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ABSTRACT A number of techniques to achieve power-efficient Network-on-Chips (NoCs) have been pro-
posed, two of which are power-gating and dynamic voltage and frequency scaling (DVFS). Power-gating
reduces static power, and DVFS reduces dynamic power. With the goal of reducing both static and dynamic
power, it is intuitive to simultaneously deploy both techniques. However, we observe that the straightforward
combination of power-gating and DVFS can result in reduced power benefits and degraded performance. In this
article, we uniquely combine power-gating and DVFS with the aim of maximizing the NoC power savings and
improving performance. The proposed NoC design, called Agile, consists of several architectural designs and a
reinforcement learning (RL) based control policy to mitigate the negative effects induced by the combined
power-gating and DVFS. Specifically, a simple bypass switch is deployed to maintain network connectivity,
avoiding frequently waking up the powered-off router. An optimized pipeline can simplify pipeline stages of
the bypass switch to reduce network latency. Reversible link channel buffers can be dynamically allocated to
where they are needed to improve throughput. In addition, the RL control policy predicts NoC traffic and
decides optimal power-gating decisions, voltage/frequency levels and NoC architecture configurations at run-
time. Furthermore, we explore the use of an artificial neural network (ANN) to efficiently reduce the area over-
head of implementing RL. We evaluate our design using the PARSEC benchmarks suite. The full system
simulation results show that the proposed design improves the overall power savings by up to 58 percent while
improving the performance up to 11 percent as compared to state-of-the-art designs. The ANN-based RL imple-
mentation and bypass switch incur nominal area overhead of 5 percent, as compared to a conventional router.

INDEX TERMS Power gating, dynamic voltage and frequency scaling, network-on-chips, reinforcement
learning

I. INTRODUCTION

Network-on-Chips (NoCs) [1], [2], [3] have been the stan-
dard fabric interconnecting hundreds to thousands of cores,
last-level caches and memory modules in many-core sys-
tems. While NoC offers more benefits over traditional bus-
based interconnect in terms of scalability and performance, it
consumes a significant amount of the chip’s power bud-
get [4], [5], [6], [7], [8]. The power problem is exacerbated
by the continuation of technology scaling and therefore,
power-efficient NoC designs [9], [10], [11], [12], [13], [14],
[15], [16], [17] are of paramount importance.
To maximize NoC power savings, multiple techniques are

inevitably deployed in an integrated manner. For example,
power-gating is an effective technique to reduce static
power [18], [19], [20], [21], and Dynamic voltage and

frequency scaling (DVFS) is often deployed to reduce
dynamic power [22], [23], [24], [25], [26]. It is intuitive to
take advantage of power-gating and DVFS to simultaneously
reduce both static and dynamic power. However, the straight-
forward combination of power-gating and DVFS can lead to
severe performance degradation and diminished power
savings.
The performance degradation results from the wake-up

latency of power-gating [18], [27], [28] and reduced voltage/
frequency levels of DVFS [24], [26]. Specifically, the pow-
ered-off router needs to take a number of cycles to resume its
full activity, called wake-up latency. The latency overhead is
compounded by the intermittent NoC traffic which frequently
wakes up the powered-off router [18], [27]. Furthermore,
DVFS reduces the operating speed of router which makes
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the router process fewer flits in a given time, thus affecting
the network throughput. The combined use of power-gating
and DVFS could aggregate the performance penalties,
degrading system performance.
Moreover, the dynamic interaction between power-gating

and DVFS can jeopardize the efficiency of each power sav-
ing technique, reducing the overall power savings. For exam-
ple, as the NoC traffic often varies in time and space, such
varying traffic often results in inadequate DVFS decisions.
The inadequate DVFS decisions could have negative impact
on network throughput which turns to network saturation. In
this case, the idle cycles between flits are significantly
reduced. Recall that power-gating decision is made on the
idle cycles between flits. Consequently, the DVFS can hurt
the efficiency of power-gating, reducing the static power sav-
ings. We use full system simulation to analyze the adverse
consequence of a straightforward combination of power-gat-
ing and DVFS using PARSEC benchmark suite. Simulation
results show that the straightforward combined techniques
can result in 43 percent increased latency and 26 percent
reduced static power savings on average, as compared to
only using power-gating.
In this paper, we propose Agile, a reinforcement learning

(RL) based NOC design that uniquely combines the power-
gating and DVFS with the goal of maximizing power savings
and improving performance. Several architectural designs
and a per-router RL based control policy are used to mitigate
the negative effects induced by the simultaneous deployment
of power-gating and DVFS. Additionally, we explore the use
of artificial neural network (ANN) to reduce the hardware
costs of implementing the RL on a per-router basis. The
major contributions are the following:
Agile NoC architecture that includes (1) a simple bypass

switch that processes intermittent NoC traffic when the router
is powered-off, and thus avoiding frequent router wake-ups,

(2) an optimized router pipeline that simplifies pipeline
stages when using the bypass switch, and thus reducing the
network latency, and (3) reversible link channel buffers that
can be used to store intermittent flits when router is powered-
off, and dynamically allocate the bandwidth and buffers
where they are needed most to increase the throughput.
RL-based control policy that predicts NoC traffic and

selects power-gating decisions, voltage/frequency levels, and
NoC architecture configurations, thereby providing optimal
NoC performance and power savings at runtime.
ANN-based RL implementation that can efficiently mini-

mize the area overhead required by RL by storing a few
weights instead of the state-action table.
Our simulation shows that the proposed design improves

the static power savings by 40 percent, dynamic power sav-
ings by 17 percent , system performance by 11 percent, as
compared to state-of-the-art techniques. The ANN-based RL
implementation reduces the area overhead by 67 percent as
compared with a table-based RL implementation.

II. PROPOSED AGILE NOC ARCHITECTURE

In this section, we describe the details of proposed Agile
NoC architecture. The Agile NoC consists of a conventional
router, a bypass switch, reversible links and RL control as
shown in Figure 1. Specifically, we describe the conventional
router in Section II-A, the bypass switch in Section II-B,
reversible links in Section II-C. Furthermore, we discuss the
deadlock avoidance in Section II-D. The RL control is
detailed in Section III.

A. CONVENTIONAL ROUTER

The conventional router consists of virtual channels (VCs)
for storing arriving flits, crossbar for switching flits from
input ports to output ports, route computation (RC) for calcu-
lating flit route, virtual channel allocation (VA) for assigning

FIGURE 1. Agile NoC architecture consisting of a conventional router, a bypass switch, reversible links, and RL-based control policy.
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virtual channels and flow control, switch allocation (SA) for
allocating the available out ports to the flits requested, and
switch traversing (ST) for flits passing through the cross-
bar [2]. In this paper, a flit passes through the router pipeline
in four cycles.

B. BYPASS SWITCH DESIGN

1) BYPASS SWITCH ARCHITECTURE

The bypass switch provides an alternative datapath to process
intermittent NoC traffic when the router is powered-off,
avoiding the large wake-up latency. This design is motivated
by our study of NoC traffic behavior, as illustrated in
Figure 2. While significant research has shown that the inter-
mittent NoC traffic behavior results from inconstant cache
coherence activities such as request, reply and invalida-
tion [29], [30], we further study the temporal behavior of the
intermittent NoC traffic in order to remedy the prohibitive
wake-up latency. Specifically, we define two categories of
NoC traffic, namely, sporadic traffic and non-sporadic traffic.
The sporadic traffic consists of the flits that have gaps of
more than four cycles, while the non-sporadic traffic refers to
the flits that have gaps of fewer than four cycles. We observe
that approximately 73 percent of router wake-ups are caused
by the sporadic traffic. As the router has a pipeline stage of
four cycles, in this case, the pipelined router is under-utilized.
This indicates that a simple unpipelined switch is sufficient to
process the sporadic traffic when the router is powered-off.
Figure 3 depicts the proposed bypass switch. The bypass

switch consists of multiplexers (MUXs), demultiplexers
(DEMUXs), an arbiter, and a unified VC state table. As com-
pared to other NoC bypass techniques [11], [31], [32], the
proposed bypass switch can process sporadic traffic from any
input ports to desired output ports. Specifically, each input
port can store one flit in the reversible link channel buffer
(Section II-C1), because the majority of VCs are under-
utilized when flits are with large gaps of cycles. The bypass
switch consists of a 5:1 mux and an 1:5 demux, which allows
for a single flit switching. The arbiter associated with switch
arbitrates the flits in a round robin manner. When the conven-
tional router is powered-off, the unified VC table is powered-

on and used to record VC information, which is detailed in
Section II-C2.

2) BYPASS SWITCH PIPELINE OPTIMIZATION

To reduce network latency, we eliminate redundant delays of
SA and VA stages when using the bypass switch. In the con-
ventional router, the SA and VA stages take a significant por-
tion of router critical delays [33], [34] due to the complexity
of handling a large number of VCs in the arbitration [33].
However, in the case of sporadic traffic, the bypass switch
only stores one flit at each input port. This implies that the
complicated arbiters designed for the conventional router are
not necessary for the bypass switch. We take this opportunity
to use a simple arbiter to simultaneously arbitrate the VC and
output port to the request flits, thereby reducing the router
critical delays.
In this work, we modify the pipeline stages of the bypass

switch. The proposed bypass switch pipeline consists of a
modified RC stage, a simplified VA/SA stage, and a ST
stage. Specifically, the modified RC calculates the output
port of the header flit, and assigns any available VC from the
unified VC state table to the flit at each input port. The flit
with assigned VC sends the requests to the simplified VA/
SA arbiter. The simplified VA/SA will allocate the bypass
switch and VC to one of the request flits. The flits that lost
the arbitration will be assigned with a new VC. The proposed
design, therefore, can eliminate about 46 percent of the criti-
cal delay as compared to the conventional router pipeline.
The detailed critical path analysis is shown in Section V-C1.

C. REVERSIBLE LINK CHANNEL BUFFER

1) REVERSIBLE LINKCHANNEL BUFFER

ARCHITECTURE

The goal of reversible link channel buffer is to store the inter-
mittent flits when the router is powered-off, and allocate link
bandwidth to where they are needed most to increase net-
work throughput. Specifically, when the conventional router

FIGURE 2. The fraction of power-gating switching activities caused

by the trafficwhere flits arewith gaps ofmore than four cycles.

FIGURE 3. Proposed bypass switch consisting of muxes, a 5:1

arbiter, demuxes, and a unified VC state table.
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is powered-off, VCs are not available for storing the intermit-
tent flits. This requires additional buffers to store the inter-
mittent flits [28], [35], [36], [37]. Moreover, the reduced
operating speed can have negative impacts on the network
throughput. To efficiently increase the network throughput,
previous work [38], [39] dynamically allocates the link band-
width to where they are needed at most. Consequently, we
deploy the reversible link channel buffers [38] to store inter-
mittent flits and dynamically allocate the link bandwidth.
Figure 4 shows a reversible link channel buffer [38], which

consists of an inverter, two additional transistors, and four
transmission gates. Specifically, each channel buffer line con-
sists of several reversible link channel buffers. The inverter is
used to reduce the propagation delay associated with the wire.
Two additional transistors are added into the repeater to func-
tion as a channel buffer [12]. When the ‘store’ signal is
enabled, these transistors are turned off, and data can be stored
in the link. Four transmission gates are used to reverse the link
direction. By doing so, the link can be used for data transmis-
sion in both directions. For example, when the ‘Dir’ signal is
enabled, it provides backward data transmission.
In this paper, each router is connected to its adjacent

routers by four 64-bit links, which accounts for 128-bit link
bandwidths for each direction. Each link has two link revers-
ible channel buffer lines, and each line has four link revers-
ible channel buffers. We use the reversible link channel
buffer to store the data in the link when the router is pow-
ered-off and change the link directions where they are needed
to increase network throughput.

2) IMPROVED FLOWCONTROL

We propose a unified VC state table with the goal of guaran-
teeing the correct flow control between routers. The unified
VC state table coalesces all VC state tables of each input
ports, and includes additional entries to record different
power states and VC information for the following rationale.
First, as the conventional VC state table is associated with

each input port, it cannot be accessed when the router is

powered-off. The unavailable VC information can result in
packet drop or misrouting. Consequently, we unify the VC
state tables of all input ports [28], [40], and always power on
the unified VC state table for recording the VC information.
Second, the conventional VC state table only includes the

VC information, such as VC number and Credits [2]. Such
information is not sufficient to represent the changed NoC
architecture. For example, a unified VC state table requires a
new index to identify the VC information among different
input ports, and thus we add a new entry to indicate the input
port. Moreover, the number of buffers can be changed due to
the changed power state and link bandwidth. Therefore, we
add additional entries to record the varying power states and
link channel buffers.

D. DEADLOCK AVOIDANCE

The network deadlock can arise due to protocol and routing
issues. To prevent the protocol deadlock, we deploy virtual
networks (VNs) at both link channel buffer and input ports.
In this case, the reply and request packets are stored into dif-
ferent VNs, avoiding the reply-request dependency. The
routing deadlock could happen in case of circular channel
dependency or misrouting induced by improper link reverse.
We use dimensional ordered routing algorithm that places
turn restriction to prevent any circular channel dependency
in the mesh topology. While the circular channel dependence
can be avoided, the reversed link direction may misroute the
packets to a wrong direction. To address this issue, we switch
the link direction until the packets are properly drained to the
VCs of input ports.

III. PROPOSED RL-BASED CONTROL POLICY

It is challenging to simultaneously manage different power-
saving techniques and NoC configurations, as it requires to
monitor a large number of system parameters, predict the
abrupt NoC traffic, and handle the immense design space.
The problem is compounded by the dynamic interaction
between different techniques. To this end, we explore the use
of RL to automate an optimal control policy.
In this section, we describe the details of proposed RL-

based control policy. Specifically, we begin with the RL
basics in Section III-A. Furthermore, we describe the actions
of the RL policy in Section III-B, the state space and state-
action table in Sections III-C and III-D, the reward function
in Section III-E, and the ANN design for reducing RL imple-
mentation overheads in Section III-F.

A. REINFORCEMENT LEARNING BASICS

Reinforcement learning (RL) [41], [42] is a machine learning
approach in which an agent acts as a learner and decision
maker by interacting with system environment. Figure 5
illustrates the dynamic interaction between the RL agent and
the system environment: �1 The agent selects an action at
from a set of actions, A ¼ f1; . . . ;Kg, at time step t; �2 the
selected action is applied to the environment and influences
current state st and rewards rt; �3 such influence results in a

FIGURE 4. Reversible link channel buffer.
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transition to new state and reward, stþ1 and rtþ1, at the next
time step t þ 1.
The objective of action selection is to maximize the long-

term total rewards R, which is the cumulative sum of all
future rewards (rtþ1; rtþ2; :::), as illustrated in Equation 1.
The future rewards are discounted by a factor of g (0 � g �
1), called the discount factor. The discount factor determines
the weight of future rewards. For example, the agent
becomes near-sighted and only considers current rewards
when g approaches 0.

R ¼ rt þ grtþ1 þ g2rtþ2 þ � � � (1)

The RL agent explores various actions and eventually
evolves an optimal RL policy p over many time steps, where
an action-value function maps the reward of each action to
different state. For example, tabular Q-learning is one of the
RL algorithms that records the action-value function as a
Q-value table. The Q-value table is initialized with random
values for all possible (s,a) pairs. At each time step, the RL
agent selects the action based on the Q-value, and updates
the action-value table entry Q(s,a) using Equation (2) based
on action a, reward r, and new state s0. Over many time steps,
all actions and states are explored which eventually auto-
mates an optimal Q-table.

Qðs; aÞ ¼ Qðs; aÞ þ a½r þ gmaxQðs0; aÞ � Qðs; aÞ�; (2)

where a is the learning rate, g is the discount factor, and
maxQðs0; aÞ is the maximum Q value over all possible
actions in state s0.

B. ACTIONS

In RL, actions are taken to optimize the system performance.
In this work, we incorporate different power-gating decisions,
voltage/frequency levels, and NoC configurations to improve
NoC power-efficiency and performance. The power-gating
and voltage/frequency levels are dynamically selected to
reduce both static and dynamic power, however, inevitably
affect the NoC latency and throughput. Although previous
work [43], [44], [45] has studied the impacts of different NoC
latency and throughput on application performance, we come
to the similar conclusions but interpret them differently. In
our opinion, the network latency is critical to sporadic traffic,
as the sporadic traffic cannot utilize the router pipeline to over-
lap the latency. As a result, the performance improvement can
only be achieved by reducing the latency that each flit

traverses the router. On the other hand, the bandwidth is criti-
cal to non-sporadic traffic because the non-sporadic traffic can
overlap the latency using the router pipeline. In this case,
reducing the router latency cannot effectively improve the
pipeline throughput, and thereby bandwidth is becoming
important. To this end, we select the optimal NoC architecture
to reduce network latency or improve network throughput
according to the traffic behavior.
Specifically, the actions consist of five different operation

modes. Each operation mode consists of different power-
gating decisions, voltage/frequency levels, and architecture
configurations. The power-gating decisions can disconnect
the conventional router from the power supply to reduce
static power. The voltage/frequency levels are categorized to
three modes, namely, high, middle and low. The agile NoC
architecture can be configured at runtime to mitigate the neg-
ative effects of power-gating and DVFS. The operation
modes are as below:
1) Mode-0: The conventional router is powered-off, and

the voltage/frequency level is set at the low mode. In
this case, the power-gating and DVFS can reduce
dynamic and static power. The bypass switch is enabled
to process the intermittent flits that cannot utilize the
conventional router pipeline, and the optimized pipeline
is used to reduce network latency. The link bandwidths
are equally allocated to each direction, and the revers-
ible link channel buffer can store one intermittent flit in
each link at a time.

2) Mode-1: As compared to mode-0, we increase the volt-
age/frequency level to the middle mode, and thus pro-
viding higher operating speed but less dynamic power
savings. The increased operating speed is used to
reduce the latency caused by the power-gating and
DVFS. The bypass switch is enabled to process the
intermittent flits, and reversible link channel buffer is
used to store these flits.

3) Mode-2: This mode is used to extend the static power
savings at the expense of dynamic power savings. In
this case, the voltage/frequency levels are increased to
the high mode. Therefore, a high speed bypass switch
can handle more intensive NoC traffic at the expense of
dynamic power savings, as compared to mode 0-1.

4) Mode-3: This mode is designed to provide more router
throughput, as compared to mode 0-2. The conventional
router is used to increase router storage (i.g., VCs) and
provide a robust crossbar, and thus increasing the router
throughput. Since the increased number of VCs requires
complicated VA and SA which increases the critical
delay, the pipeline needs to be resumed to 4-stage. The
voltage and frequency level is set as middle mode to
save dynamic power. To compensate the reduced
throughput caused by DVFS, we use a dynamic band-
width allocation scheme [38] to dynamically allocate the
link bandwidth where they are needed at most, and the
bypass switch is allocated to the input port that has the
most of traffic in the past time epoch.

FIGURE 5. The agent-environment interaction in RL.
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5) Mode-4: This mode is used to provide highest router
throughput by increasing the voltage/frequency levels
to high mode as compared to mode-3.

C. STATE SPACE

As the RL agent makes a decision by observing the system
parameters, it is critical to make the router aware of more sys-
tem parameters to increase the prediction accuracy. In RL,
the parameters are recorded as a state vector s. In this paper,
each state has 12 system metrics related to cache and network
performance, as shown in Figure 6.

� Cache Related Metrics: As the L1 cache is attached to
the cores, the activities of the L1 cache are correlated to
the computation intensity. We, therefore, use state
attributes 1-2 to indicate the activities of a local core.
Moreover, as L2 caches are shared and distributed
across the chip, they communicate through the NoC.
These communications are good indications of overall
NoC global behavior.

� Network Related Metrics: To make the router aware of
different NoC traffic, we use state attributes 4-9 to rep-
resent the traffic intensity at each port. Moreover, flits
are often categorized into two classes called response
and request (state attributes 10-11) in NoCs. Response
flits often have priority over the request flits due to mes-
sage dependence. State attribute 12 is the PG efficiency
of a router, indicating the efficiency of the PG for dif-
ferent DVFS decisions.

D. STATE-ACTION TABLE

RL agent selects actions according to the Q-values of a given
state. Q-values for any state-action pair are recorded indepen-
dently in a per-router based state-action table. An example is
shown in Figure 7. The RL agent observes states and records
them as a vector < 0,2,2,...> in a given time t, where each ele-
ment of the vector represents a specific state. Because some
state attributes are continuous numbers, they could lead to
infinite state space and infeasible Q-learning converging time.
Therefore, these continuous numbers are discretized into finite
bins. For example, the RL agent monitors that the router was
powered-off for 10K cycles in the past 10K-cycle epoch,
which means its PG efficiency is 1 (powered-off time/epoch

time). In this paper, each state attribute has a discrete set of 5
bins, {0,1,2,3,4}.
The entire RL process is shown in Figure 7: �1 The

observed state vector < 0,2,2,...> is used to query the table
where S1 matches the state < 0,2,2,...>. In the matched entry
of Q table, Qðs1; a1Þ is of the maximum value, and thus
action a1 is selected. In this work, the "-greedy policy is
applied to explore additional action space, in which a random
action could be selected with a small probability of ". �2
Upon applying the selection action, the system will transition
to state s0 in the next time step t0. �1 By following the Equa-
tion (2), the Q-value is a sum of past rewards and immediate
reward. The immediate reward results from the action a1 and
the discounted future reward gmaxQðs0; a0Þ.

E. REWARD FUNCTION

The RL agent uses a reward function to evaluate how benefi-
cial it is to take a specific action for a given state. Typically,
choosing an action with a higher reward function tends to
result in better system performance (e.g., power savings). In
other words, the reward function instructs the RL agent to
maximize the long-term reward, which in our case implies
maximizing the overall power savings and minimizing the
network latency. Thus, we design the reward function for the
router as follows:

Reward ¼ �logðlatencyÞ � logðpowerÞ: (3)

Power refers to the NoC static power, dynamic power, and
power-gating overhead of a given router. Latency is the aver-
age read miss latency measured in the miss status holding
register. Both static and dynamic power are calculated by
DSENT model, where static power is estimated by using the
PG efficiency. Power-gating overhead is the product of num-
ber of power-gating activities and switching overhead. The
dynamic power is calculated by the number of buffer writes,
crossbar, VA and SA activities in each time epoch. To calcu-
late this average read cache miss latency, we record the time

FIGURE 6. The state attributes used in RL.

FIGURE 7. The state-action table of RL.
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difference between the issued time and the completed time of
each MSHR entry.

F. ANN FOR REDUCING RL IMPLEMENTATION

OVERHEAD

In RL, each state vector consists of a number of states, as dis-
cussed in Section III-C. When the RL agent observes any new
state-action pair, it creates a new entry in the state-action table
to record its actions and associated Q-values. Although we
discretize the parameters into finite bins for a smaller table
size, our simulation results show that the state-action table still
requires over 10 percent router area to store all state-action
pairs. To address this problem, we replace the state-action
table with an offline-trained ANN to impose lower hardware
costs. The ANN calculates the state-action table instead of
storing the entire state-action table in the router, thus eliminat-
ing the storage space for state-action pairs. It should be noted
that although prior work [46] deploys a deep convolutional
neural network to approximate the state-action table, the com-
plexity of convolutional neural network is inapplicable to
reduce hardware costs.
ANN Architecture. The proposed ANN consists of 3 layers:

an input layer, a hidden layer and an output layer. Each layer
consists of multiple neurons. The Sigmoid and Relu functions
are used for the hidden and output layers, respectively. The
sizes of the input and output layers depend on the designs of
the state and action space. A more detailed discussion of the
hidden layer size will be discussed in Section VI-B.
Training and Inference Details. In offline training, the

ANN takes each state-action entry as a training sample.
The state vector is used as the input of the ANN, and Q
values are used as the desired output values. Note that
the input values are normalized in the range of 0 to 1
due to the nonlinearity of the sigmoid function. We use

the mean square error function to calculate the error
between the output of the ANN and the desired values,
and then we use mini-batch gradient descent to back
propagate this error to the hidden layer to tune the
weights. The batch size is set to 100 in this work. For
the offline approach, we use 0.001 as the learning rate
because the accuracy is more important than the speed.
Figure 8 shows a walkthrough example of using anANN.�1

S1 < 0,2,2,...> is monitored by an RL agent, which is used as
the input value of the ANN.�2 The network calculates the input
values layer by layer and then delivers five values to the output
layer, Qðs1; a0Þ, Qðs1; a1Þ, Qðs1; a2Þ, Qðs1; a3Þ and Qðs1; a4Þ.
The action with the highest Q-value will be selected.

IV. EVALUATION

We evaluate the proposed architecture using full system simu-
lation with the combination of architecture-level and circuit-
level simulators. The cycle-accurate gem5 simulator [47]
enhanced with GARNET [48] is used for detailed timing
simulation of the memory and on-chip network. We use
DSENT [49] to evaluate power consumption and use a Syn-
opsys design compiler with the 45 nm FreePDK45 Open Cell
Library [50] to evaluate the area overheads. Table 1 shows the
specific parameters used in the simulation. For fair compari-
son, the baseline has the same number of buffers as the Agile
design. We assume 4 128-bit buffers per VC and 4 VCs per
VN in the baseline router. In the Agile NoC, we assume 2
128-bit buffers per VC and 4 VCs per VN for each router.
Each reversible link has 8 64-bit buffers, which can store 4
128-bit flits. We analyze our framework with the PARSEC
benchmark suite, in which different application characteriza-
tions, traffic load and phase behavior, are considered [51]. For
example, the applications, flumindiate and ferret applications,
are composed of substantial synchronization primitives, lead-
ing to frequent phase changes.
A C++-based RL algorithm is implemented with GAR-

NET simulator to provide closed-loop simulation. Since the
learning rate a, the discount rate g, and exploration rate � are
hyper-parameters, we set learning rate a to 0.1, discount fac-
tor g to 0.95, and set exploration rate � to 0.1. The studies of
these parameters are detailed in Section VI.
For ridge regression, we create the training sets by profil-

ing 10 million cycles of each application. A python-based
machine learning tool [52] is used to train the ridge

FIGURE 8. The ANN calculates the Q-values instead of using a

state-action table.

TABLE 1. Key simulation parameters.

# of cores 64 out-of-order CPUs, ALPHA, 2GHz

Router 4-stage pipeline
L1 private I/D cache 64 KB, 4-way, 1 cycle, LRU
L2 shared cache 1 MB, 16-way, 6 cycle, LRU
Cache block size 64 Bytes
Buffer size 4 buffers/VC, 4 VCs/VN (Baseline)
Protocol MESI
Memory latency 128 cycles
Topology 8�8 Mesh, XY routing
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regression model, and we feed the trained results to GAR-
NET for the closed-loop simulation.
We assume voltage levels from 0.6 V to 1 V and frequen-

cies from 1 GHz to 2 GHz. The voltage and frequency levels
are 2GHz/1V, 1.5GHz/0.8V, and 1GHz/0.6V for high, middle
and low modes respectively. Upon receiving a decision from
the RL agent, the DVFS controller selects the appropriate V/F
for saving the router’s dynamic power every 10 K cycles. We
set the voltage regulator transition latency to 100 ns [53]. The
wake-up latency of power-gating are set as 8 ns [27].
The simulation framework consists of the following

components:
(1) Baseline: A baseline NoC architecture is without the

deployments of power-gating and DVFS.
(2) NORD [27]: A per-router-based power-gating is imple-

mented to save static power, where an additional bypass
ring is implemented to route the packets when the router
is powered-off.

(3) LEAD [54]: A per-router-based DVFS is implemented
to save dynamic power. A supervised learning algo-
rithm, ridge regression (RR), is used to select the volt-
age and power levels.

(4) RR: The NoC can choose different power-gating deci-
sions, voltage/frequency levels and architecture config-
urations. Ridge regression [54] is used to select the
operation modes as described in Section 4.2. We use
the same threshold as the LEAD to set the threshold for
categorizing the traffic, which is used for the training
and inference stages of ridge regression.

(5) Agile: The proposed design can move into different
power levels and architecture configurations to maxi-
mize the power savings and improve performance. An
RL-based control policy is used to select the optimal
operation mode at runtime.

V. RESULTS

A. POWER CONSUMPTION ANALYSIS

1) DYNAMIC POWER CONSUMPTION ANALYSIS

Figure 9 shows the dynamic power consumption analysis.
The dynamic power savings mainly result from the
reduced voltage/frequency levels. As the NORD only

integrates power-gating, it has the maximum dynamic
power which is close to the baseline. LEAD and RR have
similar dynamic power reductions as compared to the base-
line. The RR has 5 percent more dynamic power consump-
tion as compared to the LEAD. The agile has the highest
dynamic power savings on average, which has up to 17 per-
cent more dynamic power savings as compared to super-
vised learning based techniques (i.e., ridge regression).
However, agile performs worse in some applications as
compared to RR, such as x264, ferret, and flumindiate.
These applications sometimes have frequent phase changes,
leading to bursty NoC traffic. The RR is optimized for
dynamic power savings and could fail to identify the tran-
sient traffic burst because it only monitors the average net-
work utilization of each time epoch. As a result, the RR
selects reduced voltage/frequency for reducing dynamic
power. For agile, it is optimized for both static and dynamic
power while considering a number of system parameters. In
this case, it increases the static power savings at the
expense of dynamic power savings with the aim of maxi-
mizing the overall power savings. Specifically, a high speed
switch can handle more intensive NoC traffic to extend the
powered-off time of conventional router.

2) STATIC POWER CONSUMPTION ANALYSIS

Figure 9 shows the static power consumption analysis. The
static power savings result from the deployment of power-
gating. LEAD is only integrated with DVFS and, therefore,
has the least static power savings which are similar to that of
baseline. We normalize the static power to baseline. NORD
with a bypass ring provides an alternative way to route the
intermittent flits, extending the sleep time, and saving
76 percent more static power than LEAD. RR has an average
of 23 percent more static power savings than LEAD. How-
ever, we observe that in some applications (e.g., x264, ferret,
and flumindiate), RR has worse performance than NORD
because we proactively enable power-gating rather than reac-
tively using power-gating, as in NORD. RR performs worse
under more intensive traffic. Agile has 40 percent more static
power savings than NORD because of the simplified pipeline
stages and better network scalability.

FIGURE 9. The overall router power consumption comparison, normalized to the baseline.
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3) OVERALL POWER CONSUMPTION ANALYSIS

Figure 9 shows the overall power consumption. The agile has
an average of 68, 58, 46, and 27 percent more overall power
savings compared to baseline, LEAD, NORD, and RR. As
static power takes a significant portion of the overall power
consumption, LEAD, only with DVFS, has the least overall
power savings. NORD, only with power-gating, cannot
reduce the dynamic power and, therefore, has the second least
overall power savings. RR and Agile have both power-gating
and DVFS, thus reducing both static and dynamic power con-
sumption. However, agile yields better overall power savings
due to more accurate traffic prediction and better trade-off
between dynamic and static power savings.

B. PERFORMANCE ANALYSIS

1) EXECUTION TIME ANALYSIS

Figure 10 shows the performance analysis for various techni-
ques. Agile has 5, 7, and 11 percent more execution time
reduction than NORD, RR, and LEAD. LEAD has the longest
execution time, which implies that the DVFS performance
loss is inevitable even with an accurate traffic prediction. RR
has significant performance improvement as compared to
LEAD because the bypass switch and reversible links are
implemented to improve network performance. When we
compare the performance between supervised learning and
RL, RL has better performance over the supervised learning.
This is because agile can more accurately capture the dynamic
interactions between each time epoch. We note that agile only
imposes 2 percent execution time overhead as compared to
the baseline.

2) NETWORK LATENCYANALYSIS

Figure 11 shows the network latency analysis. The execution
time is often related to network latency [55], though applica-
tions have different sensitives to the network latency. This is
because the higher network latency can delay requests and
responses of coherence messages, and slow down the data
transmission, resulting in poor system performance. Agile
has 8, 11, and 23 percent network reduction compared with
NORD, RR, and LEAD. LEAD has the highest network
latency, which implies that the DVFS performance loss is
more than the optimized power-gating technique. When
comparing the performance between supervised learning and
RL, RL has better performance over the supervised learning.
As compared to baseline, agile only incurs 6 percent addi-
tional network latency.

3) INJECTION RATE ANALYSIS

Figure 12 shows the injection rate analysis. Agile, NORD,
RR, and LEAD have 2, 7, 10, and 16 percent injection rate
reductions as compared to the baseline, respectively. As the
injection rate reduction mainly results from inadequate injec-
tion throughput and increased network latency. The inade-
quate injection throughput makes the flits congested at the
injection port; and increased network latency delays the pro-
cess of request-reply in cache coherence. As the agile is capa-
ble of processing the intermittent flits without delaying the
request-reply and reversing the injection port to avoid flit
congestion, it barely affects the injection rate even power-
gating and DVFS are deployed.

C. OVERHEAD ANALYSIS

1) CRITICAL PATH ANALYSIS FOR ROUTER PIPELINES

To verify the critical delay of the proposed designs, we use
Synopsys to evaluate the critical path delays of the pipeline
stages with the PDK 45 nm library. In a conventional router,
the RC, VA, SA, and ST stages take 0.24 ns, 0.45 ns, 0.33 ns,
and 0.59 ns, respectively. The additional logic added to the
RC stage incurs a 0.1 ns critical delay, and the 5:1 allocator
incurs a 0.15 ns critical delay. A simple switch only incurs a
0.26 ns critical delay. The bypass route only incurs a 0.75 ns
critical delay in total, which accounts for 46 percent of the crit-
ical delay of conventional routers. As a result, the critical
delay of the bypass switch can fit into two cycles at 2GHz.

FIGURE 10. Overall execution time comparison, normalized to the

baseline.

FIGURE 11. Network latency comparison, normalized to the

baseline.

FIGURE 12. Injection rate comparison, normalized to the

baseline.
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2) TIMING OVERHEAD FOR ANN CALCULATION

We define the timing overhead as the time that ANN calcu-
lates Q-values. The timing overhead depends on the number
of hardware resources in the RL agent. In this paper, we
assume one adder and one multiplier for the ANN, which con-
sists of 12 neurons in the input layer, 20 neurons in the hidden
layer, and 5 neurons at the output layer. With this design, the
ANN calculation incurs 330 ns latency. This latency can be
overlapped by a large epoch equal to 10 K cycles.

3) AREA OVERHEAD FOR IMPLEMENTING RL

We evaluate the hardware cost through Synopsis Design
Vision using 45 nm technology. Table 2 shows the areas of
different NoC components, including the crossbar, SA, VA,
router buffers, RL implementation, and reversible link chan-
nel buffers. The baseline router consists of a crossbar of
17806 um2, an SA of 4589 um2, a VA of 9066 um2, and buf-
fers of 197480 um2. The neural network requires an ALU
(e.g., multiplier, sigmoid function) and storage. The total area
of the overhead of the ANN is 8353 um2. The modified RC,
the unified VC table, the switch arbiter and the reversible links
account for 83959 um2 in total.
The bypass switch and ANN only incur about 5 percent

area overhead as compared to a conventional router. The
reversible link channel buffers can reduce about 17 percent
area overhead as compared to register-based router buffer. In
total, Agile requires 3 percent less area than baseline. The
ANN-based RL implementation results in 67 percent less
overhead than the table-based RL implementation by remov-
ing the SRAM storage for the large Q-table.

VI. SENSITIVITY STUDY

A. IMPACTS OF EPOCH SIZE ON SYSTEM

PERFORMANCE

To study the impact of different epoch sizes on performance,
we vary the epoch size from 500 to 20000 cycles. Figure 13
shows that the epoch size of 10K has the best network
latency performance and energy efficiency. As the voltage

regulator imposes a large transition latency of 100 ns, a
smaller epoch size could frequently stall the system and neg-
atively impact the network latency. Figure 13 shows that the
network latency is affected by the transition latency when the
epoch size ranges from 0.5 K to 1 K cycles. A larger epoch
size can impact the performance due to the coarse-grain con-
trol, and the simulation results show that the epoch size can
lead to approximately 4 percent more energy consumption.

B. IMPACTS OF HIDDEN LAYER SIZE ON ANN

The activation function and number of neurons used in the
hidden layer of the ANN can affect the accuracy of calculat-
ing Q(s,a), thereby determining the network performance. To
obtain the optimal performance, we study the ANN accuracy
using different types of activation functions and numbers of
neurons in the hidden layer. We first explore the use of relu
and sigmoid functions. Figure 14 shows that the sigmoid
function can achieve higher prediction accuracy when the
hidden layer is smaller than 20. When using the sigmoid
function, the hidden layer size of 5, 10, 15, 20 and 25 neu-
rons yield accuracies of 80, 87, 90, 96 and 97 percent,
respectively, compared with a state-action table. This implies
that the accuracy of this network can approach 1 when the
hidden layer size equals 20. In this case, a larger number of
hidden layer size could barely improve the prediction accu-
racy but require additional timing and area overhead to calcu-
late and store the weights. Thus, we only apply a single
hidden layer to approximate the cost-prohibitive Q-table.

C. IMPACTS OF DISCOUNT FACTOR ON THE RL

To understand the impacts of discount factor on the system
performance, we vary the discount factor from 0.1 to 1.
Figure 15 shows the results of different discount factors. We
observe that a larger discount factor considers the system
performance to a greater extent, while a smaller discount fac-
tor only considers the power savings. This outcome is due to
the fact that the smaller discount factor only considers the
immediate reward and excludes the impacts of future
rewards. As a result, the near-sighted policy prefers selecting
an action with lower power consumption. Compared with a
g of 0.1, a g of 0.95 yields 13 percent latency reduction but
4 percent energy penalties. On the other hand, compared

TABLE 2. NoC area (um2).

RC VA SA Crossbar Buffer Link RL Total

Baseline 429 9066 4589 17806 197480 269 N/A 229639
Agile 785 9066 4773 18176 98740 82417 8353 221311

FIGURE 13. Analysis of the epoch size, normalized to 10K cycles.

FIGURE 14. Accuracy analysis of the ANN using different sizes of

the hidden layer.
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with a g of 1, a g of 0.95 has similar performance but 3 per-
cent more energy savings.

D. IMPACTS OF EXPLORATION RATE ON RL

To study the impacts of different exploration rates on perfor-
mance, we vary the exploration rate from 0 to 0.5. Figure 16
shows that the exploration rate of 0.1 has the best network
latency performance and energy efficiency. When the explo-
ration rate approaches 0, the policy only uses current policy
without any exploration. Since we initialize the policy with
reduced voltage/frequency levels, and thus the exploration
rate of 0 can lead to 20 percent more latency and 4 percent
more energy than the optimal point. For a larger exploration
rate, the policy aggressively explores the actions that lead to
both performance and energy loss. An exploration rate of 0.5
corresponds to approximately 10 percent latency penalty and
20 percent energy penalty overheads.

VII. RELATEDWORKS

A. POWER GATING

In [18], authors proposed to use look-ahead of routing to early
wake up the powered-off routers. However, the early wake-up
signal cannot fully overlap the wake-up latency which still
results in significant network latency. In [19], a fine-grained
power-gating scheme has been proposed to dynamically
power off different router components. However, the resulting
power supplies require prohibitive hardware costs as
compared to the coarse-grained power-gating schemes.
NoRD [27] implemented a bypass ring network to handle
intermittent flits when routers are powered-off. The bypass
ring can effectively extend the power-gating benefits and
avoid frequent router wake-ups, but it suffers from the scal-
ability issue when NoC size increases. Powerpunch [56]
improves power-gating efficiency by sending an early wake-
up signal to the powered-off router while the NI is processing
the packet. The early notification can wake up the router
before the flits arrive. By doing so, the full wake-up latency
can be hidden but at the expense of reduced powered-off time.
In MP3 [57], the authors used a Clos topology to provide mul-
tiple paths for different pairs of source and destination. The
intermittent flits can select alternative ways to reach their des-
tinations without waking up powered-off routes. However,
the high-radix nature of the Clos network used is cost

prohibitive. In [58], authors proposed a multi-network design
to maintain the network connectivity. However, the sub-net-
work design results in reduced channel bandwidth, leading to
additional serialization latency. Router parking [59] proac-
tively powers off a set of routers and uses an adaptive routing
algorithm to detour the packets. However, the detoured pack-
ets still requires additional network latencies, affecting appli-
cation performance. Dim-NoC exploits non-volatile memory
technologies to replace power-hungry SRAM-based NoC buf-
fers [60], however, requires significant amount of time over-
head for buffer write. Panthre [61] deploys a reconfigurable
NoC topology which detours the packets to avoid frequent
router wake-ups, trading NoC performance for additional
power reduction. SMART [62] uses XY-YX routing and map-
ping policy to aggregate traffic load to dedicated path between
source and destination. However, the XY-YX routing could
result in uneven network utilization. SPONGE [63] allows the
packets to traverse straightforward without waking up the
routers, thereby maximizing static power reduction.

B. DVFS

In [64], DVFS is effectively applied to support on-chip voltage
scaling by deploying on-chip voltage regulators. Shang
et al. [65] exploited DVFS to change the voltage and frequency
levels of individual links according to historical link and input
buffer utilization. Ogras et al. [22] proposed a state feedback
approach to predict the workload and achieve better perfor-
mance-power trade-off. In [24], Chen et al. proposed a
throughput-driven and a latency-based PI controller for last
level caches and NoC, both with dynamic reference points.
In [66], the authors used cache-coherence communication
properties to predict the NoC traffic and set voltage and fre-
quency. In [23], the authors used shared communication char-
acteristics to categorize the critical information, which results
in better power savings. In [54], the authors used a supervised
learning algorithm, ridge regression, to predict network utiliza-
tion. In [25], zhou et al. took advantage of the varying timing
to merge or separate the router pipeline stages, minimizing the
performance overhead caused by reduced router frequency.
Similarly, in [67], [68], authors proposed reconfigurable
arbitration and allocation logic which adapts to the frequency
scaling, maintaining the router performance. Furthermore, sig-
nificant research [69], [70] reduced frequency of NoC routers

FIGURE 15. Analysis of the discount factor g normalized to a g

of 0.95.

FIGURE 16. Analysis of the exploration rate � normalized to an

� of 0.1.
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(e.g., buffers, crossbar) to compensate the additional router
resources, thereby improving NoC throughput.

C. MACHINE LEARNING IN COMPUTER

ARCHITECTURE

In [71], Bai et al. proposed to use the RL to select different
types of voltage regulator to yield optimal performance and
power improvements. Yin et al. [72] proposed a self-learned
NoC arbitration policy to improve arbitration efficiency. The
RL dynamically analyzes various network parameters to auto-
mate a policy that reduces network latency. Wang et al. [73],
[74] used the RL to balance the trade-offs among NoC perfor-
mance, energy efficiency, and reliability. Specifically, the RL
is used to dynamically analyze the dynamic interactions
among techniques used for improving NoC fault-tolerant.
Won et al. [75] proposed an artificial neural network-based
DVFS technique that dynamically tunes the voltage and fre-
quency of the last-level caches and NoC. Zheng et al. [76]
exploited the use of reinforcement learning to balance the
static and dynamic power savings, thereby maximizing over-
all NoC energy savings. In [77], authors proposed to use deep
reinforcement learning to control the number and frequency
of heterogeneous cores, and thus resulting in optimal power
and performance. Li et al. [78] exploited the use of supervised
learning in router design to identify and predict the variation
of traffic pattern in heterogeneous manycore architectures.

VIII. CONCLUSION

In this paper, we proposed Agile, a reinforcement learning
(RL)-based NoC design that uniquely combines power-gating
and DVFS with the goal of maximizing NoC power savings
and improving performance. Several architecture designs and
an RL-based control policy are proposed to mitigate the nega-
tive effects induced by the combined power-gating and
DVFS. The Agile architecture includes (1) a bypass switch
that avoids frequently waking up the powered-off router, (2)
an optimized bypass pipeline that eliminates unnecessary
pipeline stages of the switch to reduce network latency, and
(3) the reversible links that can be dynamically allocated to
where they are needed to improve network throughput. In
addition, we use RL to automate a control policy that can
select the voltage/frequency level, power-gating decisions,
and optimal architecture configurations to provide optimal
power savings and performance. Moreover, we explore the
use of an artificial neural network (ANN) to efficiently imple-
ment RL with minimum storage spaces. Our simulation
results show that agile can achieve up to 58 percent overall
power savings and 11 percent execution reduction as com-
pared to state-of-art designs. The ANN-based RL and bypass
switch incur nominal area overhead of 5 percent as compared
to a conventional router.
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