, pp. 265-283.

S. Dodge and L. Karam, “Understanding how image quality
affects deep neural networks,” in 2016 18" QoMEX, Jun. 2016,
pp- 1-6.

N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2:
Practical Guidelines for Efficient CNN Architecture Design,”
arXiv:1807.11164 [cs], Jul. 2018.

W. Kahan, “IEEE Standard 754 for Binary Floating-Point Arith-
metic,” p. 30, 1996.

“NVIDIA Deep Learning Accelerator.” http:/ /nvdla.org/ (ac-
cessed Apr. 12, 2021).

Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: a spatial architecture
for energy-efficient dataflow for convolutional neural net-
works,” SIGARCH Comput. Archit. News, vol. 44, no. 3, pp. 367—
379, Jun. 2016.

at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TETC.2022.3162165, IEEE
Transactions on Emerging Topics in Computing

13

Yuechen Chen received his master's de-
gree in Electrical Engineering from the
George Washington University, Washington,
District of Columbia, in 2016. He is currently
pursuing Ph.D. with the Department of Elec-
trical and Computer Engineering at the
George Washington University. His research
interests include approximate computing

and NoCs.

Shanshan Liu received the M.Sc. degree
and Ph.D. degree in Microelectronics and
Solid-State Electronics from Harbin Insti-
tute of Technology, Harbin, China, in 2012
and 2018, respectively. She is currently a
Post-doctoral faculty researcher with the
Department of Electrical and Computer En-
gineering, Northeastern University, Boston,
USA. Her research interests include fault
tolerance design in high performance com-
puter systems, VLSI design, dependable machine learning, stochastic
computing, error correction codes.

Fabrizio Lombardi received the B.Sc. de-
gree (Hons.) in electronic engineering from
the University of Essex, U.K., in 1977, the
master’s degree in microwaves and modern
optics and the Diploma degree in micro-
wave engineering from the Microwave Re-
search Unit, University College London, in
1978, and the Ph.D. degree from the Uni-
versity of London in 1982. He is currently
the International Test Conference (ITC) En-
dowed Chair Professorship with Northeastern University, Boston,
USA. His research interests are bio-inspired and nano manufactur-
ing/computing, VLSI design, testing, and fault/defect tolerance of dig-
ital systems. He is currently the Vice President for Publications of the
IEEE Computer Society, the 2021 President-elect of the IEEE Nano-
technology Council and a member of the IEEE Publication Services
and Products Board.

Ahmed Louri is the David and Marilyn
Karlgaard Endowed Chair Professor of
Electrical and Computer Engineering at the
George Washington University, which he
joined in August 2015. He received the
3 Ph.D. degree in Computer Engineering from
the University of Southern California, Los
? ‘ Angeles, California in 1988. From 1988 to
2015, he was a professor of Electrical and
Computer Engineering at the University of Arizona. From 2010 to
2013, he served as a program director in the National Science Foun-
dation's (NSF) Directorate for Computer and Information Science and
Engineering. His research interests are interconnection networks and
network on chips for multicores, and the use of machine learning tech-
niques for energy-efficient, reliable, high-performance and secure
many-core architectures and accelerators. He was recently selected
to be the recipient of the IEEE Computer Society 2020 Edward J.
McCluskey Technical Achievement Award. He is currently serving as
the Editor-in-Chief of IEEE TRANSACTIONS ON COMPUTERS.

2168-6750 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee0r§/publicationsﬁstandards/publications/rights/index.html for more information.
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:56:50 UTC from IEEE Xplore. Restrictions apply.

