
AdaPrune: An Accelerator-Aware Pruning
Technique for Sustainable CNN Accelerators

Jiajun Li and Ahmed Louri, Fellow, IEEE

Abstract—Convolutional neural network (CNN) accelerators have achieved great success from cloud to edge scenarios. However,

given the trend towards even larger and deeper neural network models, it remains a challenging problem to efficiently process these

CNNs especially on edge devices with limited energy budget. Accordingly, reducing the energy consumption is of paramount

importance for sustainable CNN accelerators. In this paper, we propose AdaPrune, a novel pruning technique that reduces model size

and computation to achieve performance improvement and energy savings for CNN accelerators. Unlike previous pruning techniques

that sacrifice either computational regularity or accuracy, AdaPrune maintains both by customizing CNN pruning for the underlying

accelerators to maximally leverage the sparsity benefits. AdaPrune consists of two techniques: input channel group pruning and output

channel group pruning. By analyzing the weight fetching patterns of sparse CNN accelerators, AdaPrune adaptively switches between

the two techniques to guarantee that the zeros are evenly distributed in each fetching group. In doing so, the pruned network structure

preserves customized computational regularity for the underlying accelerators, thereby boosting the performance and energy

efficiency. We evaluate AdaPrune on three sparse CNN accelerators with different spatial tiling strategies. The experimental results

show that AdaPrune achieves up to 1.6� performance speedup, and 1.5� energy savings compared to unstructured pruning.

Index Terms—Convolutional neural networks, model compression, weight pruning

Ç

1 INTRODUCTION

CONVOLUTIONAL neural networks (CNNs) have achieved
remarkable success in a wide range of applications,

from image recognition [1], [2], [3] to speech processing
[4], [5], [6]. The superior accuracy of CNNs is generally cor-
related with increases in both depth and computational
complexity, which has inspired many customized accelera-
tors [7], [8], [9], [10] for both cloud and edge scenarios.
However, given the trend towards even deeper and larger
models to further yield higher accuracy, it remains a chal-
lenging problem to efficiently process these CNNs on exist-
ing accelerators especially for edge scenarios. Therefore, it
is of paramount importance to reduce the energy consump-
tion of processing CNNs for sustainable CNN accelerators.

Weight pruning is an efficient approach to reduce model
size and computation, which provides the opportunity to
improve performance and energy efficiency for CNN acceler-
ators. Several pruning techniques have shown promising
results in CNN compression [11], [12], [13], [14]. In recent
work [11], weights that are below a small threshold are
pruned to zero, followed by a retraining process to preserve
the original accuracy. Such weights can be removed because
they do not contribute to the final results, thereby significantly
reducing the number of data accesses and computation.

Although these pruning techniques deliver a high com-
pression ratio, we discovered that they face a tough choice
between computational regularity and accuracy, i.e., they
have to compromise either computational regularity or accu-
racy to acquire sparsity. Specifically, if the pruning has no
geometric constraint (unstructured pruning [12]), it inevitably
leads to irregular sparse weight matrices and computation
patterns, thereby requiring extra storage and computation to
encode and decode the sparse format.Moreover, the irregular
computation patterns do not lend themselves to efficient proc-
essing on current accelerators which are customized for fine-
grained thread or data parallelism. Although some sparse
accelerators have been proposed to support sparsity [15], [16],
[17], the performance gain is much lower than the reduction
in computation. For example, SCNN reachesmerely 2.6� per-
formance speedup on AlexNet given 4.5� multiple-accumu-
late (MAC) reduction introduced by sparsity.

To this end, structured pruning is proposed to preserve
computational regularity by placing non-zero weights at pre-
defined locations [12]. This structured sparsity is very benefi-
cial for parallel computation and can be efficiently processed
by conventional accelerators. However, it often induces accu-
racy loss compared to unstructured pruning [14].

To address this challenge, we propose in this paper a new
pruning approach, called AdaPrune, to reach an optimal bal-
ance between computational regularity and accuracy. Ada-
Prune customizes CNN pruning for sparse CNN accelerators
to match the pruned networks to the accelerator dataflow,
therebymaximizing the performance and energy efficiency of
the accelerators. The pruned network preserves accuracy
with the original network and also maintains customized
computational regularity for the underlying accelerators.
AdaPrune consists of two techniques: input channel group
pruning and output channel group pruning. By analyzing the

� The authors are with the Department of Electrical and Computer
Engineering, GeorgeWashingtonUniversity,Washington,DC 20052USA.
E-mail: {lijiajun, louri}@gwu.edu.

Manuscript received 11 Nov. 2020; revised 28 Dec. 2020; accepted 29 Dec.
2020. Date of publication 19 Feb. 2021; date of current version 7 Mar. 2022.
(Corresponding author: Jiajun Li.)
Recommended for acceptance by S. Guo.
Digital Object Identifier no. 10.1109/TSUSC.2021.3060690

IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2022 47

2377-3782 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7208-9345
https://orcid.org/0000-0002-7208-9345
https://orcid.org/0000-0002-7208-9345
https://orcid.org/0000-0002-7208-9345
https://orcid.org/0000-0002-7208-9345
mailto:lijiajun@gwu.edu
mailto:louri@gwu.edu

weight fetching patterns of sparse CNN accelerators, AdaP-
rune adaptively switches between the two techniques to guar-
antee that the zeros are evenly distributed in each fetching
group. In doing so, the pruned network structure preserves
customized computational regularity for the underlying
accelerators, thereby significantly improving the performance
and energy efficiency of the accelerators. Specifically, this
papermakes the following contributions:

� We present a detailed analysis of the performance of
CNN accelerators when running dense and sparse
CNNs, and show that the workload imbalance among
the Processing Elements (PEs) is the major cause of
performance degradation.

� We propose AdaPrune that customizes pruned net-
works for the accelerator at hand. The pruned net-
work preserves accuracy with the original network
and also maintains customized computational regu-
larity for the underlying accelerators, thereby elimi-
nating performance loss of sparse accelerators and
improving the energy efficiency.

� We compare the performance of AdaPrune with
unstructured CNN pruning techniques using sparse
CNN accelerators with different spatial tiling strate-
gies. We replaced the unstructured pruning tech-
nique with the proposed AdaPrune, and found out
that AdaPrune achieves up to 1.6� performance
speedup and 1.5� energy savings compared to
unstructured pruning.

The rest of this paper is organized as follows. Section 2 pro-
vides a brief background on CNN weight pruning and accel-
erators, and presents a detailed analysis of the performance of
these accelerators when running the pruned networks. Sec-
tion 3 presents our new pruning strategy. Section 4 describes
the accelerator platforms to evaluate AdaPrune. Section 5
describes the experimental methodology. Section 6 details the
evaluation of AdaPrune and the comparative studieswith the
state-of-the-art pruning techniques on three representative
sparse CNN accelerators. Section 7 introduces related work
and Section 8 concludes the paper.

2 BACKGROUND AND MOTIVATION

2.1 CNN Basics

CNNs are constructed by stacking multiple computation
layers where each layer contains heavily nested loops. The
parallel loop structures and the regular computation patterns
in CNNs make it easy to design dedicated CNN accelerators.
The computation space for the convolutional layer (CVL)
consists of a loop nest over six dimensions, as shown in
Fig. 1. The core operation is a 2-dimensional sliding-window

convolution convolves of an element filter (R� S) by an ele-
ment input activation plane (W �H) and generates the cor-
responding element output activation plane (ðW � Rþ 1Þ�
ðH � S þ 1Þ). There can be multiple input and output activa-
tions planes in a CVL.We refer hereafter the input and output
activation planes as input/output channels. The parameters
for a CVL is listed in Table 1.

2.2 Dense CNN Accelerators

Because multiply-add operations are associative, all permu-
tations of the six loop variables are legal [18]. Fig. 1b demon-
strates one permutation of the loop nest. Each MAC
operation is formed by a single point in the 6-dimensional
computation space. The loops can be arbitrarily ordered,
partitioned, and parallelized to generate a CNN’s data-
flow [9], which is perhaps the biggest difference between
many previous works on the CNN accelerators.

Fig. 2a depicts the processing of dense CNNs on an accel-
erator consisting of four processing elements (PEs). Note
that in order to make it easy to understand, we use a 2-D
computation space to describe the CNN computations,
which is actually up to the aforementioned six dimensions.
The CNN computation space can be easily partitioned using
loop tiling techniques [18], as shown in Fig. 2a. Each compu-
tational block can then be allocated to the PEs and acceler-
ated in parallel, hence delivering high computational
throughput. However, such dense accelerators can benefit
little from sparsity because they cannot efficiently handle
sparse models. As shown in Fig. 2b, the zero weights are
still delivered to the accelerators and perform computations
which are actually unnecessary. Therefore, all the PEs are
busy in the entire time slots. Some accelerators such as Eye-
riss [9] exploit power gating techniques to reduce the energy
of processing zeros, however, it cannot improve the perfor-
mance. Hence, dense accelerators cannot utilize the sparsity
for increased performance.

2.3 Sparse CNN Accelerators

To this end, it is urgent to process sparsity efficiently intro-
duced by pruning. To exploit sparsity in CNNs, several recent
CNN accelerator architectures have been proposed [15], [16],
[19]. Cnvlutin [19] stores the sparse activations in a com-
pressed format and eliminates the computations related to
zero activations. Cambricon-X [15] skips computations
related to zero weights by storing the sparse weights in com-
pressed format. SCNN [16] eliminates the unnecessary com-
putations related to both zero activations and zero weights
simultaneously by leveraging Cartesian Product as its key
operation. These methods can reap the benefits of sparsity by
enabling the PEs to skip zero computations, thereby achieving
improvements on both performance and energy efficiency.

Fig. 1. Convolutional layer computation and parameters. (a) Layer
parameters. (b) 6-D loop nest.

TABLE 1
Hyper-Parameters in a Convolutional Layer

Parameters Description

R/S Height/width of the filter

W/H Height/width of the activation plane

C/K Number of input/output channels

48 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

However, we observed that they incur performance degrada-
tion due to the irregular and unbalanced sparsity distribution
of the pruned networks.

These accelerators can be modeled by the example
shown in Fig. 2c. Compared to Fig. 2b, the PEs are powered
off when they are idle to save energy. However, since the
workload for each PE is unbalanced, it causes under-utiliza-
tion of computing resources and eventual performance deg-
radation. Specifically, the four PEs carry out 13, 4, 9, 9
multiplications, respectively. However, since the results of
these PEs have to be synchronized to proceed to the compu-
tation of the next stage, PE1, PE2, and PE3 are stalled until
PE0 finishes its workload. This load imbalance among the
PEs inevitably results in PE under-utilization and perfor-
mance degradation. As confirmed by experimental results
shown in Fig. 3, the attainable performance of these sparse
CNN accelerators is significantly dwarfed compared to their
nominal performance. For example, SCNNmerely reaches a
performance speedup of 2.2�, which is far below the com-
putation reduction of 4.2�.

3 ADAPRUNE

3.1 Overview

To address the load-imbalance problem described above, we
propose a new pruning technique called AdaPrune, which
customizes CNN pruning for different accelerators to force
workload balance among the PEs. Unlike unstructured prun-
ing that generated randomly distributed zeros, AdaPrune
guarantees that the number of zero weights are evenly dis-
tributed among the computational workload for each PE. As
illustrated in Fig. 2d, the computational workloads allocated

to the PEs share equal or comparable sparsity so that the PEs
finish their workload almost simultaneously, thereby resolv-
ing the workload imbalance problem and consequently
improving the performance. Although the key idea is
straightforward, it faces three challenges: 1) how to preserve
the accuracy of AdaPrune; 2) how to match the pruned net-
work with accelerators since different accelerators may
adopt different dataflow; and 3) how to evenly partition a
computation space since it has up to six dimensions. We will
address these challenges in this section.

The overview of AdaPrune is shown in Fig. 4. First,
AdaPrune determines the spatial tiling strategy of the accel-
erators. We divide the strategies into three categories: input
channel tiling, output channel tiling, and planar tiling. The
tiling strategy determines the activation and weight fetching
pattern for the PEs. For each tiling strategy, AdaPrune cus-
tomizes the pruned network and forces the remaining non-
zero weights to be evenly distributed among each fetching
group. In doing so, the load imbalance problem in terms of
zero weights is addressed.

3.2 Spatial Tiling Strategies

CNN accelerators usually use an array of PEs to fully lever-
age the data and computation parallelism in CNN computa-
tion. The spatial tiling strategy is employed to allocate the
computational workload across the PEs. Specifically, it par-
titions the workload into different iterations and schedules
the sub-workload to the PEs [16]. For example, parallelizing
in the K dimension in Fig. 1b partitions the CVL by the K
dimension and convert the for loop into multiple loops that

Fig. 2. Evolution of neural network accelerators.

Fig. 3. Performance degradation of sparse accelerators (the speedup is
normalized to a comparable provisioned dense accelerator).

Fig. 4. Overview of AdaPrune and main steps of output channel group
pruning (OCGP).

LI AND LOURI: ADAPRUNE: AN ACCELERATOR-AWARE PRUNING TECHNIQUE FOR SUSTAINABLE CNN ACCELERATORS 49

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

can be processed in parallel by the PEs. Similarly, other
dimensions can also be tiled for parallel computation. Note
that for each PE, the workload can be further spatially and
temporally tiled to fit the storage size and MAC array. We
primarily focus on the spatial tiling for different PEs, as it
directly impacts the load balance for these PEs.

We divide CNN accelerators into three main categories
based on their spatial tiling strategies. Fig. 5 shows the
pseudo-code of the three categories: input channel tiling, out-
put channel tiling, and planar tiling. In input channel tiling, the
input channels (C) are partitioned into smaller Tc channel tiles
that are distributed across the PEs. Each channel tile is
extended fully into the element activation planeW �H, gen-
erating an input-activation volume of Tc �W �H allocated
to each PE. Meanwhile, the weights are also partitioned
accordingly and assigned to each PE, resulting in a weight
volume of Tc �K �R� S for each PE. Afterward, each PE
operates on its computation space formed by the input and
output activations. The computation space for each PE isK �
Tc �W �H �R� S. Similarly, in output channel tiling, the
output channels (K) are partitioned into smaller Tk channel
tiles for the PEs. Each channel tile also extends fully across the
element activation planeW �H, generating an output-activa-
tion volume of Tk �W �H allocated to each PE. The weights
are also partitioned accordingly and assigned to each PE,
resulting in a weight volume of Tk � C �R� S to each PE.
Afterward, each PE operates on its computation space formed
by the input and output activations. In planar tiling, we parti-
tion theW �H element activation plane into smaller element
planar tiles of Tw � Th. Each planar tile is extended fully into
the input- and output-channel dimension, generating an
input-activation volume ofC � Tw � Th and an output-activa-
tion volume ofK � Tw � Th allocated to each PE. The weights
are not partitioned but broadcast to the PEs, resulting in a
weight volume of K � C �R� S to each PE. Table 2

summarizes the three categories of tiling strategies and the
representative accelerators.

3.3 Proposed Pruning Technique

No matter what spatial tiling strategy is used, the sparsity of
the computational subset allocated to each PE varies widely
because previous unstructured pruning results in randomly
distributed zeros. To address this problem, we propose an
accelerator-aware pruning technique, called AdaPrune,
which customizes the pruned networks with amore balanced
distribution of the zeros. It reaps the benefits of a highpruning
rate of unstructured pruning while being free from the load-
imbalance problemwhen performed on accelerators.

In AdaPrune, the weights are pruned within each subset
allocated to the PEs to guarantee that all the subsets have the
same number of non-zero weights. Fig. 6 presents an toy
example of AdaPrune, where the convolutional layer charac-
teristic is: K ¼ 3; C ¼ 3;W ¼ 8;H ¼ 8; R ¼ 3; S ¼ 3. Fig. 6a
uses output channel tiling and uses three PEs (Tk ¼ 1) for par-
allel computation. Previous unstructured pruning schemes
cannot guarantee a balanced zero distribution among the sub-
sets. The density of the three weight groups is 70.4 percent,
55.6 percent, and 40.7 percent respectively, resulting in work-
load imbalance for the three PEs. The early finishing PE2 has
to be idlewhilewaiting for PE0 because thework correspond-
ing to the next layer cannot proceed until all the PEs finish the
allocated output channels.

In contrast, AdaPrune prunes at a more fine-grained gran-
ularity and guarantees that eachweight group has a compara-
ble sparsity, as shown in Fig. 6b. We found the main reason
for the sparsity variance is that previous pruning methods
use a fixed threshold when performing pruning, i.e., the
weights that are below a fixed threshold are pruned to zero.
Therefore, some weight groups show a higher sparsity
because most of the weights in the group are smaller than the
threshold, while other weight groupsmay show a lower spar-
sity because fewer weights in the group are smaller than the
threshold. Based on this observation, instead of using a fixed
threshold for all weights, AdaPrune uses an adaptive thresh-
old for each weight group to guarantee that they show com-
parable sparsity after pruning. The threshold for each filter
group is set so that a fixed number of weights is pruned to
zero. For example, if the target sparsity is 30 percent , the
threshold for each weight group will be set as the 30th-
percentile value of each weight group. Following this rule,
the threshold for weight group 0 in Fig. 6b will be larger than

Fig. 5. Spatial tiling strategies. (a) input channel tiling; (b) output channel tiling; (c) planar tiling.

TABLE 2
Tiling Strategies and Representative Accelerators

Tiling strategies Tiled
dimension

Accelerators

Input channel tiling C Cnvlutin [19]

Output channel
tiling

K Cambricon-X [15]

Planar tiling W, H SCNN [16],
SqueezeFlow [20]

50 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

that of weight group 2 to prune more weights. Because the
weights are grouped by output channels, we call it output
channel group pruning (OCGP). OCGP works layer by layer.
The main steps of OCGP for a given convolutional layer are
shown in Fig. 4. The first step is weight grouping. For a given
layer, we divide all the weights into multiple weight groups
according to the tiling factor Tk. The second step is pruning
each weight group so that the weight groups have the same
sparsity. The sparsity level is set to be comparable with that
in unstructured pruning [11] for each layer. The pruned net-
work then will be retrained to recover the accuracy. We itera-
tively apply the pruning and retraining until the original
accuracy is recovered.

Similarly, for accelerators using input channel tiling, the
weights are grouped and pruned for each input channel, as
shown in Fig. 6c. The rationale is the same and we omit the
details for brevity. In planar tiling, since the weights are
broadcast to the PEs, i.e., every PE is allocated all the
weights of a layer, the density of weights are naturally kept
the same for each PE. Therefore, we apply unstructured
pruning in [11] for accelerators using planar tiling.

4 ACCELERATOR PLATFORM

We test AdaPrune on three different CNN accelerators:
Cambricon-X, SCNN, and SqueezeFlow. The characteristics

of these accelerators are summarized in Table 3. Since the
RTL code of SCNN and Cambricon-X is not open-sourced,
we implement a unified accelerator that supports the data-
flow of the three accelerators. This section introduces the
details of the accelerator platform.

4.1 Overview

Fig. 7 demonstrates the full accelerator architecture for eval-
uating AdaPrune. The accelerator consists of three major
components: a Processing Unit (PU), a Global Buffer (GLB),
and a Controller. The PU contains a PE array connected via
a network-on-chip (NOC). Each PE can operate individually
on its own workload so the accelerator can support parallel
execution of the CVLs. Each PE can exchange data with
neighbor PEs via the NoC. The accelerator provides a four-
level memory hierarchy to maximize data reuse. Specifi-
cally, GLB is used to temporarily store a portion of data to
hide DRAM access latency. The inter-PE connections exploit
the data reuse among PEs and reduce the memory accesses
to GLB. The four-level memory hierarchy significantly
reduces the memory accesses thereby saving energy.

To process a CVL, the input activations and weights are
fetched from the DRAM into the GLB. The Controller desig-
nates the data movement according to the dataflow and
assigns the corresponding activations/weights to the PEs.
Afterward, the PEs operate on their own workload to
achieve high computing parallelism. After the PEs accom-
plish computing, the results are then written back to DRAM
if needed.

Fig. 7 also presents the micro-architecture of the PEs.
Each PE consists of a multiplier array, a PE controller, local
buffers to store input activations and weights, a Data Dis-
patcher (DP), a Coordinate Computation Unit (CCU), and a
Post-Processing Unit (PPU), a scatter network and accumu-
lator buffers. The multiplier array performs the core multi-
ply operations. The accumulation is performed in the
accumulator buffers, while the activation function is per-
formed in the PPU if necessary.

The PE accomplishes its assigned workload as follows.
The assigned activation/weights from the GLB is stored in
its local buffer (SB and NBin). The DP fetches the input acti-
vations and weights from the corresponding buffers to the
multiplier array to perform the multiplication. The multipli-
cation results are then delivered to the Accumulator Buffers

Fig. 6. Example of Output Channel Group Tiling (OCGP) and Input
Channel Group Tiling (ICGP). (a) Unstructured pruning results in unbal-
anced sparsity between weight groups. (b) OCGP individually prunes
weights grouped by output channels to force comparable sparsities in
different weight groups. (c) ICGP individually prunes weights grouped by
input channels to force comparable sparsities in different weight groups.

TABLE 3
Accelerator Platforms Using Different Spatial Tiling Strategies

Architecture SqueezeFlow Cambricon-X SCNN

Spatial tiling
strategy

Planar tiling Output
channel tiling

Planar tiling

Inner spatial
dataflow

Matrix scalar
product

Dot product Cartesian
product

Avoid transfer of
all zeros

No No Yes

Support weight
sparsity

Yes Yes Yes

Support activation
sparsity

No No Yes

LI AND LOURI: ADAPRUNE: AN ACCELERATOR-AWARE PRUNING TECHNIQUE FOR SUSTAINABLE CNN ACCELERATORS 51

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

for accumulation. The coordinates of the multiplication
results are calculated in the CCU. The PE controller deter-
mines the processing order by controlling the order of data
streaming from the local buffers to the multiplier array. In
doing so, the PE can be reconfigured to match the dataflow
of different accelerators.

4.2 Flexible Dataflow

This accelerator can act as Cambricon-X, SqueezeFlow, and
SCNN by configuring the Control Unit and the PE control-
ler. We take SqueezeFlow as an example to illustrate its
working principle. SqueezeFlow is an accelerator that
exploits PlanarTiling-OutputStationary-sparse dataflow
that eliminates computations related to zero weights. Fig. 8
shows the pseudo-code SqueezeFlow’s dataflow for a single
PE. Specifically, step A and B are the loops over the K and
C dimension assigned to the PE. Step C and D block in the
W and H dimension to fit the multiplier array. Then, step E
fetches a scalar of the weights and step F fetches the corre-
sponding index from SB to compute the coordinates. After-
wards, the matrix scalar product is performed (step G) and
the multiplication results are accumulated (stepH).

In SqueezeFlow, the weights are stored in compressed
format in SB. For a single PE, the volume of assigned
weights is Tc�K �R� S, which are encoded to a vector
with V elements. SqueezeFlow cannot exploit activation
sparsity so the input activations with a volume of Tc�W �
H are stored in NBin in dense format. In each computing
cycle, the DP fetches a scalar from the SB and a matrix of

size Tw� Th from NBin to the multiplier array to perform
matrix scalar multiplication. The index of the weight is also
fetched from SB and delivered to CCU to calculate the corre-
sponding coordinates of the multiplication results using
Xcoord and Ycoord functions. The multiplication results are
then scattered to be accumulated in the Accumulator Buf-
fers according to the coordinated derived from CCU. Since
SqueezeFlow exploits output-stationary computation order
in each PE, we also need to configure the PE controller to
match this feature. When possible, the output activations
are held in the Accumulator Buffers and are not replaced
until finishing its related computations. When the PE com-
pletes its assigned workload, the output data in the Accu-
mulator Buffers are delivered to PPU for the following
processing. The details for SqueezeFlow can refer to the
original paper [20]. Similarly, the accelerator can also be
reconfigured as Cnvlutin, Cambricon-X or SCNN. We omit
the details for brevity.

4.3 Balancing Activation Sparsity

Besides weight sparsity, activation sparsity can also be lev-
eraged for increasing performance. Two sources will cause
activation sparsity: one is the rectified linear unit (ReLU)
function [1] and the other is zero padding. Unlike weight
sparsity that is fixed after pruning, the activation sparsity is
generated on-the-fly and is related to the input data.

The random distribution of activation sparsity also
results in workload imbalance for the PEs. Specifically,
input channel tiling and planar tiling would incur workload
imbalance from activation sparsity while output channel til-
ing would not. As shown in Fig. 6. the PEs share the input
activations when using output channel tiling, so the activa-
tion sparsity imbalance would not cause workload imbal-
ance for the PEs. However, when using input channel tiling,
some PEs will be allocated input activations with a high
sparsity so they will finish their workload earlier, causing
workload imbalance. Accelerators using planar tiling will
also incur the similar problem.

We adopt flexible tiling factors in our dataflow to address
the workload imbalance from activation sparsity. We use
planar tiling as an example to illustrate its working prin-
ciple. In planar tiling, each PE is assigned with an input
activation volume of C � Tw � Th. As shown in Fig. 9, the
sparsity of input activations is vastly different. To make
the effective computations in each tile comparable, the
size of the tiles does not necessarily keep the same. For
example, the work size can be Tk1 � Tc1 � Tw1 � Th1 � Ts1 �
Tr1 for PE1, Tk2 � Tc2 � Tw2 � Th2 � Ts2 � Tr2 for PE2, where

Fig. 7. Full accelerator architecture for evaluating AdaPrune.

Fig. 8. Dataflow of SqueezeFlow, single-PE loop nest.

52 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

Tk1 6¼ Tk2; Tc1 6¼ Tc2, etc. It is hard to make all six dimensions
variable because it will generate a huge exploration space.
More variables indicate a larger exploration space. Alterna-
tively, we can keep some tiling factors fixed while others are
variable. We found that choosing Th to be variable is enough
to keep work balance. Then, PEi will be allocated task
size of Thi � C �W �H � S �R. If Thi is carefully deter-
mined, the zero activations will be balanced. The Task Dis-
tributor is responsible for the flexible workload dispatch. It
monitors the sparsity of input activations and determines
Thi to ensure that the PEs are allocated with a comparable
workload.

5 EXPERIMENTAL METHODOLOGY

5.1 Architectural Configurations

We use the accelerator introduced in Section 4 to evaluate
the proposed pruning technique. Table 4 lists the key design
parameters of the accelerator, which employs a PU com-
posed of a 4� 4 array of PEs. The global buffer size is 4 MB.
In each PE, NBin and SB SRAM size are both 84 KB. We use
16-bit fixed-point arithmetic units which are widely used in
CNN accelerators [7]. The detailed configuration is summa-
rized in Table 4.

5.2 Baselines

We compare AdaPrune with both unstructured (Deep com-
pression) and structured pruning methods, including Soft
Filter Pruning [21], Network Slimming [22], Discrimination-
aware Pruning [23], Low-cost Collaborative Layers [24], Fea-
ture Boosting& Suppression [25], CGNet [26], and AAP [27].
Soft Filter Pruning [21] is a channel pruning technique that
enables the pruned filters to be updated when training the
model after pruning. Network Slimming [22] automatically
identify the channels and pruned them during training. Dis-
crimination-aware pruning [23] uses greedy algorithms to
select the channels to be pruned. Low-cost Collaborative
Layers [24] is used to equip the original convolutional layer to
be more discriminative. Feature Boosting & Suppression
is a dynamic channel pruning technique that predicatively
amplifies salient convolutional channels and prunes them.

CGNet [26] is a dynamic, fine-grained channel pruning
scheme that identifies unimportant regions in the features
and skip them for computational savings. AAP [27] is an
accelerator-aware pruning scheme that considers the width of
the activation buffer and the number of multipliers so that the
same number ofweights remain for eachweight group.

Notably, some compression methods also leverage
weight quantization [11], which reduces the number of bits
to represent a weight to further reduce model size. Since
quantization does not reduce the number of multiplications,
we do not consider quantization in this paper. We imple-
mented AdaPrune, Unstructured Pruning and AAP in the
PyTorch framework to obtain the accuracy and weight den-
sity numbers. For other pruning methods, we use the num-
bers from the original papers. We run these models on the
accelerator to evaluate how the pruning schemes improve
performance and energy efficiency.

5.3 Benchmarks

We use the CNNs listed in Table 5 as the benchmarks to
evaluate these accelerators, including LeNet5 for MNIST
hand-written digit dataset, Cifar10 quick model [28], Alex-
Net, VGG16, GoogLeNet [29], and ResNet18 [3] for Image-
Net dataset. We primarily focus on the CVLs of these
networks. The CNN models are extracted from Pytorch
after applying the pruning methods.

5.4 Implementation

Algorithm. The pruning and retraining were performed by
Pytorch for the benchmark networks. We added weight
grouping and group pruning stage to the deep compression
algorithm to implement AdaPrune. The detailed implemen-
tation can refer to [11]. The batch size is 256, the learning
rate schedule starts at 0.01 and decays by a factor of 5 every
5 epochs. The number of epochs is 30. Note that for
ResNet18 the learning rate starts at 0.1.

Accelerator Simulator. Our simulator is built based on the
open-sourced TimeLoop simulator [30]. The simulator is
combined with DRAMSim2 [31] to evaluate the perfor-
mance. The simulator takes the weights and activations
extracted from Pytorch as input and processes one layer at a
time. It simulates the dataflow, the memory hierarchy, and
the PE configurations and collects the counts of arithmetic
operations and memory accesses of different levels. The
simulator estimates the compute time-based on the number
of arithmetic operations, while DRAMSim2 estimates the
memory access latency. Then the results are combined to

Fig. 9. Exploring dynamic tiling factors to avoid workload imbalance in
terms of zero activations.

TABLE 4
Accelerator Configuration

PE Parameter Value Accelerator
Parameters

Value

Data width 16 bits #PEs 16
NBin 84 KB #Multipliers 1,344 KB
SB 84 KB NBin data 1,344 KB
Multiplier array 4� 4 Global buffer 4 MB
Accumulator banks 16
Accumulator bank
entries

32

LI AND LOURI: ADAPRUNE: AN ACCELERATOR-AWARE PRUNING TECHNIQUE FOR SUSTAINABLE CNN ACCELERATORS 53

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

obtain overall execution time. Meanwhile, these statistical
data are also used to build an energy model to estimate the
energy consumption of the accelerator. We use the energy
numbers in [32] to estimate the energy of arithmetic units
and memory accesses, while SRAM energy is estimated by
CACTI 6.0 [33]. We simulate three accelerators mentioned
in Section 4: SqueezeFlow, Cambricon-X, and SCNN. As the
original SCNN accelerator uses planar tiling, we also simu-
lator the SCNN accelerator with different spatial tiling strat-
egies, namely SCNN-I for input channel tiling, SCNN-O for
output channel tiling, for a thorough evaluation.

CAD Tools. We implement the accelerator platform in
Synopsys design flow on TSMC 65 nm technology: simulat-
ing with Synopsys Verilog Compile Simulator (VCS), syn-
thesizing with Synopsys Design Compiler (DC), analyzing
power with Synopsys PrimeTime (PT), and placing them
with Synopsys IC Compiler (ICC).

6 EXPERIMENTAL RESULTS

In this section, we first evaluate the accuracy and FLOP
reduction of AdaPrune and the baseline pruning methods.
We then evaluate the area, power, and speedup when we
run the original dense networks, the pruned networks using
unstructured pruning (Deep Compression) and AdaPrune
on the sparse accelerators.

6.1 Pruning results

Table 5 lists the weight density and accuracy results of the
pruning methods. In input/output channel group pruning,

the channel group is set as Tc ¼ 4, Tk ¼ 4, respectively. Since
AAP has the flexibility to tailor the number of weight to be
pruned, we set the parameters so that AAP share compara-
ble sparsity with our pruning method. As shown in the
table, AdaPrune can basically preserve the original accuracy
for all the networks. Moreover, AdaPrune achieves a com-
parable pruning ratio compared to deep compression,
which demonstrates that AdaPrune is as effective as
unstructured pruning on the algorithmic side. The struc-
tured pruning methods usually show higher accuracy loss
compared with AdaPrune. For example, CGNet even incurs
14.3 percent top-1 accuracy loss for AlexNet.

In Fig. 10, we show the trade-off between top-5 accuracy
and pruning rate on AlexNet. The accuracy of both methods
begins to drop drastically when the pruning rate is below a
certain number. The accuracy of ICGP and OCGP remains

TABLE 5
Comparison of Accuracy and Weight Density of the Pruning Methods for ImageNet

ySince different work have different baseline accuracies, the accuracy change numbers are derived from the orignal papers.

Fig. 10. Accuracy versus pruning rate of AlexNet under different pruning
methods.

54 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

consistently comparable with unstructured pruning, which
reveals that AdaPrune has a good capability of preserving
accuracy.

In Fig. 11, we show the test performance for LeNet-5 and
AlexNet using different pruning methods on every iteration.
For both networks, unstructured pruning slightly edges out as
the best performing. Specifically, unstructured pruning
achieves a mean accuracy of 99:26� 0:04% for LeNet-5, and a
mean Top-5 accuracy of 80:30� 0:05% for AlexNet. Although
the convergence speed of ICGP and OCGP is slightly lower
than unstructured pruning, the final accuracy of these two
pruning methods is about the same with unstructured prun-
ing. ICGP achieves a mean accuracy of 99:23� 0:03%, 80:17�
0:04% for LetNet-5 and AlexNet, respectively, while OCGP
achieves a mean accuracy of 99:26� 0:02%, 80:22� 0:03% for
LetNet-5 and AlexNet, respectively. The results again reveal
that AdaPrune preserves accuracywhile considering the accel-
erator constraints.

6.2 Layout Characteristics

Table 6 presents the layout characteristics of the accelerator
platform. The PE consumes an area of 5.53mm2 and power
of 396.33mW , while the Task Distributor only consumes
0.21mm2 and 14.58mW . As the Task Distributor is used to
balance the activation sparsity, the results indicate that this
function only introduces limited overhead.

6.3 Accelerators Using Output Channel Tiling

We first test AdaPrune on the SCNN-O and Cambricon-X
accelerator that use output channel tiling. AdaPrune
chooses OCGP as the pruning method for SCNN-O and
Cambricon-X. Fig. 12a presents the performance speedups
of the original and pruned networks. For all tested networks

running on SCNN-O, OCGP consistently outperforms the
other pruning techniques and achieves a speedup of 5:0�
and 1:6� over original models and unstructured pruning,
respectively. The performance improvement of OCGP
exhibits a wide variation across different networks. Specifi-
cally, OCGP improves the performance by 4.4–6:0� over
the original models, 1.3–1:9� over unstructured pruning,
and 1.2–1:8� over ICGP. OCGP achieves the highest
speedup over unstructured pruning on AlexNet. This is
because AlexNet uses 11� 11 kernel size in the first convo-
lutional layer. In unstructured pruning, we observed that in
this layer the nonzeros in the weight fetching group are eas-
ier to become unbalanced, which results in the severe
performance degradation of SCNN.

In Fig. 12b, we report the energy consumption which has
been normalized to the energy consumption of running the
original models. In the energy evaluation, we do not con-
sider the energy consumed by main memory accesses

Fig. 11. Test accuracy under different pruning methods.

TABLE 6
Area and Power of the Components in the Accelerator Platform

Components Area(mm2) Power(mW)

PE 5.53 396.33
Multiplier Array 0.46 146.54
NBin 1.28 47.26
SB 1.28 28.92
Accumulator Buffer 0.98 46.17
PE Controller 0.16 36.83
Data Dispatcher 0.11 10.22
CCU 0.24 19.48
PPU 0.56 44.76
Crossbar 0.46 16.15

Task Distributor 0.21 14.58

Fig. 12. Relative performance speedups (a) and energy savings (b) of the
original models, unstructured pruning, ICGP, andOCGPon SCNN-O.

LI AND LOURI: ADAPRUNE: AN ACCELERATOR-AWARE PRUNING TECHNIQUE FOR SUSTAINABLE CNN ACCELERATORS 55

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

because it usually dominates the total energy consump-
tion [7]. On average, AdaPrune improves the energy effi-
ciency by 4.5�, 1.5� over the original models and the
models pruned by unstructured pruning, respectively.

For Cambricon-X which uses output channel tiling but
only removes zero-weight related computation, we also
use OCGP to make the sparsity of each weight fetching
group comparable. Fig. 13 presents the performance
speedups and energy savings of the original and pruned
networks. The average speedup of OCGP over the origi-
nal models is 2.6�, which is dwarfed compared to
SCNN-O because Cambricon-X still has to perform com-
putations with zero activations. For all the networks,
OCGP achieves speedups of 1.2�, 1.2�, and energy sav-
ings of 1.1�, 1.2� on average over traditional pruning
and ICGP, respectively,

6.4 Accelerators Using Input Channel Tiling

For SCNN-I that uses input channel tiling, AdaPrune choo-
ses ICGP as the pruning method. Fig. 12 presents the perfor-
mance speedups and energy savings of the original and
pruned networks. For all the networks, ICGP achieves
speedups of 4:7�; 1:5�; 1.4�, and energy savings of 4:2�;
1:5�; 1.4� on average over original models, unstructured
pruning and OCGP, respectively. The result again demon-
strates that AdaPrune created a more efficient pruned net-
work for the sparse accelerators.

6.5 Accelerators Using Planar Tiling

We further test AdaPrune on the SCNN and SqueezeFlow
accelerator that use planar tiling. Figs. 15 and 16 presents
the performance speedups and energy savings of the origi-
nal and pruned networks on the two accelerators.

Unstructured pruning, ICGP and OCGP achieve compara-
ble speedups because planar tiling is free from the workload
imbalance introduced by unbalanced weight sparsity distri-
bution. In this case, AdaPrune chooses unstructured prun-
ing as the pruning method. As mentioned in Section 4.3, we
use flexible tiling factors to balance the activation sparsity.
To evaluate the effect of this method, Fig. 15 also shows the

Fig. 13. Relative performance speedups (a) and energy savings (b) of
the original models, unstructured pruning, ICGP, and OCGP on Cambri-
con-X.

Fig. 14. Relative performance speedups (a) and energy savings (b) of
the original models, unstructured pruning, ICGP, and OCGP on SCNN-I.

Fig. 15. Relative performance speedups (a) and energy savings (b) of
the original models, unstructured pruning, ICGP and OCGP on SCNN.
We also show the speedup of the orginal SCNN accelerator to evaluate
the impact of activation sparsity.

56 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

performance and energy consumption of the original SCNN
accelerator, denoted as SCNN-baseline. The results show
that this technique improves performance by 1.18� and
saves energy by a factor of 1.1� averaged on the six
networks. Notably, planar tiling would cause intra-PE frag-
mentation problem [16] because each PE must process a
larger working set to fully utilize the MAC units, so we
found that the speedup of planar tiling is dwarfed com-
pared to input/output channel tiling.

From the above evaluations, we observed a strong correla-
tion between performance speedup and energy consumption.
Specifically, higher performance speedup is usually associ-
ated with lower energy consumption. The reason is that the
performance speedup is achieved by reducing the idle states
of the computational units, which also reduces the energy
consumption the computational units.

In summary, The networks pruned by AdaPrune achieve
a better performance than unstructured pruning because
AdaPrune customizes the pruned networks to match the
underlying accelerators.

7 RELATED WORK

Accelerating convolutional neural networks has been
widely and extensively studied in these years. The most
related work to ours is weight pruning, accelerator archi-
tectures supporting dense and/or sparse CNN models
and weight quantization. We will review these works in
this section.

7.1 CNN Weight Pruning

Although modern neural networks have been widely used
in many applications, they are notorious for their intensive
computation and memory accesses. Many efforts have

been devoted to reducing model size and computations.
One of the most effective approaches is weight pruning
that removes the unimportant weights without affecting
the accuracy. The pruning techniques can be classified
into two categories: unstructured pruning and structured
pruning.

Unstructured pruning has no geometric constraints but
prunes as more weights as possible, which leads to more
than 10� data reduction [11] with negligible accuracy loss.
However, the irregular sparsity introduced by unstructured
pruning destroys the regular computation patterns in
CNNs, and is difficult to be efficiently processed accelera-
tors designed for fine-grained parallelism. Although some
sparse accelerators have been proposed to support spar-
sity [15], [16], [17], the performance gain is much lower than
the reduction in computation.

To this end, pruning regularity has become an important
metric because it’s highly related to the practical speedup of
the accelerators [12] have been proposed to maintain the
computational regularity and accelerate the decoding of
sparse matrices, which places non-zero weights at prede-
fined locations. The structured pruning schemes can be
divided into three categories, namely channel-wise, filter-
wise, and shape-wise pruning. In filter-wise pruning, for
example, all the weights in a filter are considered as a group
and are pruned or not together. This geometric constraint
preserves the computational regularity so that the pruned
networks can be efficiently processed by the underlying
hardware. However, it often induces accuracy loss com-
pared to unstructured pruning [14].

7.2 Dense CNN Accelerators

There exist many accelerator architectures for dense neural
networks, with implementations on either FPGAs or
ASICs and optimizations for computation [10], [34], [35],
[36], memory [7], [8], [37], [38], [39], [40], [41], [42], [43],
[44], [45] and data reuse [9], [46], [47]. DianNao [7] focuses
on the memory accesses optimization for large-scale
layers. ShiDianNao [8] is designed for vision processing,
which completely eliminates the DRAM accesses. Zhang
et al. [18] exploits a roof-line model to optimize CNNs on
FPGA accelerators. Suda et al. [48] presents a design space
exploration considering the resource constraints to opti-
mize FPGA accelerators. Eyeriss [9] employs a row station-
ary dataflow to achieve high throughput and energy
efficiency for CNN accelerators. FlexFlow [49] utilize a
flexible and reconfigurable PE array to realize different
dataflow so that it can maximize the utilization for any
given convolutional layer. DNA [50] also focuses on the
inefficiency problem for different layers and supports
reconfigurable computation patterns to match the given
layers. MAERI [51] employs a modular and configurable
design to support different CNN partitioning strategies to
achieve optimal efficiency.

7.3 Sparse CNN Accelerators

Given that weight pruning significantly reduces model size
and computation, many sparse accelerators have been pro-
posed to take advantage of the sparsity benefits. Cambricon-X
[15] and Cnvlutin [19] skip unnecessary computations related

Fig. 16. Relative performance speedups (a) and energy savings (b) of
the original models, unstructured pruning, ICGP and OCGP on
SqueezeFlow.

LI AND LOURI: ADAPRUNE: AN ACCELERATOR-AWARE PRUNING TECHNIQUE FOR SUSTAINABLE CNN ACCELERATORS 57

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

to zeroweights and activations, respectively. SCNN [16] elim-
inates the unnecessary computations related to both zero acti-
vations and weights by employing Cartesian Product as its
inner dataflow. EIE [52] eliminates the zero computations in
fully-connected layers by accelerating sparse matrix-vector
multiplication. UCNN [53] observes the weight repetition in
CNNs and leverages the computational reuse opportunity to
boost accelerator performance. Although these solutions
achieve a performance improvement, we found that they
incur high hardware overhead and performance degradation
because of the unbalance zero distribution.

Regarding the irregularity problem, Mao et al. [54] sys-
tematically evaluate the relationship between sparsity and
accuracy and find that pruning at coarse-grained granular-
ity is more hardware-friendly than at fine-grained granular-
ity. Scalpel [55] customizes DNN pruning for underlying
hardware platforms with different levels of parallelisms,
but the technique is optimized for CPUs or GPUs other
than accelerators. Kang [27] proposes an accelerator-aware
pruning scheme that guarantees the load imbalance inside
a PE, which is complementary to our proposed method.
Cambricon-S [56] employs coarse-grained pruning com-
bined with local quantization to reduce the irregularity of
weights. SparTen [17] employs efficient inner-join and
tackles load-imbalance by software/hardware hybrid app-
roach. Stitch-X [57] stitches sparse weights and input activa-
tions together for parallel execution. However, due to the
intrinsic irregularity, these approaches incur overhead for
sparse matrix representation.

7.4 Weight Quantization

Weight quantization is a technique that uses fewer bits to
represent weight elements to compress the model. Research-
ers have used binary values [58], ternary values [59] so that
both storage and computation can be reduced. Weight quan-
tization is often used cooperatively with weight pruning.
ADMM-NN [60] is a joint framework of weight pruning and
quantization that uses the Alternating Direction Method of
Multipliers to solve non-convex optimization problems. As
we primarily focus on weight pruning in this work, the com-
binationwith weight quantizationwill be left as futurework.

8 CONCLUSION

Motivated by the observation that prior pruning techniques
sacrifice either computational regularity or accuracy, we pro-
pose AdaPrune in this paper to customize CNN pruning for
different sparse accelerators to improve their sustainability.
AdaPrune consists of two techniques: input channel group
pruning and output channel group pruning. By analyzing the
weight fetching patterns of sparse CNN accelerators, AdaP-
rune adaptively switches between the two methods
to guarantee that the zeros are evenly distributed in each
fetching group. In doing so, the pruned network structure
preserves customized computational regularity for the und-
erlying accelerators, thereby significantly improving the per-
formance and energy efficiency of the accelerators. We
compare the performance of AdaPrune with unstructured

CNN pruning techniques using sparse CNN accelerators
with different spatial tiling strategies. The experimental
results show that AdaPrune achieves up to 1.6� performance
speedup and 1.5� energy savings compared to unstructured
pruning.

ACKNOWLEDGMENTS

This work was supported by the US National Science Foun-
dation under Grants CCF-1565273, CCF-1702980, and CCF-
1901165. The authors would like to sincerely thank the
anonymous reviewers for their excellent and constructive
feedback.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in Proc. Neural
Inf. Process. Syst., 2017, pp. 1097–1105.

[2] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-ResNet and the impact of residual connections on
learning,” in Proc. 31st AAAI Conf. Artif. Intell., 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Visi. Pattern Recog-
nit., 2015, pp. 770–778.

[4] O. Abdel-Hamid, A.-R. Mohamed, H. Jiang, L. Deng, G. Penn, and
D. Yu, “Convolutional neural networks for speech recognition,”
IEEE/ACM Trans. Audio Speech Lang. Process., vol. 22, no. 10,
pp. 1533–1545, Oct. 2014.

[5] V. Pratap et al., “Wav2letter++: A fast open-source speech recogni-
tion system,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.,
2018, pp. 6460–6464.

[6] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional net-
works for end-to-end speech recognition,” in Proc. IEEE Int. Conf.
Acoust. Speech Signal Process., 2017, pp. 4845–4849.

[7] T. Chen et al., “DianNao: A small-footprint high-throughput accel-
erator for ubiquitous machine-learning,” Architect. Support Pro-
gram. Lang. Operating Syst., vol. 49, no. 4, pp. 269–284, 2014.

[8] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” ACM SIGARCH Comput. Architecture News, vol. 43,
pp. 92–104, 2015.

[9] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,”
in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Architecture,
2016, pp. 367–379.

[10] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. 44th Annu. Int. Symp. Comput. Architec-
ture, 2017, pp. 1–12.

[11] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and
Huffman coding,” in Proc. Int. Conf. Learn. Representations, 2016.

[12] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep
convolutional neural networks,” ACM J. Emerg. Technol. Comput.
Syst., vol. 13, no. 3, 2017, Art. no. 32.

[13] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,”
2016, arXiv:1611.06440.

[14] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf,
“Pruning filters for efficient convnets,” 2016, arXiv:1608.08710.

[15] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. 49th Annu IEEE/ACM Int. Symp Microarchitec-
ture, 2016, pp. 1–12.

[16] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. 44th Annu. Int. Symp.
Comput. Architecture, 2017, pp. 27–40.

[17] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijayku-
mar, “SparTen: A sparse tensor accelerator for convolutional neu-
ral networks,” in Proc. 52nd Annu IEEE/ACM Int. Symp.
Microarchitecture, 2019, pp. 151–165.

58 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

[18] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based accelerator design for deep convolu-
tional neural networks,” in Proc ACM/SIGDA Int. Symp. Field-Pro-
grammable Gate Arrays, 2015, pp. 161–170.

[19] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural net-
work computing,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Com-
put. Architecture, 2016, pp. 1–13.

[20] J. Li et al., “Squeezeflow: A sparse CNN accelerator exploiting
concise convolution rules,” IEEE Trans. Comput., vol. 68, no. 11,
pp. 1663–1677, Nov. 2019.

[21] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, “Soft filter pruning
for accelerating deep convolutional neural networks,” in Proc.
27th Int. Joint Conf. Artif. Intell., 2018, pp. 2234–2240.

[22] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in
Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 2736–2744.

[23] Z. Zhuang et al., “Discrimination-aware channel pruning for deep
neural networks,” in Proc. Advances Neural Inf. Process. Syst., 2018,
pp. 875–886.

[24] X. Dong, J. Huang, Y. Yang, and S. Yan, “More is less: A more
complicated network with less inference complexity,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 5840–5848.

[25] X. Gao, Y. Zhao, º Dudziak, R. Mullins, and C.-Z. Xu, “Dynamic
channel pruning: Feature boosting and suppression,” 2018, arXiv:
1810.05331.

[26] W. Hua, Y. Zhou, C. De Sa, Z. Zhang, and G. E. Suh, “Boosting the
performance of CNN accelerators with dynamic fine-grained
channel gating,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Micro-
architecture, 2019, pp. 139–150.

[27] H.-J. Kang, “Accelerator-aware pruning for convolutional neural
networks,” IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 7,
pp. 2093–2103, Jul. 2020.

[28] A. Krizhevsky, “CUDA-Convnet: High-performance C++/CUDA
implementation of convolutional neural networks,” 2012.

[29] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comp. Vis. Pattern Recognit., 2014, pp. 1–9.

[30] A. Parashar et al., “Timeloop: A systematic approach to DNN
accelerator evaluation,” in Proc. IEEE Int. Symp. Perform. Anal.
Syst. Softw., 2019, pp. 304–315.

[31] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Architecture
Lett., vol. 10, no. 1, pp. 16–19, Jan.–Jun. 2011.

[32] M. Horowitz, “Energy table for 45nm process,” 2012.
[33] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,

“Cacti 6.0: A tool to understand large caches,” HP Laboratories,
2009.

[34] Y. Shen, M. Ferdman, and P. Milder, “Maximizing CNN accelera-
tor efficiency through resource partitioning,” in Proc. ACM/IEEE
44th Annu. Int. Symp. Comp. Architecture, 2017, pp. 535–547.

[35] A. Li, T. Geng, T. Wang, M. Herbordt, S. L. Song, and K. Barker,
“BSTC: A novel binarized-soft-tensor-core design for accelerating
bit-based approximated neural nets,” in Proc. Int. Conf. High Per-
form. Comput. Netw. Storage Anal., 2019, pp. 1–30.

[36] J. Li et al., “Synergyflow: An elastic accelerator architecture sup-
porting batch processing of large-scale deep neural networks,”
ACM Trans. Des. Autom. Electron. Syst., vol. 24, no. 1, pp. 1–27, 2018.

[37] S. Koppula et al., “EDEN: Enabling energy-efficient, high-perfor-
mance deep neural network inference using approximate
DRAM,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, 2019, pp. 166–181.

[38] L. Pentecost et al., “MaxNVM: Maximizing DNN storage density
and inference efficiency with sparse encoding and error miti-
gation,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchitec-
ture, 2019, pp. 769–781.

[39] X. Wang, J. Yu, C. Augustine, R. Iyer, and R. Das, “Bit prudent in-
cache acceleration of deep convolutional neural networks,” in Proc.
IEEE Int. Symp. High Perform. Comput. Architecture, 2019, pp. 81–93.

[40] H. Jang, J. Kim, J.-E. Jo, J. Lee, and J. Kim, “MnnFast: A fast and
scalable system architecture for memory-augmented neural
networks,” in Proc. 46th Int. Symp. Comput. Architecture, 2019,
pp. 250–263.

[41] Y. Kwon, Y. Lee, and M. Rhu, “TensorDIMM: A practical near-
memory processing architecture for embeddings and tensor oper-
ations in deep learning,” in Proc. 52nd Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2019, pp. 740–753.

[42] J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heteroge-
neous approach,” in Proc. 51st Annu. IEEE/ACM Int. Symp. Micro-
architecture, 2018, pp. 655–668.

[43] B. Feinberg, S. Wang, and E. Ipek, “Making memristive neural
network accelerators reliable,” in Proc. IEEE Int. Symp. High Per-
form. Comput. Architecture, 2018, pp. 52–65.

[44] A. Ankit et al., “PUMA: A programmable ultra-efficient memris-
tor-based accelerator for machine learning inference,” in Proc.
24th Int. Conf. Architectural Support Programm. Lang. Operating
Syst., 2019, pp. 715–731.

[45] J. Li et al., “SmartShuttle: Optimizing off-chip memory accesses for
deep learning accelerators,” in Proc. Des. Autom. Test Europe Conf.
Exhib., 2018, pp. 343–348.

[46] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
CNN accelerators,” in Proc. 49th Annu. IEEE/ACM Int. Symp.
Microarchitecture, 2016, pp. 1–12.

[47] A. Azizimazreah and L. Chen, “Shortcut mining: Exploiting
cross-layer shortcut reuse in DCNN accelerators,” in Proc.
IEEE Int. Symp. High Perform. Comput. Architecture, 2019,
pp. 94–105.

[48] N. Suda et al., “Throughput-optimized openCL-based FPGA
accelerator for large-scale convolutional neural networks,” in
Proc. ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2016,
pp. 16–25.

[49] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexi-
ble dataflow accelerator architecture for convolutional neural
networks,” in Proc. IEEE Int. Symp. High Perform. Comput. Architec-
ture, 2017, pp. 553–564.

[50] F. Tu, S. Yin, P. Ouyang, S. Tang, L. Liu, and S. Wei, “Deep convo-
lutional neural network architecture with reconfigurable compu-
tation patterns,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 8, pp. 2220–2233, Aug. 2017.

[51] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable
interconnects,” in Proc. 23rd Int. Conf. Architectural Support Pro-
gramm Lang. Operating Syst., 2018, pp. 461–475.

[52] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. 43rd Int. Symp. Comput. Architecture,
2016, pp. 243–254.

[53] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. Fletcher,
“UCNN: Exploiting computational reuse in deep neural networks
via weight repetition,” in Proc. ACM/IEEE 45th Annu. Int. Symp.
Comput. Architecture, 2018, pp. 674–687.

[54] H. Mao et al., “Exploring the granularity of sparsity in convolu-
tional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. Workshops, 2017, pp. 1927–1934.

[55] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and
S. Mahlke, “Scalpel: Customizing DNN pruning to the underlying
hardware parallelism,” ACM SIGARCH Comput. Architecture
News, vol. 45, no. 2, pp. 548–560, 2017.

[56] X. Zhou et al., “Cambricon-S: Addressing irregularity in sparse
neural networks through a cooperative software/hardware
approach,” in Proc. 51st Annu. IEEE/ACM Int. Symp. Microarchitec-
ture., 2018, pp. 15–28.

[57] C.-E. Lee et al., “Stitch-X: An accelerator architecture for exploiting
unstructured sparsity in deep neural networks,” in Proc. Syst.
Mach. Learn. Found. Conf., 2018.

[58] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-
Net: Imagenet classification using binary convolutional neural
networks,” in Proc. Eur. Conf. Comput. Vis., 2016, pp. 525–542.

[59] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” 2016,
arXiv:1605.04711.

[60] A. Ren et al., “ADMM-NN: An algorithm-hardware co-design
framework of DNNs using alternating direction methods of
multipliers,” in Proc. 24th Int. Conf. Architectural Support
Program. Lang. Operating Syst., 2018, pp. 925–938.

LI AND LOURI: ADAPRUNE: AN ACCELERATOR-AWARE PRUNING TECHNIQUE FOR SUSTAINABLE CNN ACCELERATORS 59

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

Jiajun Li received the BE degree from the
Department of Automation, Tsinghua University,
Beijing, China, in 2013, and the PhD degree from
the Institute of Computing Technology, Chinese
Academy of Sciences, China, in 2019. He is cur-
rently a postdoc researcher at the Department of
Electrical and Computer Engineering, George
Washington University. His current research inter-
ests include machine learning and heteroge-
neous computer architecture.

Ahmed Louri (Fellow, IEEE) received the PhD
degree in computer engineering from theUniversity
of Southern California, Los Angeles, California, in
1988. He is currently the David and Marilyn Karl-
gaard Endowed chair professor of electrical and
computer engineering at George Washington Uni-
versity, which he joined in August 2015. He is also
the director of the High Performance Computing
Architectures and Technologies Laboratory. From
1988 to 2015, he was a professor of electrical and
computer engineering with the University of Ari-

zona, and during that time, he served six years (2000 to 2006) as the chair
of the Computer Engineering Program. From 2010 to 2013, He served as a
program director with the National Science Foundation’s (NSF) Directorate
for Computer and Information Science and Engineering. He directed the
core computer architecture program and was on the management team of
several cross-cutting programs. He conducts research in the broad area of
computer architecture and parallel computing, with emphasis on intercon-
nection networks, optical interconnects for scalable parallel computing sys-
tems, reconfigurable computing systems, and power-efficient and reliable
Network-on-Chips (NoCs) for multicore architectures. Recently he has
been concentrating on energy-efficient, reliable, and high-performance
many-core architectures, accelerator-rich reconfigurable heterogeneous
architectures, machine learning techniques for efficient computing, mem-
ory, and interconnect systems, emerging interconnect technologies (pho-
tonic, wireless, RF, hybrid) for NoCs, future parallel computing models and
architectures (including convolutional neural networks, deep neural net-
works, and approximate computing), and cloud-computing and data cen-
ters. He is the recipient of the 2020 IEEE Computer Society Edward J.
McCluskey Technical Achievement Award for pioneering contributions to
the solution of on-chip and off-chip communication problems for parallel
computing and manycore architectures. He is currently the editor-in-chief
of the IEEE Transactions on Computers. For more information, please visit
https://hpcat.seas.gwu.edu/Director.html

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

60 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:57:35 UTC from IEEE Xplore. Restrictions apply.

https://hpcat.seas.gwu.edu/Director.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

