
Adapt-NoC: A Flexible Network-on-Chip Design
for Heterogeneous Manycore Architectures

Hao Zheng, Ke Wang, and Ahmed Louri
Department of Electrical and Computer Engineering, George Washington University, Washington, D.C. 20052

Email: {haozheng, cory, louri}@gwu.edu

Abstract—The increased computational capability in heteroge-
neous manycore architectures facilitates the concurrent execution
of many applications. This requires, among other things, a
flexible, high-performance, and energy-efficient communication
fabric capable of handling a variety of traffic patterns needed
for running multiple applications at the same time. Such stringent
requirements are posing a major challenge for current Network-
on-Chips (NoCs) design. In this paper, we propose Adapt-
NoC, a flexible NoC architecture, along with a reinforcement
learning (RL)-based control policy, that can provide efficient
communication support for concurrent application execution.
Adapt-NoC can dynamically allocate several disjoint regions of
the NoC, called subNoCs, with different sizes and locations for
the concurrently running applications. Each of the dynamically-
allocated subNoCs is capable of adapting to a given topology
such as a mesh, cmesh, torus, or tree thus tailoring the topology
to satisfy application’s needs in terms of performance and power
consumption. Moreover, we explore the use of RL to design
an efficient control policy which optimizes the subNoC topology
selection for a given application. As such, Adapt-NoC can not
only provide several topology choices for concurrently running
applications, but can also optimize the selection of the most suit-
able topology for a given application with the aim of improving
performance and energy efficiency. We evaluate Adapt-NoC using
both GPU and CPU benchmark suites. Simulation results show
that the proposed Adapt-NoC can achieve up to 34% latency
reduction, 10% overall execution time reduction and 53% NoC
energy-efficiency improvement when compared to prior work.

Index Terms—Network-on-Chips (NoCs), Reinforcement
Learning, Reconfigurable Topology, Flexible NoC Designs.

I. INTRODUCTION

Modern heterogeneous manycore architectures are com-
prised of a large collection of computing resources such as
CPUs, GPUs, and accelerators. While the increased com-
putational capability and diversity facilitate the concurrent
execution of multiple applications, it puts a large burden on
the on-chip communication fabric (or the Network-on-Chip
(NoC)). The NoC for heterogeneous architectures should pro-
vide flexible connectivity and adequate support for many traffic
patterns generated by the currently running applications, all
with high-performance and energy efficiency. Static NoCs are
often optimized for a subset of applications and are thus ineffi-
cient in satisfying the various communication requirements of
different applications running simultaneously. The mismatch
between various communication demands and restricted NoC
flexibility inevitably confines the communication performance
and energy efficiency.

There is a large body of work [1]–[4] on flexible NoC
design. Prior work either places express links to bridge long-

distance routers [1] or fully customizes network connec-
tions [2]–[4] based on static communication task graphs.
However, the flexibility of such schemes is still restricted to
the fixed application mapping and behavior, and thus they
have limited applicability in modern manycore architectures
where multiple applications are scheduled to run concurrently.
These applications are often dynamically allocated into dif-
ferent regions of compute and memory resources [5]–[7],
leading to erratic application mapping and diverse regional
communication behavior.

Moreover, running multiple applications simultaneously has
been shown to cause inter-application interference - where
applications compete for access to the shared resources. Sig-
nificant research [8]–[15] has recently been done to avoid such
interference and the performance degradation resulting from it.
In NoCs, prior work either separates [11], [12] or dynamically
allocates the shared NoC resources [13]–[15] to different
types of communication traffic. While these techniques can
reduce the traffic interference, they are inherently unable to
fundamentally resolve the crux of the problem - the inadequate
communication fabric.

Designing such an adaptable NoC architecture is chal-
lenging due to the fact that it needs to efficiently support
different access patterns (e.g., one-to-many, many-to-one, all-
to-all, etc.), performance and power requirements, and the
dynamic interactions and behavior of the simultaneous ex-
ecution of many applications. The problem is further exac-
erbated by the dynamically sized and allocated application
mapping which leads to a significant increase in on-chip
communication requirements. To this end, we propose Adapt-
NoC, an application-aware flexible NoC design, along with
a reinforcement learning (RL)-based control policy, that can
support the diverse communication demands required by con-
currently executing applications. Specifically, Adapt-NoC can
dynamically allocate several disjoint regions of the NoC, called
subNoCs, with different sizes and locations for various running
applications. Each of the dynamically-allocated subNoC is
capable of supporting a given topology such as a mesh,
cmesh, torus, or tree, and thus satisfying different types of
communication in terms of latency, bandwidth, power, and
traffic patterns. In addition to the architectural design, we
explore the use of RL to automate a control policy that
can dynamically select the most suitable subNoC topology
for a given running application with the goal of maximizing
performance and energy-efficiency. The specific contributions

723

2021 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

978-1-6654-2235-2/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCA51647.2021.00066

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
H

ig
h-

Pe
rf

or
m

an
ce

 C
om

pu
te

r A
rc

hi
te

ct
ur

e
(H

PC
A

) |
 9

78
-1

-6
65

4-
22

35
-2

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

H
PC

A
51

64
7.

20
21

.0
00

66

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

Router

Core

(a) 8×8 Mesh-based Manycore Architecture (b) 8×8 Adapt-NoC

App-1
(Red)

App-0
(Coral)

App-3
(Blue)

App-2
(Mustard)

Mesh CMesh

TorusTree

Fig. 1. (a) 8×8 mesh-based manycore architecture, (b) 8×8 Adapt-NoC,
where four applications are running simultaneously.

of this paper are as follows:

• Adapt-NoC architecture: We propose a new NoC archi-
tecture composed of (1) adaptable routers, (2) adaptable
links, and (3) concentration links that can dynamically
reconfigure any subNoC into a popular topology such as
a mesh, a cmesh, a torus, and a tree. While we only
consider these four topologies in this paper (due to page
limitation), the proposed design methodology allows for
any other topology to be deployed. The adaptable links
can be segmented into several independent forward and
reverse links to connect multiple non-adjacent routers.
This provides several communication benefits including
router bypassing. The concentration links allow for in-
creasing router radix at runtime thus improving network
diameter and consequently latency.

• RL-based Control Policy: We propose a per subNoC-
based RL control policy that can dynamically select an
energy and performance efficient subNoC topology for a
given running application with different size, location,
and communication demands. The combined proposed
hardware and control policy allow for the dynamic provi-
sioning of multiple optimized topologies in various parts
of the network architecture satisfying the communication
demands of the multiple concurrently running applica-
tions.

We evaluate the proposed Adapt-NoC using full system
simulation with both Parsec and Rodinia benchmark suites.
Our simulation results show that Adapt-NoC can achieve up to
34% latency reduction, 10% overall execution time reduction,
and 53% energy-efficiency improvement, as compared to prior
work [1], [15], [16].

II. DESIGNING ADAPT-NOC

The goal of Adapt-NoC is two-fold: (1) provide several
topology choices for concurrent applications at runtime, and
(2) optimize the mapping of a given application to a selected
topology with the aim of significantly improving performance
and energy efficiency. For example, as compared to a conven-
tional NoC fabric (Fig. 1(a)), Adapt-NoC is able to provide
each of the running applications (applications 0 - 3 shown
with different colors), with a separate subNoC, that is of
different size, location, and topology as shown in Fig. 1(b).
Consequently, the NoC fabric is dynamically divided into
several simultaneous subNoC topologies, where each subNoC
is optimized for a given application. In what follows we
provide details of the architecture.

(a) 2×2 SubNoC connected by adaptable Links, and (b) concentration links

Core

Router

Adaptable
Link

Mux Concentration
Link

Fig. 2. 2×2 subNoC connected by (a) adaptable links and (b) concentration
links.

A. Adapt-NoC Architecture

Adapt-NoC architecture consists of four novel elements
(and associated logic), namely adaptable routers, adaptable
links, concentration links, and an RL-based control policy. The
effective utilization of these components results in increased
functionality and a number of network features such as by-
passing and concentration that can be used to design diverse
subNoC topologies, which can provide better communication
support for concurrently running applications. For example,
the adaptable links connecting adaptable routers vertically and
horizontally can provide express links (bypassing) between
routers as shown in Fig. 2(a). The concentration links provide
router-core connections to connect multiple cores to a single
router (concentration) as shown in Fig. 2(b). We describe the
details of these designs in the following subsections.

1) Adaptable Router: As each subNoC requires different
topology, the adaptable router is designed to provide a variable
radix and connection. However, deploying a high-radix router
requires additional input ports which leads to increased area
overhead and sophisticated router arbitration (timing over-
head). To solve this critical issue, we propose an adaptable
router to provide desired router radix and connection but
without additional input ports.

The adaptable router consists of a set of muxes connected
to both input and output ports as shown in Fig. 3(a). These
muxes, together with the adaptable and concentration links
can result in different network connections without increasing
router complexity. Specifically, the muxes of the input ports
at +x, -x, +y, and -y directions, can selectively connect to
mesh links or adaptable links to bridge long-distance routers
(bypassing) without implementing additional dedicated input
ports. The mux connected with the injection port (network in-
terface (NI)) provides core-router connections, creating exter-
nal concentration [17] without requiring additional input and
crossbar ports. To further reduce buffer delays at the injection
port, we add an additional bypass link at the virtual channels of
input port at the NI. In addition to these designs, we implement
a power-gating controller to power off unused ports and the
crossbar thus reducing static power consumption. Moreover,
the link controller is deployed to control the link directions
and turn on/off the link connections of adaptable links (this is
discussed in the next subsection). Routing computation (RC)
unit includes a reconfigurable routing table to support different

724

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

Switch

Switch

Dir

Dir

Dir

Dir

Dir

Dir Dir

Dir

Switch

Switch

Dir

Dir

Dir

Dir

Dir

Dir Dir

Dir

Switch

Switch

Dir

Dir

Dir

Dir

Dir

Dir Dir

DirForward Off Backward

R0 R1 R2 R3

Core

Router

Forward Adaptable Link Backward Adaptable Link

(a) Microarchitecture of adaptable router, and (b) adaptable link design

+X

-X

+Y

-Y

NI

Virtual
Channels

Virtual
Channels

Virtual
Channels

Virtual
Channels

VARC SA
PG LCLC

PG: Power-gatingRC: Route Computation

VA: Virtual Channel AllocationSA: Switch Allocation

LC: Link Controller

Adaptable
Link

Mesh Link

Adaptable RouterModified VCs

Concentration
Link

Fig. 3. (a) Microarchitecture of adaptable router, and (b) adaptable link design.

routing algorithms.
2) Adaptable Link: As any region of the NoC can be

reconfigured to a desired topology with different size, this
requires much more connectivity between any pair of routers.
For example, in an 8 × 8 Adapt-NoC, each row/column
requires at least 28 (i.e. C2

8) bi-directional links to cover
all possible subNoC connections which could exhaust limited
wiring resources. To solve this issue, an adaptable link design
is proposed to fully utilize the on-chip wiring resources
by providing two functionalities: link segmentation and link
reversal. Link segmentation dynamically adjusts the link length
to fit the transmission distance, and link reversal dynamically
allocates the link resources to different directions without
requiring additional wires.

To achieve both functionalities, we implement a bi-
directional adaptable link across each row and column. Each
adaptable link consists of a number of quad-state repeaters [18]
which can disable signal propagation (link segmentation) and
switch the signal propagation directions (link reversal). For
example, Fig. 3(b) shows an adaptable link connecting four
routers, R0-R3, horizontally. To provide two disjoint inter-
router connections (R0-R2, R2-R3), the quad-state repeater
at R2 should be switched off by disconnecting the transistors
from GND and Vdd. For each of the segmented links, the
signal ‘Dir’ controls the direction of signal propagation. When
‘Dir’ signal is disabled, the signal is propagated in a forward
direction between R0 and R2, and similarly, the signal is
propagated in a backward direction between R2 and R3 when
‘Dir’ signal is enabled.

B. SubNoC Construction

In this section, we illustrate the methodology to form a
subNoC. Without loss of generality, we select cmesh, torus
and tree as case studies in a 4 × 4 allocated subNoC. These
topologies are of the most popular NoC topologies and cover
diverse network latency, bandwidth, and traffic pattern. It
should be noted that the methodology is applicable for any
topology.

1) Cmesh: Cmesh (Concentrated Mesh) [19] is to connect
multiple nodes (e.g., cores, caches, and memory controllers) to
a single router. As a result, it can reduce the number of routers
deployed within the network and shorten the network diameter.
However, Cmesh increases router complexity which results in

additional area and timing overhead due to the increased router
radix.

The Adapt-NoC realizes cmesh topology by using external
concentration [17] with the aim of reducing router complexity
as shown in Fig. 4 (a). Cores within each concentrated
region are directly connected to the same router through the
concentration links. The idle routers are powered-off to reduce
the static power consumption, but the powered-off router could
disconnect the network. To keep the network connectivity,
the adaptable links connect non-adjacent routers vertically and
horizontally. The composed cmesh topology can benefit those
application phases with sparse communication traffic.

2) Torus: Bypassing is to place express links to bridge
long-distance routers or skip routers, and it allows packets to
bypass the intermediate routers and reduce latency. In addition
to the reduced network latency, the bypass links across the
network also increase the network bi-section bandwidth. The
torus is an example of placing express links horizontally and
vertically to connect peripheral routers.

In Adapt-NoC, the subNoCs can be configured in any region
of the network. The differently-sized subNoCs require various
lengths of wrap-around links to connect peripheral routers for
composing the torus. To provide the desired wrap-around links,
the adaptable links are segmented to the desired length and
connect to the peripheral routers of the configured subNoC
as shown in Fig. 4 (b). These wrap-around links not only
reduce the network diameter but also increase network bi-
section bandwidth, benefiting those application phases with
high demand for both latency and bandwidth.

3) Tree: The heavy reply traffic from the memory con-
trollers (i.e. one-to-many traffic) has been identified as a
bottleneck of on-chip communication in throughput-oriented
processors [20], [21]. The intensive reply traffic causes packet
congestion at the injection port, and it increases queuing
latency [22]. Such an undesirable queuing latency mainly
results from insufficient injection bandwidth and poor load
balancing in grid-like topologies such as the mesh. To solve
this issue, the tree topology has shown to be a good candidate,
as it provides high injection bandwidth at the root node and
balanced load distribution. However, the deployment of tree
topology in on-chip networks faces a major challenge: limited
on-chip wiring resources.

The Adapt-NoC solves the wiring issue by reversing one

725

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

MC

0 52… …

00 01 02 20 21 22

(a) Cmesh in a 4×4 SubNoC (b) Torus in a 4×4 SubNoC (c) Logic diagram of the tree connection (d) Tree in a 4×4 SubNoC

Concentrated Region Core

Concentration
Link

Adaptable
Link

Root
Router

Leaf
Router

Intermediate
Router

Adaptable
Link

Adaptable
Link

Mesh
LinkPowered-off

Router

Active
Router

Fig. 4. SubNoC topologies: (a) Cmesh, (b) torus, (c) logic diagram of tree connection, and (d) tree in a 4× 4 subNoC.

bi-directional adaptable links to two uni-directional adaptable
links, and it relies on the fact that the reply traffic moves
towards the same direction from the same destination as shown
in Fig. 4 (c). With the sufficient adaptable links, we maximize
the fanout of the root router (i.e. MC) together with the
bypass link, to provide sufficient injection bandwidth, so that
packets are injected into the input buffers of intermediate
routers without buffering at the injection router. Furthermore,
the root and intermediate routers are connected to downstream
routers, vertically and horizontally to evenly distribute reply
traffic. Fig. 4 (d) shows the physical connection of a composed
tree topology. The root, intermediate and leaf routers are
fully connected by a collection of links (mesh and adaptable
links) horizontally and vertically. The adaptable links with
different directions are depicted in different colors. Such
link connections (Fig. 4 (d)) are designed to couple with
dimensional-ordered routing (generic routing algorithm) which
enforces turn restriction. Consequently, the reply traffic from
the MC can be delivered to all routers within two hops in
the illustrated example. We note that the request traffic still
goes through the mesh topology. The composed tree topology
can benefit those applications that demand intensive off-chip
memory accesses.

Tree Scalability: While the example depicted in Fig. 4
(d) shows a fully connected tree topology, the tree suffers
from scalability issues with an increased subNoC size. In
the case of large subNoC size, we follow the same design
principle: maximize injection bandwidth and evenly distribute
reply packets. As a result, we still maximize the fanout of
root router, but connect the root and intermediate routers with
their downstream routers at an evenly-spaced distance in each
row/column.

4) Possible subNoC topologies: The subNoC formation
methodology can be generalized to more topologies, includ-
ing different degrees of network concentration, express link
placements, and combined topologies. For example, the torus
(Fig. 4 (b)) and tree (Fig. 4 (d)) could be combined together
to simultaneously optimize both request and reply networks
for memory-intensive applications. Moreover, the wrap-around
torus links can be segmented to several short express links
to bypass routers. While a number of topologies can be
generalized, in this work, we concentrate on four popular
topologies - mesh, cmesh, torus, and tree - to demonstrate the

performance and energy benefits of simultaneously deploying
different subNoC topologies.

C. SubNoC Management

In this section, we discuss the rules for simultaneously
managing several subNoCs, including the dynamic subNoC
allocation, memory controller sharing design, and deadlock
avoidance.

1) Dynamic SubNoC Allocation and Switching: The nature
of dynamic subNoC allocation is to allocate a collection of
cores, memory modules, routers, and links within a region of
the manycore architecture. Prior research [7], [23], [24] has
been proposed to efficiently allocate computing and memory
resources within a region by modifying cache coloring, page
replacement, and mapping policy, and thus the data is placed
closer to the computation. As a result, the application can
take full advantage of data locality [23], [24] and mitigate
inter-application interference [7].

The remaining challenge for subNoC allocation is to timely
reconfigure the subNoC topology and routing algorithm dy-
namically, in a deadlock-free manner [25], in response to
the dynamic application mapping. The latency overhead of
subNoC configuration mainly results from network stall and
packet drainage for preventing unroutable packets and cyclic
dependency caused by new and old routing algorithms [26],
[27]. In our design, all topology choices adopt minimal,
dimensional-ordering routing (e.g., XY) disallowing the same
“U-turns”. That is, the torus, tree, and cmesh topologies either
add or remove routing paths to or from the mesh topology.
We will use the following walk-through example to illustrate
the process of subNoC reconfiguration. It should be noted
that each routing algorithm in our design is deadlock-free,
and the routing algorithm of mesh topology will not form
any dependency cycles when combined with other routing
algorithms.

Walk-through Example: To configure a N×M subNoC, it
first takes (M+N−2)×(Tr+Tl) cycles to notify all the routers
within the subNoC to initiate the dynamic reconfiguration,
where Tr is the hop latency, Tl is the link latency. Upon
receiving the notification, each router asynchronously takes
Ts to set up the mesh connectivity and its routing algorithm
Rmesh, if necessary. After the Rmesh is added, the router
disables old routing algorithm Rold following its order of the

726

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

MC

Unused
Port

SubNoC-0 SubNoC-1

Mux

Core

Adaptable
Router

Mesh
Link

Fig. 5. The memory controller sharing design

channel dependency graph, when no packets need the routing
choices from Rold. This maintains the network connectivity
and avoids unroutable packets. Once all routers are done with
removing Rold (and their old link configuration), each router
starts setting up the Rnew (and its new link configuration). The
last step is to remove Rmesh when Rnew is set, if necessary.
Note that when Rmesh is a subset of the routing algorithms
of torus and tree, Rmesh is unnecessary to be removed. These
operations satisfy all the sufficient conditions for deadlock-
free reconfiguration according to Lysne’s methodology [28],
and avoid the network stall and package drainage.

In this paper, we use regular topologies and turn-restricted
routing algorithms to illustrate the deadlock-free dynamic
subNoC reconfiguration. However, the proposed design can
support irregular topologies with deadlock-free prevention
techniques such as Lysne’s methodology [28] and Double
Scheme [29].

2) Memory Controller Sharing Design: The memory con-
trollers (MCs) are responsible for managing off-chip memory
accesses and are often distributed across the network. In
Adapt-NoC, we implement one MC to each 2 × 4 subNoC
in an 8×8 NoC, and therefore it guarantees that eight ap-
plications all have their independent MC access. However,
memory-intensive applications place additional demands on
the memory bandwidth and thus require concurrent access
to multiple MCs. Therefore, we propose a memory sharing
design that allows the applications to access the MCs of their
adjacent subNoCs. Such MC accesses rely on the connections
between the peripheral routers of the adjacent subNoCs. For
example, when the application located in subNoC-1 demands
additional memory bandwidth and requires accessing MC of
subNoC-0, the unused mesh link will connect the peripheral
routers of both subNoCs which can enable the external MC
access, as shown in Fig. 5.

Memory Controller Scalability: The growth of MC number
is often lagging behind the increase in core count, and as a
result, each MC has to be shared among a larger number of
cores. This could increase subNoC size and thus restrict the
maximum number of co-running applications. To solve this
issue, we can use the proposed MC sharing design to connect
multiple subNoCs to one MC, and as a result, it can support the
simultaneous execution of up to 32 applications in a 256-core
system with 8 memory controllers. Furthermore, the Adapt-

… …

𝑄!

𝑄"

𝑄#

𝑆!

𝑆"

𝑆$%"

𝑆$

Input layer

Hidden layer

Output layer

…

A
ction a

SubNoC Environment

Rew
ard r

State s
Lookup State Vector

Select A
ction W

ith M
ax

Q

U
pdate Q

 value

AgentState Vector

Fig. 6. The agent-environment interaction in Deep Q-networks.

NoC could simultaneously accommodate more applications if
each subNoC allows the mapping of multiple applications.
This shows the scalability of Adapt-NoC for handling the
limited number of MCs for hundreds of cores projected in
the future.

3) Deadlock Avoidance: Network deadlock can occur due
to protocol dependency or circular channel dependency.
Specifically, the protocol dependency is eliminated by separat-
ing the request and reply packets to different virtual networks
so that the protocol deadlock is avoided. To prevent the circular
channel dependency, we use dimensional-ordered routing to
restrict all turns from y-dimension to x-dimension. The turn
restriction routing is effective for mesh and cmesh, however
it is not suitable for torus as it can create circular channel
dependency [22], [30]–[32]. We use the simple yet effective
dateline [22] to avoid such circular channel dependency. It
should be noted that the prerequisite of forming circular
channel dependency is that a given router is connected to
at least two other routers. When a given subNoC requires
remote memory access from its adjacent subNoCs, only one
of the routers is allowed to connect with the MC outside
the subNoC. This precludes the formation of cyclic channel
dependency within any subNoC. Additionally, some routing
algorithms such as static bubble [33] can be implemented to
prevent deadlock in irregular topologies.

To configure irregular topologies or adaptive routing, signif-
icant amount of techniques have been proposed to prevent the
reconfiguration-induced deadlock. These techniques can also
be deployed to further enhance Adapt-NoC performance.

III. REINFORCEMENT LEARNING-BASED CONTROL
POLICY

A. Reinforcement Learning Model

We present a reinforcement learning (RL)-based control
policy for optimizing subNoC selection with the aim of
improving subNoC energy-efficiency and performance for any
given application. Specifically, we implement RL controllers in
MCs for subNoC selection. The RL controller interacts with
manycore system, learns from the past system performance,
and selects a number of subNoC topologies with the objective
of maximizing the long-term total rewards (e.g., performance
and energy efficiency). The Q-learning, an RL algorithm [34],

727

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

is applied to find an optimal action in a given state based on
a table-based Q-table.

The Q-table records the observed system environment as a
state vector s, and maps long-term total rewards of each action
a to the observed state s. Therefore, each Q-table entry, Q(s,a),
represents the long-term total rewards of action a in the state
s. At each time step, the Q-learning algorithm often chooses
the action with the highest reward from the Q-table based on
the observed state. After taking the selected action, the Q-table
entry Q(s,a) is updated using Equation 1 based on the action
a, reward r, and new state s′.

Q(s, a) = Q(s, a) + α[r + γmaxQ(s′, a)−Q(s, a)] (1)

where α is the learning rate, γ is the discount factor, and
maxQ(s′, a) is the maximum Q value over all possible actions
in state s′.

As the Q-table needs to map each action to all states, the
Q-table size is often exponentially increased due to the large
state space. This could lead to slow policy convergence and
prohibitive hardware cost. To eliminate such negative effects,
deep Q-network (DQN) method [35] is used to approximate
the large Q-table by using a neural network. The DQN takes
the state state as the input of neural network and calculates the
Q-value of each action as the output, as illustrated in Figure 6.

B. Action

In RL, action is what the agent can select to optimize the
system environment in each time epoch. As designing NoC
topology involves many trade-offs between different objectives
such as latency, bandwidth, power consumption, and others,
each topology is often optimized for a given objective but at
the expense of others. In order to take the full advantages
of these topologies, the action space of this work includes
four topologies, mesh, cmesh, torus, and tree. In each time
epoch (50K cycles), the agent can select one of these subNoC
topologies to provide the desired subNoC connections, ensur-
ing adequate communication support needed by the various
application phases.

C. State

TABLE I
STATE ATTRIBUTES OF RL

Category State Attributes

Instruction and Cache
Related Metrics

Number of L1D cache miss
Number of L1I cache miss
Number of L2 cache miss
Number of retired Instruction count

Network
Related Metrics

Number of coherence packets
Number of data packets
Average router buffer utilization
Average injection port buffer utilization
Average router throughput

Topology
Related Metrics

Current network topology
Column size of the topology
Row size of the topology

A well-modeled state space can provide a good indication of
the system environment for decision making, and thus improve

the predication accuracy of RL. We study a wide range of
system parameters and select the following metrics listed in
Table I. The combined use of presented parameters provide
the optimal performance and energy efficiency.
• Instruction and Cache Related Metrics: Instruction count

and cache activities are often used to indicate the compu-
tational intensity [14], [36]. Consequently, in this work,
the number of retired instruction and L1 cache misses are
included to reflect the runtime computation behavior. In
addition, the number of L2 cache misses are considered
to reflect the dynamic communication behavior, as the
shared L2 caches are distributed in the manycore archi-
tectures and communicate through the NoC.

• Network Related Metrics: The network related metrics
are included to signify different types of on-chip com-
munication. For example, the multi-threaded applications
often rely on the synchronization primitives to enforce the
exclusive data access between threads, and these synchro-
nization primitives result in different coherence traffic.
As such, the message types (e.g., data and coherence)
can provide indications of varying application phases.
In addition, the buffer utilization is the most intuitive
indication of NoC traffic load. In order to precisely
measure the queuing latency, the buffer utilization of
injection port is monitored individually.

• Topology Related Metrics: As the topology selection not
only considers the latency and throughput demands but
also the network size, we take the topology informa-
tion (e.g., row and column size) into consideration. The
current topology refers to the topology that is currently
running.

D. Reward

As the agent selects actions with the goal of maximizing
the long-term reward, the reward instructs the action selection
and ultimately determines the system performance. In this
paper, with the goal of improving overall network performance
and energy-efficiency, we include network latency, queuing
latency, and power in the reward function as shown in Equa-
tion 2.

Reward = −power × (Tnetwork + Tqueuing) (2)
Power refers to the average static and dynamic power

measured in each allocated subNoC. The network latency
(Tnetwork) is the time that a packet traverses on the NoC,
and the queuing latency (Tqueuing) is the time that a packet
waits at the network interface.

E. Training

The approximation of Q-value using non-linear functions
can lead to unstable RL training [35]. To stabilize the RL
training, target network [35] and experience replay [37] are
two common approaches to eliminate the correlation between
training samples. However, the target network and experi-
ence replay require additional hardware to store a significant
amount of training samples which leads to prohibitive hard-
ware costs. To eliminate the prohibitive hardware costs, we use

728

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

an off-line training for this work. As a result, the trained model
only requires storing a number of weights instead of additional
neural network and training samples. We use different parts of
applications for training and testing. To improve the robustness
of off-line training, the training set includes a wide range
of application phases (injection rate, cache miss rate, and
traffic load), and the model is trained under different network
configurations (e.g., 2×4, 4×4, 4×6, 4×8, and 8×8).

The proposed DQN model consists of one input layer,
two hidden layers, and one output layer. The input layer
consists of 12 neurons due to the state vector size. Each of
the input value is normalized within the range of (0,1) due
to the linear region of activation function. Each hidden layer
consists of 15 Relu neurons. We have tested hidden layer size
from 10-50 neurons, of which the setup of 15 neurons has
the optimal performance in terms of latency and energy. The
output layer consists of 4 neurons that represent the Q-values
of topologies. For the off-line training, two networks, called
prediction and target networks, together with experience reply
buffer are used to ensure the faster convergence of neural
network by eliminating the data correlation. Specifically, the
prediction network is used to make the decision about which
topology is applied, and the target network is used to update
the weights in every iteration. The experience reply buffer
consists of 1000 entries, each of which can store a state vector.
The target network randomly selects one state vector from
the replay buffer instead of using the recent observed state
vector, thus eliminating the data correlation. The minibatch
gradient descent is used to update the target network. We set
the minibatch size of 100 because the experience replay has
provided sufficient stability. The target network updates the
weights to the target network every 168 iterations. Moreover,
we set the learning rate of neural network as 0.0001, as the
learning accuracy is more important than speed in the off-line
training.

IV. EVALUATION

A. Simulation Setup

TABLE II
BENCHMARK APPLICATIONS

Categories Applications

CPU Blackscholes (BS), Swaptions (SW), X264, Ferret (FR),
Bodytrack (BT), Canneal (CA), Fluidanimate (FL)

GPU
Kmeans (KM), Back-propagation (BP), Heart-Wall (HW),

Guassian (GA), Breath-First-Search (BFS),
Needleman-Wunsch (NW), HotSpot (HS),

We evaluate the proposed architecture under full system
simulation with the combined use of architecture-level and
circuit-level simulators. The cycle-accurate gem5-GPU simu-
lator [38], and GARNET [39] are used for a detailed timing
simulation of the memory and on-chip network. We model
the power of all components (including router, links, muxes,
RL modules) with Synopsys Design Compiler using 45 nm.
To accurately calculate the dynamic power, we feed the power
parameters captured by Synopsys to DSENT, which calculates

the average dynamic power by profiling the number of buffer
writes, crossbar, VA/SA activities, and RL calculations [40].
All the timing overhead (detailed in Section V-B), including
subNoC switching latency, mux delays, and link latency, are
considered in the simulation. The RL model is implemented
with GARNET simulator to provide closed-loop simulation.
Since the learning rate α, the discount rate γ, and exploration
rate ε are hyper-parameters, we set the learning rate α to 0.1,
discount factor γ to 0.9, and exploration rate ε to 0.05. The
studies of these parameters are detailed in Section V-C.

To examine the diverse application behavior, we evaluate the
performance of our proposed design using both the Parsec [41]
and Rodinia [42] applications listed in Table II, in an 8 × 8
heterogeneous system. We assume that three applications are
dynamically mapped to different regions of the heterogeneous
manycore system. The Rodinia application is mapped to a
region with the mix of 4 CPUs, 4 MCs, and 24 GPUs, where
each 2 × 4 subNoC consists of 1 CPU, 1 MC, and 6 GPUS.
Each GPU core contains 8-wide SIMD lanes and is equipped
with a 64KB private L1 cache and scratch memory. Parsec
applications are mapped to 28 CPUs and 4 MCs, where each
2 × 4 subNoC consists of 7 CPUs and 1 MC. Each CPU
core also contains private a 64KB L1 instruction/data cache,
and 1 MB shared L2 cache. Each core or MC is attached to
a router. All the evaluated designs adopt virtual cut-through
buffer organization. The number of virtual channels (VCs) of
all the designs are set differently to keep their area consistent.
Specifically, we set 3 VCs per virtual network, 4 flits per VC
for baseline, OSCAR, and shortcut. To keep area consistent
with baseline topology, we set 2 VCs per virtual network and
4 flits per VC in Adapt-NoC. In Flattened Butterfly, we set 4
VCs per virtual network and 4 flits per VC. As the link delay
is proportional to wire length, we set 1-cycle delay per 4mm
for links placed on high metal layers (e.g., bypassing links).
The mesh link latency Tl is set as 1 cycle. The link width is set
as 256-bit. The connection setup time (Ts) refers to the time
for setting up router components such as routing table and
link connection, which is set to 14 cycles [43]. During Ts,
the routing table will not be available. It should be noted that
the network would not be entirely halted for packet injection
and drainage which was discussed in Section II-C. We set hop
latency Tr as 3 cycles in Flattened Butterfly, and 2 cycles in
the other designs.

We examine the performance of Adapt-NoC by comparing
it to the following prior work:

1) Baseline: We use a mesh topology as the baseline
design.

2) OSCAR [15]: We deploy the dynamic VC allocation
technique proposed in OSCAR to avoid traffic inter-
ference among applications in heterogeneous manycore
architectures. We note that the last-level caches used in
this paper are SRAM instead of stt-RAM in OSCAR.

3) Shortcut [1]: We use a reconfigurable NoC design,
where long-distance routers can be connected by addi-
tional express links.

4) Flattened Butterfly (FTBY) [16]: Flattened Butterfly is

729

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

BS_SW_GA X264_FR_BFS BT_CA_NW FL_BS_KM SW_BT_BP X264_CA_HW FL_FR_HS Average

Pa
ck

et
 L

at
en

cy
 (N

or
m

al
iz

ed
)

Baseline OSCAR Shortcut FTBY FTBY_PG Adapt-NoC-noRL Adapt-NoC

Fig. 7. The latency analysis of mixed workload, normalized to baseline.

a high-radix on-chip topology, where both the concen-
tration and bypass are used to reduce network latency.

5) FTBY PG: We deploy conventional runtime power-
gating in Flattened Butterfly to reduce static power
consumption.

6) Adapt-NoC-noRL: SubNoC topologies are statically
selected to provide the optimal performance among all
topology choices.

7) Adapt-NoC: RL-based control policy is used for dy-
namic subNoC selection.

V. RESULTS

A. Performance Analysis

1) Packet Latency Analysis: Fig. 7 shows the analysis of
packet latency which includes both network and queuing la-
tency. Adapt-NoC has lower packet latency over other designs,
and it reduces the packet latency of the mixed workload by
34%, 30%, 22%, 15%, 44%, and 9% when compared to
the baseline, OSCAR, shortcut, FTBY, FTBY-PG and Adapt-
NoC-noRL, respectively. This is because the Adapt-NoC can
dynamically provide each running application with a suitable
subNoC topology which reduces the hop count and queuing
latency. In what follows we provide the detailed analysis of
hop count and queuing latency.

Fig. 8 shows the hop count analysis of CPU applications. As
expected, the Adapt-NoC achieves 41% of hop count reduction
as compared to the baseline and OSCAR, as both of the
baseline and OSCAR are deployed with the mesh topology
which has higher network diameter than other topologies. In
addition, the Adapt-NoC can outperform the shortcut with
an average of 31% hop count reduction. This is because the
Adapt-NoC can provide multiple ways of reducing hop count
such as bypassing and concentration, but the shortcut can only
provide a limited number of express links. The Adapt-NoC
slightly increases the hop count by 9% as compared to the
FTBY. This is because the fully-connected routers in each
dimension guarantee the minimum hop count for the FTBY,
but, at the same time, the rich connectivity increases the router
complexity of FTBY which leads to increased hop latency.
As a result, the increased hop latency offsets the latency
improvements in FTBY. Besides the hop count and latency,
Adapt-NoC outperforms FTBY-PG significantly because the
conventional power-gating technique adds substantial latency
to resume router’s activity from the powered-off state. The
Adapt-NoC further reduces the hop count by 6% as compared
to Adapt-NoC-noRL.

0

0.2

0.4

0.6

0.8

1

1.2

BS BT CA FR SW X264 FL Average

H
op

 C
ou

nt
 o

f C
PU

 A
pp

lic
at

io
ns

(N

or
m

al
iz

ed
)

Baseline OSCAR Shortcut FTBY FTBY_PG Adapt-NoC-noRL Adapt-NoC

Fig. 8. The hop count analysis of CPU applications, normalized to baseline.

0

0.2

0.4

0.6

0.8

1

1.2

BFS GA NW AverageH
op

 C
ou

nt
 o

f G
PU

 A
pp

lic
at

io
ns

(N

or
m

al
iz

ed
)

Baseline OSCAR Shortcut FTBY

HW KM BP HS Average

Q
ue

ui
ng

 L
at

en
cy

 o
f G

PU

A
pp

lic
at

io
ns

FTBY_PG Adapt-NoC-noRL Adapt-NoC

Fig. 9. The hop count and queuing latency analysis of GPU applications,
normalized to baseline.

We further present the hop count and queuing latency
analysis for GPU applications in Fig 9. Overall, the Adapt-
NoC reduces the hop count of GPU applications by 46%,
45%, 18%, and 11% when compared to the baseline, OS-
CAR, shortcut, and Adapt-NoC-noRL, but it increases the
hop count by 10% as compared to FTBY. For the queuing
latency, the OSCAR slightly increases the queuing latency
by 8% as compared to the baseline, because the dynamic
VC allocation results in sub-optimal network utilization which
leads to reduced network throughput. Besides OSCAR, the
Adapt-NoC-noRL, Adapt-NoC, FTBY, and shortcut reduce
the queuing latency by 43%, 39%, 24%, and 16% when
compared to the baseline, as the additional path diversity
(e.g., increased bi-section) can improve the poor load balance
of meth topology. From the simulation result, we observed
that the high-radix router used in FTBY can intensify the
packet contention at the intermediate routers, as the number
of buffers at each input port cannot proportionally scale to the
increase in router radix which affects the network throughput.
But the improvement in load balancing (e.g., increased bi-
section) can still compensate the negative impacts of reduced
buffer size, and it ultimately leads to the queuing latency
reduction in FTBY. As compared to FTBY, the Adapt-NoC
further reduces the queuing latency due to the following two
designs. First, the bypass link deployed at the VCs of the
injection port can promptly transmit the packets to downstream
routers without buffer delays. Second, the tree deployed in
the Adapt-NoC not only increases bi-section bandwidth but
also avoids the packets contention caused by the insufficient
buffers at the intermediate routers. It also should be noted that
the FTBY has the same channel bandwidth as other works,
as the wiring density of FTBY in an 8×8 NoC still fits the
wiring budget. However, the channel bandwidth of FTBY
has to be reduced when network size increases to 16×16,
as the wiring density of FTBY increases quadratically with
the network size. In this case, the queuing latency of FTBY

730

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

1.2

BS_SW_GA X264_FR_BFS BT_CA_NW FL_BS_KM SW_BT_BP X264_CA_HW FL_FR_HS Average

Ex
ec

ut
io

n
Ti

m
e

(N
or

m
al

iz
ed

)

Baseline OSCAR Shortcut FTBY FTBY_PG Adapt-NoC-noRL Adapt-NoC

Fig. 10. The execution time analysis of mixed workload, normalized to
baseline.

0

0.2

0.4

0.6

0.8

1

1.2

BS_SW_GA X264_FR_BFS BT_CA_NW FL_BS_KM SW_BT_BP X264_CA_HW FL_FR_HS Average

N
oC

En
er

gy
 (N

or
m

al
iz

ed
)

Baseline OSCAR Shortcut FTBY FTBY_PG Adapt-NoC-noRL Adapt-NoC

Fig. 11. The energy analysis of mixed workload, normalized to baseline.

would increase by 85% as compared to the mesh topology,
as the reduced channel bandwidth significantly increases the
serialization latency and thus intensifies the packet congestion
at the injection port. However, the Adapt-NoC does not have
this issue, as the Adapt-NoC only requires one adaptable link
in each row/column which is proportional to the increase of
network size.

2) Execution Time Analysis: Fig. 10 shows the execution
time analysis of Adapt-NoC. Overall, the Adapt-NoC has
the shortest execution time over other designs. Specifically,
the Adapt-NoC reduces the average execution time by 7%
as compared to OSCAR, and this indicates that providing
each running application with suitable communication support
is a more efficient way to handle the traffic interference.
The Adapt-NoC has 5% shorter execution time than the
shortcut, as it can provide additional ways of reconfiguring
subNoC topologies other than the long-distance express links.
Additionally, the Adapt-NoC outperforms the FTBY with a
3% shorter execution time due to the simpler router complex-
ity and better load balancing performance. Furthermore, the
Adapt-NoC reduces 16% execution time of FTBY-PG. These
advantages of the Adapt-NoC ultimately come to 10% average
execution time reduction as compared to the baseline. The
Adapt-NoC reduces the execution time by 1.5% as compared
to Adapt-NoC-noRL.

3) Energy Analysis: Fig. 11 shows the energy analysis.
Overall, the Adapt-NoC improves overall energy savings by
53%, 50%, 48%, 26%, and 23% and when compared to the
baseline, OSCAR, shortcut, FTBY, and Adapt-NoC-noRL, re-
spectively. The energy benefits of the Adapt-NoC are resulting
from the reduced execution time, the reduced hop count,
and the use of power-gating. Specifically, Fig. 12 shows the
dynamic energy analysis, in which the Adapt-NoC reduces
the dynamic energy by 46%, 43%, 30%, and 5% as compared
to the baseline, OSCAR, shortcut, and Adapt-NoC-noRL on
average. This is because the packets skip the intermediate
routers and thus avoid significant amount of router activities

0

0.2

0.4

0.6

0.8

1

1.2

BS_SW_GA X264_FR_BFS BT_CA_NW FL_BS_KM SW_BT_BP X264_CA_HW FL_FR_HS Average

D
yn

am
ic

 E
ne

rg
y

(N
or

m
al

iz
ed

)

Baseline OSCAR Shortcut FTBY FTBY_PG Adapt-NoC-noRL Adapt-NoC

Fig. 12. The dynamic energy analysis of mixed workload, normalized to
baseline.

0

0.2

0.4

0.6

0.8

1

1.2

BS_SW_GA X264_FR_BFS BT_CA_NW FL_BS_KM SW_BT_BP X264_CA_HW FL_FR_HS Average

St
at

ic
 E

ne
rg

y
(N

or
m

al
iz

ed
)

Baseline OSCAR Shortcut FTBY FTBY_PG Adapt-NoC-noRL Adapt-NoC

Fig. 13. The static energy analysis of mixed workload, normalized to baseline.

(e.g., buffer write, crossbar traverse), which leads to dynamic
energy saving. As expected, the Adapt-NoC slightly increases
the dynamic energy by 7% and 4% as compared to the FTBY
and FTBY-PG due to the larger hop count. Fig. 13 shows
the static energy analysis, in which the Adapt-NoC reduces
the average static energy by 56%, 53%, 60%, 37%, and 30%
as compared to the baseline, OSCAR, shortcut, FTBY, and
Adapt-NoC-noRL, respectively. The static energy savings of
the Adapt-NoC results from the reduced execution time and
the use of power-gating. The Adapt-NoC is able to power off
idle routers or ports of the peripheral routers. The substantial
energy saving of Adapt-NoC can compensate the energy
overhead caused by additional adaptable links (11.5 mW/link).
We also compared the Adapt-NoC to FTBY-PG in which
runtime power-gating technique is deployed. The static energy
of Adapt-NoC is increased by 7% as compared to FTBY-PG,
which leads to less 6% energy savings. However, considering
the large latency overhead of FTBY-PG, the energy-delay
product (energy × execution time) of Adapt-NoC would be
8% less than FRBY-PG.

B. Overhead Analysis

1) Area Overhead Analysis: We evaluate the hardware cost
through Synopsis Design Compiler using 45 nm technology.
The baseline router consists of a crossbar of 17806 um2, a
switch allocator of 4589 um2, a virtual channel allocator of
1062 um2, and buffers of 246472 um2. For an 8×8 mesh
topology, the overall NoC area is 17.27 mm2. With addi-
tional ports at the peripheral routers, the Adapt-NoC requires
an additional 1.46 mm2 area. The neural network requires
an arithmetic logic unit (e.g., multiplier, relu function) and
storage. Since we only implement one RL controller in each 2
× 4 sub-NoCs, only 8 RL controllers are needed. The total area
overhead of the RL controllers is 100232 um2. The arbiter, the
muxes, and additional links account for 107123 um2 in total.
To compensate for the additional area overhead, we reduce the
number of buffers in the Adapt-NoC as compared to baseline.

731

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

BS BT CA FR SW X264 FLSu
bN

oC
To

po
lo

gy
 S

el
ec

tio
n

Br
ea

kd
ow

n
of

 C
PU

 A
pp

lic
at

io
ns

Tree Mesh Torus Cmesh
Fig. 14. Topology selection breakdown of CPU Applications.

As a result of fewer buffers, the Adapt-NoC would require
14% less area as compared to the baseline.

2) Wiring Constraints Analysis and Optimization: As the
Adapt-NoC requires additional wiring resources (e.g., adapt-
able and concentration links), in this section, we examine and
optimize the wiring resources to fit the wiring budget (or
wiring density): the maximum number of wires can across
a given area. This is often determined by two factors, namely,
metal layer and tile size. While the number of metal layers
increases with technology scaling to accommodate the higher
routing demands [44], we use the Intel 45nm metal stack
model [45] to examine the wiring density of the Adapt-NoC
where nine layers of metal (M1-M9) are available. In high
metal layers (M7-M8), the wire width is 280 nm, the wire
height is 280 nm, and the wire pitch is 560 nm. In intermediate
metal layers (M4-M6), the wire width is 140 nm, the wire
height is 140 nm, and the wire pitch is 280 nm. Typically, half
of the wiring resources are available for on-chip routing. For
an 1 mm2 tile [46], the high metal layers can provide two 256-
bit bi-directional links per tile edge, and the intermediate metal
layers can provide seven 256-bit bi-directional links per tile
edge. The maximum number of adaptable links, concentration
links, and mesh links required for each tile edge is four 256-bit
bi-directional links, which is within the wiring budget.

3) Timing Analysis and Optimization: We present the de-
tailed router and link timing analysis and optimization schemes
in the following.

Router Timing: While we reduced the number of VCs
to accommodate the additional logic delay of muxes, there
are several alternative ways of hiding the logic delay in NoC
routers, such as folding latency or time stealing [47]. We use
the Synopsys Design Compiler to verify the critical delays of
adaptable router. The simulation result shows that the route
computation (RC), virtual channel allocation (VA), switch
allocation (SA), and switch traversal (ST) of a conventional
5 × 5 router take 164 ps, 370 ps, 243 ps, and 256 ps, re-
spectively. Each mux requires 102 ps critical delay. Therefore,
we deploy an optimization to solve the potential timing issue.
Specifically, we merge mux logic of input and output ports
into RC and ST stages, respectively. As the router frequency
is limited by the delay dominant router stage (VA), the delays
of merged RC and ST (266 ps, 350 ps) are still shorter than
that of the VA stage (370 ps). This satisfies the timing of the
router, and thus does not affect the router frequency.

Link Timing: As the wire delay increases with the wire
length, we implement the tri-state repeaters to keep the delay

0

0.2

0.4

0.6

0.8

1

BP BFS GA HW HS KM NWSu
bN

oC
To

po
lo

gy
 S

el
ec

tio
n

Br
ea

kd
ow

n
of

 G
PU

 A
pp

lic
at

io
ns

Tree Mesh Torus Cmesh
Fig. 15. Topology selection breakdown of GPU Applications.

proportional to the wire length. In this paper, we use the 1.7
µΩ*cm as the resistivity of copper metal layer, and 0.2 pF/mm
as the wire capacitance [48]. The wire delay of high metal
layers is 42 ps/mm, and the wire delay of intermediate metal
layer is 200 ps/mm. Therefore, we place the long-distance
adaptable links on the high metal layers so that the delay/mm is
reduced due to greater thickness and width. In addition, since
the reversed quad-state repeaters have increased critical latency
(45 ps) due to additional critical delays of the transmission
gates, we use the reversed adaptable links to connect to routers
with a shorter distance to optimize the transmission latency.
For fair comparison, we assume express links in all baselines
are placed on high-metal layer.

RL Latency: In this work, we assume the minimal hardware
resources (one adder and one multiplier). With this assump-
tion, the DQN calculation is 486 nsec. However, this latency
can be overlapped by the large reconfiguration epoch.

C. RL Analysis

1) SubNoC Topology Selection Analysis: The RL automat-
ically learns a policy to select adequate NoC topology at the
runtime. In this section, we detail the selection of subNoC
topologies for both CPU and GPU applications. Figure 14
shows the topology selection breakdown of CPU applications
within a 4×4 subNoC. In general, all applications prefer to
select the cmesh, which accounts for 85% of the overall
selection due to the sparse communication behavior of CPU
applications. However, some of the CPU applications with
more memory accesses, like CA, SW, and X264, select about
8% of the tree topology. Mesh and Torus are likely to be less
popular than cmesh and tree, both of which are only selected
by 3% and 5% on average, respectively. Figure 15 shows the
topology selection breakdown of GPU applications within a
4×8 subNoC. As compared to CPU applications, GPU appli-
cations have a greater traffic intensity, and thus demanding
increased NoC throughput. As a result, the topologies with
larger bandwidth and buffers, like mesh, torus, and tree, are
selected over 49% of the time. The cmesh is selected between
37% to 64% of the time.

2) SubNoC Size Analysis: As the RL may have different
performance in different subNoC sizes, we studied the GPU
applications in different sized subNoCs. Figure 16 shows the
packet latency and NoC energy analysis of Adapt-NoC. The
Adapt-NoC can reduce the packet latency by 5%, 12%, 17%,
and 24% as compared to Adapt-NoC-noRL in 2 × 4, 4 × 4,
4× 8, and 8× 8 subNoCs. The Adapt-NoC can achieve 28%-
35% energy reduction as compared to Adapt-NoC-noRL.

732

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

0

0.2

0.4

0.6

0.8

1

1.2

2x4 4x4 4x8 8x8

Pa
ck

et
 L

at
en

cy

Adapt-NoC-noRL

0

0.2

0.4

0.6

0.8

1

1.2

2x4 4x4 4x8 8x8

N
oC

En
er

gy

Adapt-NoC
Fig. 16. RL performance in different SubNoC sizes.

0.3

0.5

0.7

0.9

1.1

1.3

10K 50K 100K 500K 100KTh
e

im
pa

ct
s

of
 e

po
ch

 s
iz

e
on

 N
oC

po
w

er
 a

nd
 L

at
en

cy

latency power
Fig. 17. The epoch size analysis, normalized to the epoch of 50K cycles.

3) Epoch Size Analysis: As the epoch size can have a
significant impact on the system performance, we vary the
epoch size from 10K to 100K cycles in our study. Figure 17
shows that the epoch size of 50K has the best network per-
formance and power savings. When the epoch size decreases
to 10K cycles, the network latency and power consumption
increases about 17% and 15%, as compared to the epoch
size of 50K. This is due to the unstable system environment
caused by frequently switching topology. On the other hand,
the power consumption increases with a larger epoch size. This
is because the RL policy prefers to select those topologies with
higher bandwidth such as tours and tree, resulting in poorer
energy efficiency. We note that the Adapt-NoC has very similar
network latency and power consumption when the epoch size
is between 50K and 100K.

4) Discount Factor Analysis: Figure 18 shows that the
discount factor of 0.9 yields the best network performance in
terms of latency and power. The smaller discount factor only
considers the immediate reward and excludes the impacts of
future rewards. On the other hand, a larger discount factor
only considers the future rewards.

5) Exploration Rate Analysis: An ε-greedy method is used
to greedily explore the action space to yield a better policy;
however, the value of the exploration rate ε is a trade-off
between exploration and exploitation. To study the impacts
of different exploration rates on performance, we vary the
exploration rate from 0 to 0.5. Figure 19 shows that the
exploration rate of 0.05 has the best network performance in
terms of network latency and power.

VI. RELATED WORK

A. Runtime Reconfigurable NoC Designs

Application behavior has been shown to significantly vary
over time [11], [14], [49]–[51], and thus demands an adaptable
on-chip communication support. Runtime reconfiguration has
been proposed to improve NoC performance, reliability and
energy savings. SMART [52] and express virtual channel [53]
are two techniques that allow packets to dynamically skip
the intermediate routers. However, though such designs can

0.4

0.6

0.8

1

1.2

0 0.1 0.8 0.9 1Th
e

im
pa

ct
s

of
 d

is
co

un
t

fa
ct

or
 𝛾

on
 N

oC
po

w
er

 a
nd

la

te
nc

y

latency power
Fig. 18. The discount factor (γ) analysis, normalized to a γ of 0.9.

0.9

0.95

1

1.05

1.1

0 0.05 0.1 0.2 0.5Th
e

im
pa

ct
s

of
 e

xp
lo

ra
tio

n
ra

te
 ε

on
 N

oC
po

w
er

 a
nd

la

te
nc

y

latency power
Fig. 19. The exploration rate (ε) analysis, normalized to an ε of 0.05.

benefit those applications of sparse traffic load, the growing
of packet contention in high traffic load will offset their
benefits. In [54], a reconfigurable link design can dynamically
allocate channel bandwidth between adjacent routers, thereby
efficiently improving network throughput and reliability. In
[55], a reconfigurable NoC reconfigures NoC topology to
detour traffic away from the power-gated routers, improving
NoC energy efficiency. Zheng et al. [51] designed a flexible
NoC topology in the chiplet-based system to support multi-
application execution. All of these techniques are orthogonal
to the Adapt-NoC design, which could be simultaneously
deployed.

B. Heterogeneous NoC Designs

Besides the reconfigurable NoC topologies, significant re-
search [11], [16], [56]–[58] has been proposed to combine the
benefits of various topologies. A hierarchical ring topology,
with local and global rings, is designed to facilitate the
local communication within each region of the NoC using a
simple ring topology. Asit et al. [11] designed a heterogeneous
NoC consisting of two subnetworks with different bandwidth.
In addition to these heterogeneous designs, high-radix on-
chip networks [16], [57] often deploy both concentration and
bypassing techniques to keep the NoC latency scaling to
increased NoC size while maintaining the area and wiring
costs. However, these designs have restricted flexibility of
handling diverse communication behaviors of the co-running
applications.

C. Machine Learning in NoCs

Machine learning has been widely applied to aid the opti-
mization of current computer architecture designs, especially
the NoC design [59]–[69]. Yin et al. [61] explored the
use of reinforcement learning to design a self-learned router
arbitration policy, and further analyzed the observed RL ex-
perience and designed a simple yet effective NoC arbitration
policy [62]. Lin et al. [63] designed a deep RL framework
to optimize the loop placement in routerless NoCs. Wang

733

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

et al. [64] used RL to balance the trade-offs among NoC
performance, energy efficiency, and reliability. Won et al. [65]
proposed an artificial neural network-based DVFS technique
that can dynamically tune the voltage and frequency of the
last-level caches and NoC. Zheng et al. [59], [60] used RL to
balance the power and performance trade-offs among different
low-power techniques.

VII. CONCLUSIONS

Modern heterogeneous manycore architectures enable di-
verse computing choices for concurrent application execution.
This requires communication fabric capable of handling var-
ious traffic patterns for concurrently running applications. In
this paper, we propose Adapt-NoC, a learning-enabled flexible
NoC architecture together with an RL-based control policy,
that can provide efficient communication support for concur-
rently running applications. The Adapt-NoC can dynamically
configure several disjoint regions of the NoC, called subNoCs,
with different sizes and locations for various running applica-
tions. Each of the dynamically-configured subNoC is capable
of implementing a given topology such as mesh, cmesh, torus,
or tree depending on the communication need of the running
application. In addition, we apply the reinforcement learning
(RL) to design an efficient control policy optimizing the
subNoC topology selection for a given application with the aim
of improving subNoC performance and energy-efficiency. We
evaluate the Adapt-NoC using both GPU and CPU benchmark
suites. The simulation results show that the Adapt-NoC can
achieve 34% latency reduction, 10% overall execution time
reduction and 53% NoC energy-efficiency improvement when
compared to prior work.

ACKNOWLEDGMENT

This research was partially supported by NSF grants CCF-
1702980, CCF-1812495, and CCF-1901165. We sincerely
thank the anonymous reviewers for their excellent and con-
structive feedback.

REFERENCES

[1] U. Ogras and R. Marculescu. Application-specific network-on-chip
architecture customization via long-range link insertion. In Proceed-
ings of IEEE/ACM International conference on Computer-aided design
(ICCAD), pages 246–253. IEEE, 2005.

[2] J. Stensgaard, M.and Sparsø. Renoc: A network-on-chip architecture
with reconfigurable topology. In Proceedings of ACM/IEEE Interna-
tional Symposium on Networks-on-Chip (NoCs), pages 55–64, 2008.

[3] M. Modarressi, A. Tavakkol, and H. Sarbazi-Azad. Application-aware
topology reconfiguration for on-chip networks. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 19(11), 2010.

[4] M. Kim, J. Davis, M. Oskin, and T. Austin. Polymorphic on-chip
networks. In Proceedings of International Symposium on Computer
Architecture (ISCA), pages 101–112. IEEE, 2008.

[5] B. Beckmann and D. Wood. Managing wire delay in large chip-
multiprocessor caches. In Proceedings of IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 319–330. IEEE, 2004.

[6] C. Kim, D. Burger, and S. Keckler. An adaptive, non-uniform cache
structure for wire-delay dominated on-chip caches. In Proceedings
of International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 211–222. ACM, 2002.

[7] R. Das et al. Application-to-core mapping policies to reduce memory
system interference in multi-core systems. In Proceedings of IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 107–118. IEEE, 2013.

[8] J. Lee, S. Li, H. Kim, and S. Yalamanchili. Adaptive virtual channel
partitioning for network-on-chip in heterogeneous architectures. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
18(4):48, 2013.

[9] M. Qureshi and Y. Patt. Utility-based cache partitioning: A low-
overhead, high-performance, runtime mechanism to partition shared
caches. In Proceedings of IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 423–432. IEEE, 2006.

[10] S. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, and T. Mosci-
broda. Reducing memory interference in multicore systems via
application-aware memory channel partitioning. In Proceedings of
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 374–385. ACM, 2011.

[11] A. Mishra, O. Mutlu, and C. Das. A heterogeneous multiple network-
on-chip design: an application-aware approach. In Proceedings of
ACM/IEEE Design Automation Conference (DAC), pages 1–10, 2013.

[12] F. Triviño, J. Sánchez, Fr. Alfaro, and J. Flich. Virtualizing network-on-
chip resources in chip-multiprocessors. Microprocessors and Microsys-
tems, 35(2):230–245, 2011.

[13] L. Chen, K. Hwang, and T. Pinkston. Rair: Interference reduction in
regionalized networks-on-chip. In Proceedings of IEEE International
Symposium on Parallel and Distributed Processing Symposium (IPDPS),
pages 153–164. IEEE, 2013.

[14] R. Das, O. Mutlu, T. Moscibroda, and C. Das. Application-aware
prioritization mechanisms for on-chip networks. In Proceedings of
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 280–291. ACM, 2009.

[15] J. Zhan, O. Kayıran, G. Loh, C. Das, and Y. Xie. Oscar: Orchestrating
stt-ram cache traffic for heterogeneous cpu-gpu architectures. In Pro-
ceedings of IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 1–13. IEEE, 2016.

[16] J. Kim, J. Balfour, and W. Dally. Flattened butterfly topology for on-
chip networks. In Proceedings of IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 172–182, 2007.

[17] P. Kumar, Y. Pan, J. Kim, G. Memik, and A. Choudhary. Exploring
concentration and channel slicing in on-chip network router. In Pro-
ceedings of ACM/IEEE International Symposium on Networks-on-Chip
(NoCs), pages 276–285. IEEE, 2009.

[18] D. DiTomaso, A. Kodi, and A. Louri. Qore: A fault tolerant network-
on-chip architecture with power-efficient quad-function channel (qfc)
buffers. In Proceedings of IEEE International Symposium on High
Performance Computer Architecture (HPCA), pages 320–331, 2014.

[19] J. Balfour and W. Dally. Design tradeoffs for tiled cmp on-chip networks.
In Proceedings of ACM International Conference on Supercomputing,
pages 390–401. ACM, 2006.

[20] A. Bakhoda, J. Kim, and T. Aamodt. Throughput-effective on-chip
networks for manycore accelerators. In Proceedings of IEEE/ACM
international symposium on microarchitecture (MICRO), pages 421–432.
IEEE, 2010.

[21] H. Jang et al. Bandwidth-efficient on-chip interconnect designs for
gpgpus. In Proceedings of ACM/IEEE Design Automation Conference
(DAC), page 9. ACM, 2015.

[22] W. Dally and B. Towles. Principles and practices of interconnection
networks. Elsevier, 2004.

[23] M. Kandemir, J. Zhang, Y.and Liu, and T. Yemliha. Neighborhood-aware
data locality optimization for noc-based multicores. In Proceedings of
International Symposium on Code Generation and Optimization(CGO),
pages 191–200, 2011.

[24] W. Ding, X. Tang, M. Kandemir, and E. Zhang, Y.and Kultursay.
Optimizing off-chip accesses in multicores. In Proceedings of ACM
Conference on Programming Language Design and Implementation
(PLDI), pages 131–142, 2015.

[25] J. Duato, O. Lysne, R. Pang, and T.M. Pinkston. Part i: A theory for
deadlock-free dynamic network reconfiguration. IEEE Transactions on
Parallel and Distributed Systems, 16(5):412–427, 2005.

[26] T. Rodeheffer and M.D. Schroeder. Automatic reconfiguration in
autonet. In Proceedings of ACM symposium on Operating Systems
Principles, pages 183–197, 1991.

[27] D. Teodosiu, J. Baxter, K. Govil, J. Chapin, M. Rosenblum, and
M. Horowitz. Hardware fault containment in scalable shared-memory

734

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

multiprocessors. In Proceedings of International Symposium on Com-
puter Architecture, pages 73–84, 1997.

[28] O. Lysne, T.M. Pinkston, and J. Duato. Part ii: A methodology for
developing deadlock-free dynamic network reconfiguration processes.
IEEE Transactions on Parallel and Distributed Systems, 16(5):428–443,
2005.

[29] R. Pang, T.M. Pinkston, and J. Duato. The double scheme: Deadlock-
free dynamic reconfiguration of cut-through networks. In Proceedings of
International Conference on Parallel Processing, pages 439–448. IEEE,
2000.

[30] C. Carrion, R. Beivide, J. Gregorio, and F. Vallejo. A flow control
mechanism to avoid message deadlock in k-ary n-cube networks. In
Proceedings of International Conference on High-Performance Com-
puting, pages 322–329. IEEE, 1997.

[31] L. Chen and T. Pinkston. Worm-bubble flow control. In Proceedings
of IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 366–377. IEEE, 2013.

[32] S. Ma, Z. Wang, Z. Liu, and N. Jerger. Leaving one slot empty: Flit
bubble flow control for torus cache-coherent nocs. IEEE Transactions
on Computers, 64(3):763–777, 2013.

[33] A. Ramrakhyani and T. Krishna. Static bubble: A framework for
deadlock-free irregular on-chip topologies. In Proceedings of IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 253–264. IEEE, 2017.

[34] R. Sutton, A. Barto, et al. Reinforcement learning: An introduction.
MIT, 1998.

[35] V. Mnih et al. Human-level control through deep reinforcement learning.
Nature, 518(7540):529, 2015.

[36] L. Subramanian et al. The application slowdown model: Quantifying
and controlling the impact of inter-application interference at shared
caches and main memory. In Proceedings of IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 62–75, 2015.

[37] L. Lin. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine learning, 8(3-4):293–321, 1992.

[38] N. Binkert and et al. The gem5 simulator. In ACM SIGARCH Computer
Architecture News, May 2011.

[39] N. Agarwal, T. Krishna, L. Peh, and N. Jha. Garnet: A detailed on-
chip network model inside a full-system simulator. In Proceedings of
IEEE international symposium on performance analysis of systems and
software, pages 33–42. IEEE, 2009.

[40] C. Sun and et al. Dsent a tool connecting emerging photonics with elec-
tronics for opto-electronic networks-on-chip modeling. In Proceedings
of ACM/IEEE International Symposium on Networks on Chip (NoCs),
pages 201–210, 2012.

[41] C. Bienia and K. Li. Parsec 2.0: A new benchmark suite for chip-
multiprocessors. In Proceedings of Annual Workshop on Modeling,
Benchmarking and Simulation, 2009.

[42] S. Che, M. Boyer, J. Meng, D. Tarjan, JW Sheaffer, S. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Proceedings of IEEE international symposium on workload charac-
terization (IISWC), pages 44–54, 2009.

[43] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson, and
P. Bose. Microarchitectural techniques for power gating of execution
units. In Proceedings of the IEEE/ACM international symposium on
Low power electronics and design (ISLPED), pages 32–37, 2004.

[44] Bohnenstiehl et al. A 5.8 pj/op 115 billion ops/sec, to 1.78 trillion
ops/sec 32nm 1000-processor array. In Proceedings of IEEE Symposium
on VLSI Circuits (VLSI-Circuits), pages 1–2, 2016.

[45] P. Moon, V. Chikarmane, K. Fischer, et al. Process and electrical results
for the on-die interconnect stack for intel’s 45nm process generation.
Intel Technology Journal, 12(2), 2008.

[46] M. Besta et al. Slim noc: A low-diameter on-chip network topology
for high energy efficiency and scalability. In Proceedings of ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 43–55. ACM, 2018.

[47] AK Mishra, N. Vijaykrishnan, and C. Das. A case for heterogeneous on-
chip interconnects for cmps. In Proceedings of IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 389–400, 2011.

[49] A. Mirhosseini, M. Sadrosadati, B. Soltani, H. Sarbazi-Azad, and
T. Wenisch. Binochs: Bimodal network-on-chip for cpu-gpu heteroge-
neous systems. In Proceedings of IEEE/ACM International Symposium
on Networks-on-Chip (NoCs), pages 7–15. ACM, 2017.

[48] N. Weste and D. Harris. CMOS VLSI design: a circuits and systems
perspective. Pearson Education, 2015.

[50] Y. Yao and Z. Lu. inpg: Accelerating critical section access with in-
network packet generation for noc based many-cores. In Proceedings
of IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 15–26. IEEE, 2018.

[51] H. Zheng, K. Wang, and A. Louri. A versatile and flexible chiplet-based
system design for heterogeneous manycore architectures. In proceedings
of ACM/IEEE Design Automation Conference (DAC), pages 1–6, 2020.

[52] O. Chen et al. Smart: a single-cycle reconfigurable noc for soc
applications. In Proceedings of the Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 338–343. IEEE, 2013.

[53] A. Kumar, L. Peh, P. Kundu, and NK Jha. Express virtual channels:
Towards the ideal interconnection fabric. In Proceedings of International
Symposium on Computer Architecture (ISCA), 2007.

[54] Mohammad Al F. et al. Configurable links for runtime adaptive on-chip
communication. In Proceedings of the Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 256–261. IEEE, 2009.

[55] P. Ritesh, D. Reetuparna, and B. Valeria. Power-aware nocs through
routing and topology reconfiguration. In Proceedings of ACM/IEEE
Design Automation Conference (DCA), June 2014.

[56] R. Das et al. Design and evaluation of a hierarchical on-chip intercon-
nect for next-generation cmps. In Proceedings of IEEE International
Symposium on High-Performance Computer Architecture (HPCA), pages
175–186. IEEE, 2009.

[57] B. Grot, J. Hestness, S. Keckler, and O. Mutlu. Express cube topolo-
gies for on-chip interconnects. In Proceedings of IEEE International
Symposium on Hig-Performance Computer Architecture (HPCA), pages
163–174. IEEE, 2009.

[58] H. Zheng and A. Louri. Ez-pass: An energy & performance-efficient
power-gating router architecture for scalable nocs. IEEE Computer
Architecture Letters, 17(1):88–91, 2018.

[59] H. Zheng and A. Louri. An energy-efficient network-on-chip design
using reinforcement learning. In Proceedings of ACM/IEEE Design
Automation Conference (DAC), pages 1–6, 2019.

[60] H. Zheng and A. Louri. Agile: A learning-enabled power and
performance-efficient network-on-chip design. IEEE Transactions on
Emerging Topics in Computing, 2020.

[61] J. Yin et al. Toward more efficient noc arbitration: A deep reinforcement
learning approach. In Proceedings of the 1st International Workshop on
AI-assisted Design for Architecture (AIDArc), 2018.

[62] J. Yin, S. Sethumurugan, Y. Eckert, A. Smith, Patel C., Morton E.,
M. Oskin, and Loh GH. Enright Jerger, N. Experiences with ml-
driven design: A noc case study. In Proceedings of IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2020.

[63] T. Lin, D. Penney, M. Pedram, and L. Chen. A deep reinforcement
learning framework for architectural exploration: A routerless noc case
study. In Proceedings of IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020.

[64] K. Wang, A. Louri, A. Karanth, and R. Bunescu. Intellinoc: a holistic
design framework for energy-efficient and reliable on-chip communi-
cation for manycores. In Proceedings of International Symposium on
Computer Architecture (ISCA), pages 589–600, 2019.

[65] JY Won et al. Up by their bootstraps: Online learning in artificial neural
networks for cmp uncore power management. In Proceedings of IEEE
International Symposium on High Performance Computer Architecture
(HPCA), pages 308–319. IEEE, 2014.

[66] K. Wang, H. Zheng, and A. Louri. Tsa-noc: Learning-based threat
detection and mitigation for secure network-on-chip architecture. IEEE
Micro, 40(5):56–63, 2020.

[67] Y. Chen and A. Louri. Learning-based quality management for
approximate communication in network-on-chips. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
39(11):3724–3735, 2020.

[68] K. Wang and A. Louri. Cure: A high-performance, low-power, and
reliable network-on-chip design using reinforcement learning. IEEE
Transactions on Parallel and Distributed Systems, 31(9):2125–2138,
2020.

[69] Y. Li and A. Louri. Alpha: A learning-enabled high-performance
network-on-chip router design for heterogeneous manycore architec-
tures. IEEE Transactions on Sustainable Computing, 2020.

735

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:24:03 UTC from IEEE Xplore. Restrictions apply.

