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Abstract—Network-on-Chips (NoCs) have emerged as the stan-
dard on-chip communication fabrics for multi/many core systems
and system on chips. However, as the number of cores on chip
increases, so does power consumption. Recent studies have shown
that NoC power consumption can reach up to 40% of the
overall chip power [1]–[3]. Considerable research efforts have
been deployed to significantly reduce NoC power consumption.
In this paper, we build on approximate computing techniques
and propose an approximate communication methodology called
DEC-NoC for reducing NoC power consumption. The proposed
DEC-NoC leverages applications’ error tolerance and dynami-
cally reduces the amount of error checking and correction in
packet transmission, which results in a significant reduction in
the number of retransmitted packets. The reduction in packet
retransmission results in reduced power consumption. Our cycle
accurate simulation using PARSEC benchmark suites shows that
DEC-NoC achieves up to 56% latency reduction and up to 58%
dynamic power reduction compared to NoC architectures with
conventional error control techniques.

Index Terms—Approximate Communication, Error Control,
Energy Consumption, Networks-on-Chip (NoCs)

I. INTRODUCTION

Networks-on-chips (NoCs) are becoming standard commu-
nication solutions for connecting multiple processing cores
on chip [4]–[6]. To mitigate communication errors in NoCs,
error correction techniques such as error control codes (ECCs)
and automatic repeat query (ARQ) are commonly used. Such
techniques rely on redundant bits and retransmission to check
and correct errors. Previous research [7], [8] shows that
both ECC and retransmission techniques incur high power
consumption and high latency with an increase in on-chip
communication traffic.

Recent research has shown that several approximate com-
puting applications, such as pattern-recognition, image pro-
cessing, and scientific-computing, can tolerate errors while
yielding acceptable approximate results [9]–[13]. We observe
that error resilient applications can tolerate errors and therefore
do not require full data accuracy. This implies that current error
control techniques, which provide full error coverage, impose
expensive and excessive data protection for these applications.
This inspired us to re-examine NoC error control techniques
for these applications, with the aim of reducing communication

power consumption. The proposed framework, DEC-NoC,
consists of a dynamic error control scheme and its hardware
support. DEC-NoC can dynamically adjust the amount of data
protection (i.e the number of bits to be protected by error
control hardware) based on the application’s error tolerance.
We show that DEC-NoC decreases the amount of retransmitted
packets, which results in significant improvement in power
consumption and end-to-end latency. Specifically the contri-
butions of this work include:
• An approximate communication technique, which dy-

namically configures the error correction length of a data
packet by utilizing the relaxed accuracy constraints of a
given application.

• A hardware implementation for implementing the pro-
posed technique in NoCs.

• Performance evaluation of the proposed technique show-
ing the reduction of end-to-end latency by up to 56% and
power reduction by up to 58% compared to conventional
error control techniques, such as ARQ with cyclic redun-
dancy check(CRC) and ARQ with single error correction
and double error detection (SECDED).

II. MOTIVATION AND CHALLENGES

A. Motivation
Time-consuming and costly communication. Increasing

data movement of emerging big-data applications results in
heavy NoC communication loads. Communication takes rela-
tively more time for running tasks (compared to computation)
of parallel applications with the increase of the number of
compute elements (processing core) in the systems [14], [15].
Communication is also more costly compared to computation
in terms of energy consumption [14]–[16]. Error control
techniques are often deployed in NoCs to mitigate all kinds of
communication errors. However, the error control techniques
introduce more communication overhead and higher power
consumption as were shown in [7], [8]. It is therefore imper-
ative to revisit these techniques for error tolerant applications
using approximation.

Error tolerance of applications. Several applications have
been identified to be tolerant to inaccuracies and therefore
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do not need exact data for computation. These applications
include recognition, mining and synthesis [12], [13], [17],
[18]. The data error tolerance or threshold is defined as the
maximum acceptable accuracy loss of a value. For example,
if the value of 100 has the data error threshold of 10%, the
computation can accept the value within the range from 90 to
110. We exploit this error resiliency to reduce the overhead
of error control techniques. Therefore, communication data
can be approximated for performance improvement and energy
efficiency.

B. Challenges

Maintaining output quality. Controlling errors while ap-
proximating is required to ensure output quality. To ensure
the quality of output, previous research proposed an EnerJ
framework [19] which can be used by programmers to an-
notate approximable sections of the data in an application.
Other research [20] have proposed to differentiate overall
output quality and individual data errors, as overall output
quality varies with the change in the approximation error
of the individual elements. This implies that an approximate
communication technique should be able to control error rate
individually in each packet and across the whole application
execution.

Low overhead of approximation. An approximation com-
munication technique requires approximation logic (including
hardware support) to control errors for guaranteed output
quality. Approximation logic incurs overhead in terms of
area, latency, and energy. The implementation needs to be
carefully designed so that overheads of approximation do not
exceed the energy and performance gain from approximate
communication.

III. DEC-NOC FRAMEWORK

The essence of our proposed approximate communication
framework, DEC-NoC, is to carefully use the application error
threshold and reduce the amount of retransmissions by limiting
the number of bits checking at the source and destination.
Reduction in the number of bits checking (error correction
length) decreases the chance of retransmission, which will
result in decreasing in overhead communication traffic in
NoC. The decrease in communication overhead eventually
translates into a reduction of NoC power consumption. In this
work, we focus on approximating data packets, containing
both integer and floating-point values. We assume the error
threshold requirement is provided by the application and is
readily available at the communication protocol level. We
initially analyze error correction length for floating point and
integer values based on the data error threshold in Sec. III-A.
In Sec. III-B, we discuss the data-type conversion from integer
to floating point to reduce the error correction length based
on the data precision. Finally, we give an example on the
operation of DEC-NoC technique in Sec. III-C.

A. Error Correction Length Calculation for Floating Point
and Integer Data

Eqs. 1 and 2 show the representation of single precision
floating point value based on IEEE 754 standard [21].

float = (−1)S ×mantissa× 2exp (1)

mantissa = 20 +
23∑
k=1

Xk2
−k (Xk = 0 or 1) (2)

Based on the Eqs. 1 and 2, the mantissa always starts with
one. According to the IEEE 754 standard [21], when the data
is represented in the floating point data format, the first bit
of the mantissa is omitted. We observe that when c bits (of
the 23-bits mantissa) are protected, the maximum error of this
floating point data will be

∑23
k=c+1 2

−k, which is less than
2−c according to the summation of geometric progression
(
∑n

k=1 a ∗ rk−1 = a(1 − rn)/1 − r, where a is the first
term, n is the number of terms, and r is the common ratio
in the sequence). Therefore, using Eq. 2, we can deduce an
expression for data error threshold as follows:

Error threshold = 2−n (1 ≤ n ≤ 23) (3)

In the Eq. 3 above, data error threshold is a number between
0 to 1, and n is the number of protected mantissa in this
floating point value. In the floating point data, 1-bit sign and 8-
bits exponent (total 9-bits) are the critical information, which
requires protection. Thus, by protecting n + 9 bits, we can
ensure 2−n data error threshold. For example, to achieve 10%
data error threshold for any floating point value, we only
need to protect 13 most significant bits (MSBs), which yields
maximum data error of 6.25%.

Eq. 4 shows the representation of a signed integer. In a
signed integer, MSB bit represents the sign, and the rest of
the 31 bits represents the value.

int =

30∑
k=0

Xk2
k (Xk = 0 or 1) (4)

We observe that an integer with small absolute value re-
quires more protected bits to get the same data error threshold
compared to the integer with large absolute value. For ex-
ample, 31 MSBs need to be protected for integer value 10
to achieve 10% data error threshold. On the other hand, 27
MSBs need to be protected for integer value 1000 to achieve
the same data error threshold (10%).

B. Integer to Floating Point Conversion

Based on our observation, integer (especially for small
values) requires more bit protection than floating point. We
therefore convert integers to floating point representation to
reduce the number of protected bits. However, as integer has
higher precision than floating point, directly converting an
integer with large absolute value to floating point value will
cause accuracy loss. Therefore, based on Eq. 4, we define the
conversion value range (CVR) between −224 and 224, where,
in this range, an integer can be converted to a floating point
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Fig. 1. DEC-NoC technique example

value without accuracy loss, as an integer requires less than
24 bits to represent an accurate value. If an integer is within
the CVR, DEC-NoC converts the integer to floating point, and
that floating point data is defined as CIF (Converted Integer
to Float). DEC-NoC follows Eq. 3 to calculate the number
of protected bits for CIF. If an integer exceeds the CVR, the
original data is fully protected during communication. At the
destination, DEC-NoC converts the CIF back to integer to
maintain original data type. As integer has higher precision
than floating point, there will be no accuracy loss when a CIF
is converted back to an integer at the destination. As a result,
DEC-NoC ensures data error thresholds for both floating point
and integer values, and achieves the minimum amount of
protected data bits (error correction length).

C. Working Example of DEC-NoC Technique

Fig. 1 shows DEC-NoC working example of two floating
point numbers (FP1 and FP2) and two integers (I1 and I2).
In this example, DEC-NoC protects 15 MSBs (of FP1) and
13 MSBs (of FP2) at the source node to ensure the floating
point values meet the corresponding error thresholds of 3%
and 10%, respectively. When the floating point numbers reach
the receiver network interface (NI), we observe that the error
rates of 0.2% and 1.9% of the approximated floating point data
are within the error thresholds of 3% and 10%, respectively.
In the case of integer numbers, DEC-NoC only converts
integer I1, which is within the CVR. For integer I2 that
exceeds the CVR, DEC-NoC protects the full data to satisfy
accuracy requirement. When the approximated integer reaches
the destination, the receiver NI converts the CIF data back
to integer, and we observe that the errors 0.3% and 0% of
the integer numbers are also within the corresponding error
thresholds.

IV. IMPLEMENTATION OF DEC-NOC FRAMEWORK

A baseline network interface with ECC (shown in Fig. 2)
in a multi-core architecture contains packet encoder, decoder,

Core Router

Packet Encoding 

Packet Decoding

Data Packet

PacketData

Network Interface (NI)

Packet Buffers

Fig. 2. Baseline Architecture: Packet encoder applies ECC to the whole
packet. Packet decoder checks bits errors using check bits. Packet buffer stores
transmitted packet to satisfy retransmission requirement.
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Packet
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Approximated/
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Packet Encoding 

Packet Decoding

Network Interface (NI)

Packet Buffers

CIF

Fig. 3. DEC-NoC Architecture: Approximate coding logic (ACL) differ-
entiates approximate and exact transmission based on the data type and
approximation (Approx.) bit, and then calculates approximation (Approx.)
code based on error threshold. Packet encoding module applies ECC based
on the approximation code to protect bits. Packet decoding module checks for
errors in the protected bits. Data type converter converts the CIF (Converted
Integer to Float) back to integer based on conversion (Conv.) code.

and packet buffers [22]. The encoder generates check bits for
the whole data packet. The decoder checks the data for errors
using check bits. The packet buffers are used as a storage for
the transmitted packets to satisfy retransmission requirements.
When a packet is sent, it is usually stored in a buffer until an
error-free acknowledgement is received. Should there be errors
in transmission, the packet is retransmitted in the following
cycles.

The proposed DEC-NoC architecture is depicted in Fig. 3.
We modified the baseline NI and included the following
additional components: an approximate coding logic (ACL),
demultiplexers, data type converter, along with the encoder/
decoder and buffers. The approximate indicator (Approx.
bit) indicates accurate and approximable data based on the
data annotations in the application [19]. The ACL consists
of approximation (Approx.) code calculation and data-type
conversion. The ACL calculates approximation code, which
contains protection code (indicates the number of MSBs to
be protected) and conversion code (indicates whether the data
is CIF or not). The encoder generates check bits based on
both the approximation code and data bits in the packet. The
decoder checks the data for errors using approximation code.
The demultiplexer selects CIF based on conversion code, and
sends data to the data type converter for conversion.

The proposed approximate communication work flow is
discussed in Sec. IV-A. Packet encoding and decoding module
to dynamically adjust error correction length is discussed in
Sec. IV-B.

482

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:32:23 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
RELATIONSHIP AMONG ERROR THRESHOLD, ERROR CORRECTION

LENGTH, AND PROTECTION CODE

Error Threshold Error Correction Length Protection Code
0.125 12 000
0.0625 13 001
0.015625 15 010
0.001953125 18 011
0.00012207 22 100
1.52588E-05 25 101
1.90735E-06 28 110
0 32 111

A. DEC-NoC Work Flow

Fig. 4 shows the operation flowchart describing the func-
tionality of the ACL. ACL distinguishes approximable packet
from accurate packet depending on the annotations in the
application. If the packet requires accurate transmission, ACL
directly sends the packet to be encoded for full protection.
If the packet can be approximated, ACL calculates protection
code by looking up the error threshold in Table I, which is
derived from Eq. 3. If the error threshold of the packet is
between two error threshold numbers in Table I, the ACL
selects the lower error threshold level to ensure data quality.
For example, if the data error threshold is 7%, 6.25% error
threshold is selected to guarantee the data quality, and protec-
tion code 001 is generated.

The ACL also generates conversion code to identify the
data type conversion at the source. If the approximable packet
contains floating point value, the conversion code is set to 0,
as there will be no data type conversion. If the approximable
packet is an integer value, the ACL checks whether the integer
value is within the CVR. If the value is within the CVR, the
ACL converts the integer to CIF and sets the conversion code
to 1, and then looks up the protection code using Table I. If
the integer value exceeds CVR, the ACL sets conversion code
to 0 and protection code to 111, which indicates that all the
data bits require protection.

Using the example described in Fig. 1, the approximation
code for FP1 is 0010. In this approximation code, the highest
bit is a conversion code (0), and the lowest 3 bits are a
protection code (010). The approximation code for FP2 is 0001
(conversion code = 0, protection code = 001). For approx-
imable integer I1, which is within the CVR, the approximation
code is 1010. For approximable integer I2 that exceeds the
CVR, the approximation code is 0111.

After the approximation code is generated, the packet with
the approximation code is sent to the packet encoder for ECC
encoding (which is described in the next section).

B. Packet Encoding and Decoding

1) Packet Encoding: The packet encoder generates approx-
imate packet, which contains the approximation code (for
all the words in the packet) and check bits for each flit
(head/body/tail flit). The check bits are generated based on the
flit type and protection code for each word. The work flow of

Approximable?

Conversion code = 0
Calculate Protection code

Data

Int or Float?

Convert Int to 
CIF

Int

Float

YN

 Value within 
CVR?

Y

N

Conversion code = 1
Calculate Protection code

ECC 
Encoding

Conversion code = 0
Protection code = 111

Conversion code = 0
Protection code = 111

Fig. 4. Approximate Coding Logic (ACL) Operation Flow Chart

Algorithm 1: Packet Encoding
1 for all the flit in the packet do
2 if flit type = HEAD then
3 Calculate ECC for all bits

4 if flit type = BODY or TAIL then
5 for all words in the flit do
6 Select the MSBs based on

ProtectionCode[word]

7 Calculate ECC for selected bits

the packet encoding is described in algorithm 1. If the flit type
is a head flit, the packet encoder applies full protection to the
flit.

For the rest of the flits in the packet, the packet encoder
applies ECC based on the protection code of each word. To
achieve this, the packet encoder selects the number of bits of a
flit based on the protection code. After that, the packet encoder
calculates check bits based on the selected bits only.

As an example, we can assume four values (one row) in
Fig. 1, as a body/tail flit. Based on protection codes, the
protected bits of the values in the flit are 15, 13, 15, and
32 MSBs. The packet encoder generates check bits for only
the protected bits using ECC coding algorithm.

2) Packet Decoding: The packet decoder checks for errors
in the protected bits based on the protection code. The
workflow of the packet decoding is described in algorithm 2.
In the algorithm, the packet decoder checks the head flit for
errors. If the flit contains an error, the router will retransmit
the filt. Otherwise, the decoder reads approximation code from
the head flit and checks for data integrity of the protected
bits using CRC or SECDED based on the protection code.
In the case of CRC, if the protected bits do not pass the
error checking, the receiver sends a NACK signal back to the
sender. In the case of SECDED, error correction is applied at
the receiver. If the error correction fails, the receiver sends a

483

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:32:23 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 2: Packet Decoding
1 if flit type = HEAD and flit has error then
2 Ask router to retransmit the flit

3 if flit type = HEAD and flit is error-free then
4 C[word]← Approximation Code[word]
5 for all the word in this packet do
6 Select and check data integrity based on

C[word].P rotection Code
7 if word has error then
8 Ask sender for retransmission

9 else if C[word].Conversion Code = 1 then
10 Notify sender a successful transmission
11 Send data to data type converter

12 else
13 Notify sender a successful transmission
14 Send data to core

NACK signal back to the sender, and the sender retransmits the
corresponding packet from the packet buffer. If the protected
bits pass the error checking (CRC) or correction (SECDED),
the decoder sends an ACK signal to the sender to confirm
successful transmission. Following that, the destination NI
checks for CIF value, and converts CIF back to integer based
on conversion code. Finally, the destination NI sends the
approximated data to the core.

V. EXPERIMENTAL SETUP

In this section, we describe the simulation setup and bench-
marks used.

A. Simulation Setup

We evaluate DEC-NoC using BookSim2 [23] and Ne-
trace [24] simulators, where Netrace is integrated with Book-
Sim2. The Netrace simulator is used to capture and inject cycle
accurate benchmark traces for BookSim2. We have also mod-
ified the BookSim2 simulator to incorporate an error injection
model. We integrated an error injection model from [25] to
mimic realistic production of per-link bit error rate, ε. We set
the bit error rate to 10−4 similar to what was used in [7], [8].
The error rate for each flit is calculated for both CRC and
SECDED error control coding techniques. Since CRC only
checks for errors in the flit, and the occurrence of an error in
each transmitted bit is an independent event, the probability
Pflit of a n-bit flit containing soft error can be calculated for
each link using Eq. 5.

Pflit = 1− (1− ε)n (5)

Because of the capability of single-bit error correction using
SECDED, the transmitted flit is considered to be a fault flit
only if it contains more than 2 errors. Therefore, the flit error
rate when SECDED is deployed can be calculated using Eq. 6.

P ′flit = 1− (1− ε)n − n× ε× (1− ε)n−1 (6)

To evaluate the performance of the proposed design, we
compare the performance of DEC-NoC to a baseline NoC with

TABLE II
SIMULATION SETUP

NoC Parameters 8 5 8 2D Mesh
8 Virtual Channel
Wormhole Switching
X-Y Routing

System Parameter 64 on-chip Cores at 2GHz
32KB L1 Instruction Cache
32KB L1 Data Cache
4-way associative
64 bank fully shared, 16 MB L2 Cache

Error threshold 15%, 10%, 5%
Integer to Floating point Conversion Ratio 25%, 50%, 75% (Default)
Error Control technique ARQ+CRC, ARQ+SECDED

63%
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43%
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Fig. 5. Integer and Floating Point Data Packet Percentages in PARSEC
Benchmarks

static full-protection error control techniques using ARQ+CRC
and ARQ+SECDED. We evaluate three different error thresh-
old levels 15%, 10%, and 5% in our experiments, where
we set the rate of integer to floating point conversion to be
75% (default). Moreover, since the different rate of integer to
floating point conversion will affect the number of protected
bits in a packet, we conduct sensitivity study with three
different rates of conversion: 75%, 50%, and 25%. Detailed
simulation setup is shown in Table II.

B. Workload Analysis

We use PARSEC benchmark [26], with simmedium, as
the workload for NoC performance simulation [27]. We
evaluate the dynamic power breakdown for both ARQ+CRC
and ARQ+SECDED error control techniques. It can be seen
from Fig. 6, for ARQ+CRC, the dynamic power consumption
of retransmission traffic can be as high as 90% (on aver-
age). Even with the capability of single error correction in
SECDED, the retransmission dynamic power consumption for
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Fig. 6. Dynamic power consumption percentages of transmitted and
retransmitted packets for ARQ+CRC under PARSEC Benchmarks
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ARQ+SECDED is still around 47%, as shown in Fig. 7. As
retransmission has high power consumption, it is crucial to re-
duce retransmission traffic using approximate communication.

We obtained the percentage of integer and floating point
data packets for each benchmark of PARSEC from [26], as
shown in Fig. 5. We observe that the blackscholes benchmark
has the highest percentage (63%) of floating point data packet
compared to other benchmarks, while the dedup benchmark
has no (0%) floating point data packet. We conduct sensitivity
study in Sec. VI-C to see the impact of integer and floating
point packets on the performance.

VI. EVALUATION AND ANALYSIS

We evaluate DEC-NoC in terms of end-to-end latency,
power consumption, and quality of output using PARSEC
benchmarks. We also discuss the overhead of our design.

A. End-to-End Latency

We evaluate average end-to-end latency, under the simula-
tion setup shown in Table II. End-to-end latency is defined as
the number of clock cycles taken from the packet injection
at the source node to the successful delivery of packet at the
destination. We compare our proposed design with baseline
error control techniques. The normalized test results of end-
to-end latency are shown in Figs. 8 and 9. As can be seen
in Fig. 8, DEC-NoC achieves an average end-to-end latency
reduction of 56%, 55%, and 52% over static ARQ+CRC
baseline across all benchmarks, for error thresholds of 5%,
10%, and 15%, respectively. Fig. 9 shows that compared
to ARQ+SECDED, DEC-NoC achieves end-to-end latency
reduction of 28%, 28%, and 27% for the above mentioned
error thresholds.

The largest end-to-end latency reduction in both exper-
iments is achieved for blackscholes benchmark, while the
least end-to-end latency improvement is obtained for dedup
benchmark. Latency improvement is higher for benchmarks
with a higher percentage of floating point packets, as DEC-
NoC significantly reduces protection for floating point packets.

B. Power Consumption

Since DEC-NoC reduces retransmission traffic, we analyze
overall dynamic power consumption. Static power remains
unchanged in the proposed framework. Figs. 10 and 11 show
the evaluation results, which are normalized to the baseline
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Fig. 9. End-to-End latency of ARQ+SECDED error control technique
under different error threshold configurations: The results are normalized
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technique under different error threshold configurations: The results are
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technique under different error threshold configurations: The results are
normalized to baseline.
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Fig. 12. Latency sensitivity analysis with the change in integer to floating point packet conversion ratio (25%, 50%, 75%) and acceptable error
thresholds (5%, 10%, 15%).

dynamic power consumption. As shown in Fig. 10, DEC-
NoC achieves 58%, 56%, and 53% dynamic power savings on
average over static ARQ+CRC baseline across all benchmarks
for error thresholds of 5%, 10%, and 15%, respectively.
Similarly, Fig. 11 shows that DEC-NoC technique achieves
an average dynamic power savings of 36%, 35%, and 34%
compared to ARQ+SECDED baseline for the error thresholds
mentioned above. Power efficiency is higher for benchmarks
with the higher percentage of floating point packets due to the
same reasons as mentioned in the previous section.

C. Sensitivity Studies
We analyze the sensitivity of DEC-NoC (with ARQ+CRC)

in terms of end-to-end latency with the change in the per-
centage of integer to floating point packet conversion and
acceptable error thresholds. As shown in Fig. 12, the end
to end latency improves as the percentage of floating point
packet increases, as a floating point packet needs less number
of protection bits. For example, latency decreases (improves)
with the increase in the data-type conversion from integer to
floating point packets, e.g., 25% to 50% conversion. Latency
improvement, with the increase in the integer to floating point
conversion, is higher for dedup and vips benchmarks, as they
have no or low percentage of floating point packets (Fig. 5).

D. Quality of Output Analysis
To analyze the impact of approximate communication to

application’s output, we evaluate the quality of output in DEC-
NoC. The output quality is estimated as follows: output quality
requirement is fulfilled as long as output error rate is lower
than error threshold level [12]. We illustrate the output error
rate of four representative benchmarks in Fig. 13. As shown
in that figure, all benchmark applications met output quality
requirements under different error threshold constraints.

Furthermore, to demonstrate the impact of approximate
communication, we compare the approximate output of vips
benchmark (error threshold is set to 15%) and its accurate
output. As shown in Fig. 14, the difference between two
outputs is negligible and unrecognizable by human vision. To
quantify the difference, we measure the output error by using
the imabsdiff function in Matlab. The measurement shows very
low output error (pixel deviation is only 0.8%).
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Fig. 14. vips Benchmark Output Comparison: Error threshold configuration
is 15%. Result difference is 0.8%.

E. Area and Latency Overheads

We evaluate the overhead of DEC-NoC in terms of area
and latency. We implemented DEC-NoC using verilog and
synthesized the design in 32nm technology. Synthesis shows
that DEC-NoC incurs 0.00031 mm2 for each network inter-
face, which is only 1% overhead of the overall NoC area.
For latency overhead, we found out that the calculation of
approximation code and the selection of protected bits at
the source node require extra 2 cycles, and the selection of
protected bits at the destination node requires extra 1 cycle.

VII. RELATED WORK

Approximate communication has gained attention for en-
ergy efficiency and performance improvement, by approx-
imating the output for applications that are fairly tolerant
to inaccuracies in the results, like approximate computing.
Approximate communication can significantly improve the
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system performance as fully accurate communication is costly
in terms of power and time compared to computation [14]–
[16]. Several works have proposed various approximate com-
munication techniques [28]–[30]. [28] explores the potential
benefits of approximate computing for tackling the commu-
nication bottleneck issues on massively parallel systems by
surveying three promising techniques for approximate com-
munication: compression, relaxed synchronization, and value
prediction. The authors in [29] propose a data approximation
framework, which reduces the transmission of approximately
similar data in the NoC by delivering approximated versions
of precise data. This work further uses an underlying NoC
compression technique to compress the data block for reduc-
ing the volume of data movement across the chip. In [30]
the authors propose an approximation-based dynamic traffic
regulation, which drops a fraction of packet data to reduce
network congestion, and predicts the lost data in packet after
being received in the destination node. In this work, we use a
very novel approach for approximate communication, which
reduces the probability of retransmissions by reducing the
number of protected bits based on the error resiliency of an
application.

VIII. CONCLUSIONS

In this work, we propose an approximation communication
framework called DEC-NoC, consisting on an approxima-
tion technique and hardware support for energy-efficient and
high-performance NoCs. We design an approximate coding
logic to protect the minimum amount of bits for integer
and floating point values while maintaining output quality.
DEC-NoC greatly reduces the retransmission overhead, which
improves dynamic power consumption and end-to-end latency
for NoCs. We compare the proposed framework DEC-NoC
with traditional communication techniques, ARQ+CRC and
ARQ+SECDED. Our detailed evaluation shows that with
different error threshold levels for different applications, DEC-
NoC reduces end-to-end latency and dynamic power consump-
tion by up to 56% and 58%, respectively, over the ARQ+CRC
and ARQ+SECDED error control techniques with negligi-
ble hardware and timing overhead. Moreover, our evaluation
shows that DEC-NoC satisfies the accuracy requirements of
different applications under different error threshold configu-
rations.
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