
Dynamic Voltage and Frequency Scaling in
NoCs with Supervised and Reinforcement

Learning Techniques
Quintin Fettes , Student Member, IEEE, Mark Clark, Student Member, IEEE,

Razvan Bunescu ,Member, IEEE, Avinash Karanth , Senior Member, IEEE,

and Ahmed Louri, Fellow, IEEE

Abstract—Network-on-Chips (NoCs) are the de facto choice for designing the interconnect fabric in multicore chips due to their

regularity, efficiency, simplicity, and scalability. However, NoC suffers from excessive static power and dynamic energy due to transistor

leakage current and data movement between the cores and caches. Power consumption issues are only exacerbated by ever

decreasing technology sizes. Dynamic Voltage and Frequency Scaling (DVFS) is one technique that seeks to reduce dynamic energy;

however this often occurs at the expense of performance. In this paper, we propose LEAD Learning-enabled Energy-Aware Dynamic

voltage/frequency scaling for multicore architectures using both supervised learning and reinforcement learning approaches. LEAD

groups the router and its outgoing links into the same V/F domain and implements proactive DVFS mode management strategies that

rely on offline trained machine learning models in order to provide optimal V/F mode selection between different voltage/frequency

pairs. We present three supervised learning versions of LEAD that are based on buffer utilization, change in buffer utilization and

change in energy/throughput, which allow proactive mode selection based on accurate prediction of future network parameters. We

then describe a reinforcement learning approach to LEAD that optimizes the DVFS mode selection directly, obviating the need for label

and threshold engineering. Simulation results using PARSEC and Splash-2 benchmarks on a 4 � 4 concentrated mesh architecture

show that by using supervised learning LEAD can achieve an average dynamic energy savings of 15.4 percent for a loss in throughput

of 0.8 percent with no significant impact on latency. When reinforcement learning is used, LEAD increases average dynamic energy

savings to 20.3 percent at the cost of a 1.5 percent decrease in throughput and a 1.7 percent increase in latency. Overall, the more

flexible reinforcement learning approach enables learning an optimal behavior for a wider range of load environments under any

desired energy versus throughput tradeoff.

Index Terms—Dynamic voltage and frequency scaling (DVFS), machine learning (ML), ridge regression, reinforcement learning

Ç

1 INTRODUCTION AND MOTIVATION

THE immense number of transistors that are packed onto
multicore chips as transistor feature size continues to

shrink into the sub-nanometer region has caused many new
and unique power problems to emerge. With the increase in
the number of cores, the underlying communication fabric
called the Network-on-Chip (NoC) has become critical for
data communication between the cores and the memory
hierarchy. Two critical power problems facing Network-on-
Chips are high static power and dynamic energy. Excess
dynamic energy is the result of storing and switching data
within routers and links. NoC size increases proportionally
with core count to accommodate the increased data

communication demands, only further exacerbating the
high dynamic energy cost of the NoC. Dynamic Voltage
and Frequency Scaling (DVFS) is the focus of much prior
research and may be used to reduce dynamic energy. Exces-
sive static power is a result of transistor leakage current and
will only increase as greater numbers of transistors are
packed onto chips. Power-gating is one useful and well
researched method to reduce static power, however new
challenges arise when applying this method to the NoC
such as high wakeup delay, long break even times, and
router blocking [16], [17], [18], [19], [20], [21], [22].

A vast amount of research exists on DVFS with the main
goal of reducing dynamic energy at runtime while meeting
strict performance criteria [1], [2], [3], [4], [5], [6], [26], [27],
[28], [29], [34], [35], [36], [37]. Although static power contin-
ues to rise as transistor size shrinks, it is often not considered
for these designs because static power is not affected by
changes in clock frequency. However, it should be noted that
in multi-supply voltage designs it is a change in supply volt-
age that leads to a subsequent change in clock frequency;
therefore static power can be impacted by an increase/
decrease in clock frequency. An optimal DVFS algorithm
should operate at the lowest supply voltage allowable with-
out causing significant performance degradation. This may

� Q. Fettes, M. Clark, R. Bunescu, and A. Karanth are with the Department
of Electrical Engineering and Computer Science, Ohio University, Athens,
OH 45701. E-mail: {qf731413, mc591611, bunescu, kodi}@ohio.edu.

� A. Louri is with the Department of Electrical and Computer Engineering,
George Washington University, Washington, DC 20052.
E-mail: louri@gwu.edu.

Manuscript received 21 June 2018; revised 18 Sept. 2018; accepted 20 Sept.
2018. Date of publication 10 Oct. 2018; date of current version 19 Feb. 2019.
(Corresponding author: Avinash Karanth.)
Recommended for acceptance by F. Lamberti.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2018.2875476

IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 3, MARCH 2019 375

0018-9340� 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5200-4490
https://orcid.org/0000-0001-5200-4490
https://orcid.org/0000-0001-5200-4490
https://orcid.org/0000-0001-5200-4490
https://orcid.org/0000-0001-5200-4490
https://orcid.org/0000-0003-2919-3566
https://orcid.org/0000-0003-2919-3566
https://orcid.org/0000-0003-2919-3566
https://orcid.org/0000-0003-2919-3566
https://orcid.org/0000-0003-2919-3566
https://orcid.org/0000-0002-9472-4637
https://orcid.org/0000-0002-9472-4637
https://orcid.org/0000-0002-9472-4637
https://orcid.org/0000-0002-9472-4637
https://orcid.org/0000-0002-9472-4637
mailto:
mailto:

be accomplished by measuring various network metrics and
determining which metric is the best at capturing network
traffic. These metrics vary widely, some have used Voltage
Frequency Island (VFI) utilization [5] and buffer utilization
[2], others have used round-trip time (RTT) [4] or newermet-
rics such as network slack [6].

Accurately capturing network traffic is undoubtedly an
important part of any DVFS scheme; similarly, it is hard to
dispute the impact of the mode selection logic. V/F mode
selection logic determines when to increase/decrease the
supply voltage and is a critical design parameter. Increasing
the supply voltage during times of low network utilization
will consume excess power whereas decreasing the supply
voltage during times of high network utilization will affect
the throughput of the network. Decisions that affect how to
tune the voltage/frequency can significantly affect the per-
formance of the NoC as well as applications running on
multicores. While older DVFS schemes relied on data-
driven reactive mode selection, newer designs have begun
to incorporate proactive techniques based on machine learn-
ing. Reactive techniques change the frequency or voltage
after observing a relevant event, such as a change in buffer
utilization. In contrast, proactive techniques based on
machine learning determine the appropriate mode by pre-
dicting the future buffer utilization (supervised learning) or
by maximizing an expected long term reward that trades
off energy and throughput (reinforcement learning).

In this paper, we present Learning-enabled Energy-Aware
Dynamic voltage/frequency scaling (LEAD), a collection of
DVFS techniques based on linear regression and reinforce-
ment learning (RL) models that are trained offline. The proac-
tive DVFS mode management strategies based on linear
regression were originally introduced in our work from [45].
In that supervised learning setting, a linear regression model
uses the buffer utilization, the change in buffer utilization and
the change in energy/throughput in the current timewindow
to estimate the value of network parameters for the next time
window. A DVFS mode is then selected to be used in the next
time window by comparing the predicted parameter against
a set of tuned thresholds. In this work, we propose reinforce-
ment learningwith DeepQNetworks to directly optimize the
desired energy/performance trade-off. RL algorithms are
designed for optimizing control tasks; as such they are a natu-
ral fit for DVFS, which is by definition a control problem.

When using supervised learning, we had to identify or
engineer a network parameter to use as a prediction target,
such as buffer utilization in LEAD-t; DVFS decisions were
then made solely based on the predicted parameter value.
However, this is likely to be sub-optimal, as making the best
DVFS decision depends on more than just buffer utilization,
which is empirically confirmed by the superior results
achieved by the RL version of LEAD. In addition, the super-
vised LEAD models require setting multiple thresholds to
achieve a desired energy/throughput tradeoff. These
thresholds were tuned via a brute force grid search proce-
dure, which is time consuming and not scalable. In contrast,
the RL approach can more easily combine metrics and con-
trol the tradeoff of throughput versus energy via a single
hyper-parameter in the reward function. Therefore, with an
effective reward and an appropriate RL model, the effort
required from a system designer is significantly reduced.

The main contributions of this work are as follows:

1) Supervised Learning:We trained linear regressionmod-
els to predict future network parameters. V/F modes
for the next time window are then chosen proactively
based on the predicted network parameters. LEAD-t
predicts future input buffer utilization and selects
future modes accordingly. LEAD-D predicts future
change in input buffer utilization and increases/
decreases voltage level accordingly. LEAD-G inco-
rporates energy and throughput directly into the
algorithm in the attempt to use explorative logic to
find themode thatminimizes energy consumption.

2) Reinforcement Learning: LEAD-RL uses recent state-of-
the-art RL techniques such as Deep Q Networks
(DQNs) and variants of DQNs to select the V/Fmode
that maximizes an expected long term reward capt-
uring a desired energy versus throughput tradeoff.
This creates a model that prioritizes actions leading
to maximal energy savings with minimal throughput
loss by considering all possible voltage level selec-
tions for the next timewindow.

3) Performance Evaluation: For a 4 � 4 concentrated mesh
architecture, our simulation results show that the
supervised LEAD-t achieves an average dynamic
energy savings of 15.4 percent for a loss in throughput
of only 0.8 percent with no significant impact on
latency. In the reinforcement learning setting, LEAD-
RL can achieve 20.3 percent dynamic energy savings at
the cost of 1.5 percent less throughput and 1.7 percent
increase in latency. We further perform sensitivity
studies on the main hyper-parameters used by the
RL model to evaluate their impact on the energy-
efficiency and performance ofNoCs.

2 RELATED WORK

Prior research has focused on applying DVFS to individual
on-chip components such as the processor, caches, memory
or to the links and routers of theNoC. Voltage scaling has also
been applied at various granularities: a coarse grained
scheme might scale all routers at the same time while a fine
grained scheme would scale each router individually. The
trade-offs between various levels of granularity come in terms
of design complexity, area overhead, and maximal energy
savings [6]. Fine-grained DVFS schemes have greater poten-
tial for energy savingswhen applied tomulti-core processors,
however there is concern that the overhead associated with
providing separate voltage domains for each router/link
would offset any potential savings. This is because the power
delivery network must be split N ways corresponding to the
number of voltage domains which results in N times higher
resistance. However this extra overhead is largely dependent
on the voltage drop of inefficient on-chip voltage regulators.
Newer voltage regulator frameworks have alleviated this con-
cern using a hierarchy of on-chip and off-chip voltage regula-
tors and many modern approaches can achieve 90 percent
energy efficiency or greater [53].

Accurately capturing network bandwidth requirement is
another key aspect to any DVFS design. Prior research has
used many different performance metrics, such as VFI utili-
zation [5], buffer utilization [2], round-trip-time [4], cache

376 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 3, MARCH 2019

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

coherence properties [26], and network slack [6]. There is
also research that focuses solely on the impact of the mode
selection logic. This research compares the energy/perfor-
mance trade-offs associated with using various logical mod-
els or algorithms to determine when to increase/decrease
supply voltage [5]. One technique to ensure a improved
energy/performance trade-off when applying DVFS to the
NoC is to scale the router and its’ links together. Links that
operate at higher voltage levels than their associated routers
may consume excess energy in an idle network. On the
other hand, links that operate at lower voltage levels may
not meet network bandwidth requirements, thus leading to
performance degradation.

RL has been used in [54] and [9] for the optimization
of the energy versus throughput trade-off. In [54], RL was
applied to NoC, LLC, and other uncore components,
whereas our work only looks at energy savings in the NoC.
In [9], RL was applied to multi-tasking systems in order to
achieve better voltage and frequency settings for DVFS of
the core. In section 8 we present a detailed comparison with
the results from these papers. RL has also been applied to
improve performance metrics that are different than those
used in this paper. We have seen low-overhead RL applied
to multi-processor systems were temperature, performance,
and power were balanced to save energy while meeting
stringent performance requirements [12]. Other research
with many-core processors seeks to reduce high power den-
sity with RL based task allocation using core and router
temperature predictions [52]. Some research has even
focused on applying reinforcement learning to the voltage
regulator hierarchy to enable more energy efficient voltage
switching [53]. There has also been considerable work with
reinforcement learning that does not pertain to energy man-
agement or DVFS. One such work seeks to reduce packet
latency by using RL based NoC arbitration of shared resour-
ces such as cores, caches, and memory instead of traditional
round robin approaches [50]. Another work uses online
reinforcement learning to enable Q-routing, which can
lower packet delivery times compared to traditional non-
adaptive shortest path routing algorithms [51].

Previous work has shown that linear regression and rein-
forcement learning can be applied to the CPU or other

on-chip components. Our design will apply linear regres-
sion and RL specifically to the NoC in order to achieve
optimal dynamic energy savings while meeting strict per-
formance requirements. The proposed LEAD models are
trained offline, greatly reducing the overhead traditionally
associated with online algorithms, especially in the RL set-
ting. LEAD also applies DVFS to both the router and its out-
going links ensuring that we meet bandwidth requirements
at times of high network traffic while still allowing dynamic
energy savings at times of low network traffic.

3 LEAD ARCHITECTURE

This section will discuss our proposed LEAD router micro-
architecture, the network topology, linear regression and
RL DVFS implementation.

3.1 Router Microarchitecture

LEAD is built upon a concentrated mesh topology that uses
on-chip voltage regulators. This network has a concentration
factor of 4 and consists of 16 routers, 64 cores, and 48 unidi-
rectional links. Each router and its’ outgoing links are scaled
together allowing energy efficient per router DVFS. The net-
work topology is shown in Fig. 1. Because LEAD is built
upon a concentrated mesh, routers consist of 8 input ports
and 8 output ports with 4 virtual channels per port. Cores
have individual L1 caches while the L2 cache is shared
among concentrated cores. After a packet is generated it sits
in the input bufferwhere it waits for the route to be computed
using XY dimension order routing (DOR) during the router
computation (RC) stage of the router pipeline. After the route
has been computed, a virtual channel is allocated and the
head flit competes for the output channel in the switch alloca-
tion (SA) stage. Once the head flit has been awarded an out-
put channel, it moves across the crossbar to the destination
port where it waits for the rest of the body flits and the tail flit
during switch traversal (ST). The router microarchitectures
vary slightly between the linear regression models and
the RL models in that they require the addition of several
similar units. The router microarchitecture to enable linear
regression based models LEAD-t, LEAD-D, and LEAD-G are
shown in Fig. 2. While the router microarchitecture for
LEAD-RL is the same, it requires one less component and the
Label component behaves slightly different. This will be
explained in greater detail in the following section.

3.2 DVFS Implementation

All LEAD models are built on a simple voltage regulator
scheme that allows per router DVFS and the selection of
five different voltage levels. LEAD-t, LEAD-D, and LEAD-
G routers contain the addition of four new units that enable
linear regression based proactive mode selection. The first
unit is called Feature Extract and its function is to gather
local router information and supply it to the next unit. The
second unit, Non-MLModel can select modes directly using
gathered information such as buffer utilization or link utili-
zation and is only necessary for gathering training data.
This unit is not used during testing. The third unit is Label
and it multiplies each gathered feature by a pre-trained
weight and sums the results to generate a label. The final

Fig. 1. Network Topology: LEAD is built on a concentrated mesh with 16
routers, 48 unidirectional links, and 64 cores. On-chip voltage regulators
allow router level DVFS granularity with five separate V/F pairs ranging
between 0.8 and 1.2 V. A simple VR schematic is shown in the legend.

FETTES ETAL.: DYNAMIC VOLTAGE AND FREQUENCYSCALING IN NOCS WITH SUPERVISED AND REINFORCEMENT LEARNING... 377

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

unit is ML Model. This unit selects an appropriate voltage
level based on the value of the generated label.

LEAD-RL routers use many of the same components
with slightly different functionality. LEAD-RL routers con-
tain the addition of three units enabling RL based proac-
tive mode selection. The first unit is the same as linear
regression’s first unit, Feature Extract. This unit gathers
local router features and supplies them to the next unit.
The second unit, Label, now implements five weighted
sums of the gathered features through a series of parallel
additions and multiplications, one sum per each Label
value. Then a comparator is used to select the label value
corresponding to the largest weighted sum. The third and
final unit, ML Model, uses the highest scoring label to
select the appropriate voltage level for the router and its
outgoing links.

3.2.1 Operating Modes

We assume a simple voltage regulator design that allows for
five voltage/frequency pairs (modes) similar to those pro-
posed in our own prior work as well as other research [26].
The supply voltage changes in small 100 mV steps with pro-
portional changes in clock frequency. These five V/F pairs
include {0.8 V/1, 0.9 V/1.5, 1.0 V/1.8, 1.1 V/2 and 1.2 V/
2.25 GHz}. The voltage regulator setup is shown in Fig. 1
where each voltage regulator can be switched into one of
the five modes of operation on a per router granularity. We
could have increased the number of modes, but this leads to
increased design complexity and overhead with no guaran-
tee of increased energy savings.

3.2.2 DVFS Models

This work focuses on measuring the impact that RL-based
mode selection can bring on dynamic energy and perfor-
mance in NoC for multi-core designs. We propose LEAD-RL
(Fig. 4), a reinforcement learning model, and compare it
against three linear regression based models described in
prior work: LEAD-t, LEAD-D, and LEAD-G (Fig. 3).

Baseline. The baseline model does not apply DVFS to the
network; instead it operates all routers in the highest mode
of and acts an upper bound on performance and dynamic
energy consumed by the NoC.

LEAD-t. LEAD-t starts by initializing all routers to oper-
ate at the lowest mode of operation. Feature values are gath-
ered every epoch and a label is generated. The label
(predicted future input buffer utilization) is used to proac-
tively select modes by comparing against a theoretical maxi-
mum. If the predicted future input buffer utilization is less
than 5 percent of the theoretical maximum, then mode 1 is
selected; between 5 and 10 percent, then mode 2 is selected;
between 10 and 20 percent, then mode 3 is selected; between
20 and 25 percent, then mode 4 is selected; greater than
25 percent, then mode 5 is selected. This model emphasizes
the importance of optimal mode selection and allowing the
model to transition from any mode directly into the most
optimal mode, which other designs do not allow, with
the goal of maintaining as much performance as possible
in relation to the baseline while still enabling dynamic
energy savings.

Fig. 2. Router Microarchitecture: The router architecture as well as the
four additional units required to enable linear regression or RL based
model selection; Feature Extract, Label, Non-ML Model, and ML Model.
For Linear Regression, all four units are required but for RL only Feature
Extract, Label, and ML Model are necessary and Label behaves slightly
differently.

Fig. 3. DVFS Models: LEAD-t predicts future input buffer utilization as a label and compares it to a theoretical maximum to select the optimal V/F
mode. LEAD-D predicts the change in input buffer utilization between the current and future time window, whereas LEAD-G predicts the change in

energy
throughput2

.

378 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 3, MARCH 2019

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

LEAD-D. LEAD-D starts by initializing all routers to oper-
ate at the highest mode of operation. At each epoch the
router transitions one voltage level up or down based on
the label (predicted future change in buffer utilization). If
the buffers are predicted to decrease by at least 3-5 percent,
then the router decreases voltage level. If the buffers are
predicted to increase by at least 6-10 percent, then the router
increases voltage level. We ensure that the model puts
greater emphasis on energy savings than performance by
making the transition thresholds to move up greater than
the threshold to move down. This model is designed to
exploit gradually changing traffic patterns where adjacent
mode transitions are optimal.

LEAD-G. LEAD-G [5], [28] seeks to find the mode that
minimizes predicted future energy

throughput2
. This model adds

explorative logic and directly introduces dynamic energy
and throughput into the label. LEAD-G starts by initializing
all routers to the highest mode of operation with down-
wards exploration. Next the label (predicted change in

energy
throughput2

) is calculated; if the label is negative, then the

router transitions one more adjacent mode in the current
explorative direction as this is predicted to result in greater
energy savings for the next epoch. If the label is positive the
router is put into a hold phase as the router has moved in a
direction with less energy savings than the previous epoch.
During the hold phase the router may not change voltage
levels, we keep the hold phase at 2 epochs as was proposed
in [5]. Once the hold phase expires, the explorative direction
is flipped and the model explores in the opposite direction.
This model is used strictly for comparative purposes and
highlights a model that prioritizes energy savings above
performance loss. Because this model may only transition
into adjacent modes, it rarely operates in the mode with the
optimal energy

throughput2
value.

LEAD-RL: LEAD-RL utilizes Deep Reinforcement Learn-
ing techniques to determine an optimal mode selection
action at every time window. During training, the agent
observes transitions, the current state, the action taken, the
reward received, and the resulting state. The goal of the
agent is to maximize a long term expected reward that
trades off dynamic energy versus throughput. By measur-
ing the difference between the reward observed at every

state and the reward actually received, the agent trains a
neural network to closely approximate an action-value func-
tion defined as the long term expected reward for taking
each action in a given state. LEAD-RL utilizes a set of fea-
tures to represent the NoC state, and the trained action-
value function to select the action that maximizes the long
term expected reward at every time window. The logic
behind LEAD-RL is further explained in Fig. 4.

4 LINEAR REGRESSION MODELS

In this section, we briefly present linear regression and
explain how it is used to train the supervised learning
LEAD models. We also describe the feature set and discuss
the labels predicted by each LEADmodel.

Ridge regression is used to train each of the three super-
vised LEAD models, which refers to a version of linear
regression that uses L2 regularization during training. The
same feature set is used in all LEAD models, with only the
predicted label being different. A training example is repre-
sented as a feature vector xn and target label tn. The algo-
rithm learns a vector of weights w ¼ ½w1; w2; . . . ; wK � that
when multiplied with the features in xn results in a system
prediction yðxn;wÞ ¼ wTxn that should be close to the target
label tn. The weights are scalar values that represent the sig-
nificance of each feature with respect to the label. If a weight
is zero, then the corresponding feature has no impact on cal-
culating the label and that feature may be removed. The
ridge regression equation used by our linear regression is
shown below:

EðwÞ ¼ 1

2

XN
n¼1

fyðxn;wÞ � tng2 þ �

2

XM
j¼1

w2
j : (1)

In the above equation, the sum of squared errors between
the predicted label yðxn;wÞ and the actual label tn is mini-
mized. We train the model weight vectorw offline using the
vectors xn; n ¼ 1; N of gathered features and their labels tn.
We apply L2 regularization to the trained model in order to
minimize model complexity and alleviate over-fitting. We
tune the regularization hyper-parameter � by trying multi-
ple values until the best fitting solution is found on the vali-
dation part of the data. After the model has been trained,
the weights are exported and used by the network simulator
during testing. All LEAD models are trained on 6 different
traces, tuned on 3, and tested on the remaining 5.

An example xn is represented as a vector of K ¼ 39 fea-
tures that capture relevant network parameters such as cur-
rent input buffer utilization, link utilization, and number of
requests sent/received. Features are extracted every time
window using reactive versions of each model that rely on
the current network parameter values to select V/F modes.
The size of the feature set is kept small to avoid unnecessary
computational overhead. All features are local router para-
meters and do not need global coordination. These features
are further described in [45]. LEAD trains/validates various
models using supervised learning. This means that the fea-
ture set as well as a corresponding target label are supplied
during training and tuning. The label varies based on the
LEAD model. For LEAD-t, the label is the future input
buffer utilization of the router for the next time window.

Fig. 4. RL Model: LEAD-RL generates long term expected rewards for
each mode and selects the mode that is predicted to lead to the greatest
long term reward over the next time window.

FETTES ETAL.: DYNAMIC VOLTAGE AND FREQUENCYSCALING IN NOCS WITH SUPERVISED AND REINFORCEMENT LEARNING... 379

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

For LEAD-D the label is the difference between the routers’
current and future input buffer utilization. For LEAD-G the
label is the difference between the routers’ current and
future energy

throughput2
.

5 REINFORCEMENT LEARNING BACKGROUND

In this section, we introduce reinforcement learning and a
number of modern techniques that we used in our LEAD-
RL models to optimize their performance.

RL is a subset of Machine Learning (ML) that is con-
cerned with problems in which no explicit label is provided
during training. This is different from supervised learning,
the method by which other LEAD models are trained,
where labels are supplied during training. In LEAD-RL, the
agent instead aims to maximize a cumulative reward in
order to find an optimal policy for selecting actions, where
the reward is a scalar value describing progress toward a
goal after each action. The prevailing setting for RL is the
Markov Decision Process (MDP); an MDP can be repre-
sented as a tuple, ðS;A; P; gÞ. S is the set of all states s, A is
the set of all possible actions a the agent can take, R is the
reward function, P ðs0; rjs; aÞ is the probabilistic transition
function/dynamics model of the environment describing
the probability of transitioning into a new state s0 and
observing a reward r when action a is taken from state s,
and g is the discount factor. The agent aims to learn an opti-
mal policy p� : S ! A that maps states to actions such that
the long term expected reward is maximized. We can model
this problem as an agent which learns the optimal action-
value function Q�ðs; aÞ defined as

Q�ðs; aÞ ¼ max
p

EP

�
rt þ grt1 þ g2rtþ2 þ � � � js; a � p

�
; (2)

which is the expected sum of rewards rt, discounted at each
timestep t by a positive discounting factor g 	 1, when
actions are taken according to policy p, maximized over all
possible policies [49]. It can be shown that the optimal pol-
icy is p� ¼ argmaxa Q

�ðs; aÞ, where the optimal Q� satisfies
the Bellman optimality equation [49]

Q�ðs; aÞ ¼
X
s0;r

P ðs0; rjs; aÞ rþmax
a0

Q�ðs0; a0Þ
� �

: (3)

When the state space is discrete, the tabular Q-learning
algorithm and its numerous variants can be used to find the
optimal Q-value function Q�ðs; aÞ using a state-action table
for storing the Q values. At each timestep, the Q-learning
algorithm chooses actions based on the current Q, and
updates Q using the observed reward according to a tempo-
ral difference rule [49]. The actions need to be chosen such
that, over many timesteps, all actions are taken in all states.
This poses a central conflict between exploration and exploi-
tation. At any timestep, there is at least one action whose
estimated value is the greatest; we call the greedy selection
of this action exploiting; if instead one of the non-greedy
actions is selected, we say the agent is exploring [38].
Exploitation will allow the agent to maximize its return in
the short term; however, more exploration may allow the
agent to better estimate the true value function and lead to a
greater long term return[38]. The most common approaches

to addressing the tradeoff between exploration and exploi-
tation are �-greedy methods. At every timestep t, the agent
selects the greedy action at ¼ argmaxa Qðs; aÞ with proba-
bility 1� �. With probability � the agent selects a random
action instead.

5.1 Deep Q Networks with Experience Replay

In many cases the state space, the action space, or both, are
too large to create a state-action Q table. One solution is to
represent the states as a vector of possibly continuous fea-
tures and use function approximation techniques to estimate
the value of each state. However RL algorithms are known to
be unstable when the action-value function Qðs; a; uÞ is com-
puted by some parameterized function approximator, such
as aNeural Network [39]. The primary causes of this instabil-
ity were found to be the sample correlation of sequential
observations, and the correlation between the current
approximate action-value Qðs; a; uÞ and the target action
value rt þQðs0; a0; uÞ. Deep Q Networks (DQN) address
these issues via target networks and experience replay [39].

Target networks attempt to alleviate the correlation
between the approximate action value under the current
policy and the target action value by calculating the target
according to a different set of network parameters u�, which
are updated only periodically. By doing this, the network
training slows down somewhat, and training instability due
to bootstrapping is alleviated [39].

Experience replay is a mechanism by which state transi-
tions et ¼ ðst; at; rt; stþ1Þ are stored in a replay buffer,
Dt ¼ ðe1; e2; . . . ; etÞ, of finite size. During training, gradient
descent updates are performed on minibatches of samples
ðst; at; rt; stþ1Þ � UðDÞ, which are drawn uniformly at ran-
dom from the replay buffer. Gradient descent updates with
a learning rate a can then be performed on the loss function
LðuÞ, as shown below:

yj ¼ rj þ gmax
a0

Q̂ðsjþ1; a
0; u�Þ (4)

LðuÞ ¼ 1

2
yj �Qðsj; aj; uÞ
� �2

(5)

u ¼ u � aruLðuÞ (6)

¼ u þ a yj �Qðsj; aj; uÞ
� �ruQðsj; aj; uÞ; (7)

where rj is the reward observed at the current timestep j, u
is the current set of network parameters, and u� are the
saved copy of target parameters which are updated only
periodically. By randomly sampling from the replay buffer,
the correlation between sequential samples is removed and
the changing distribution introduced by policy changes is
smoothed over. Ultimately, the data looks more stationary,
leading to an increase in performance [39].

5.2 Prioritized Replay

Sample correlation violates the identically and inde-
pendently distributed assumption of stochastic gradient
descent algorithms. While experience replay was intro-
duced to eliminate sample correlation, sampling from the
replay buffer uniformly at random is not the most efficient
way to sample [43]. Ideally, we would want to sample tran-
sitions which maximally reduce the global loss function;

380 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 3, MARCH 2019

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

however, a more practical approach is to give transitions
with higher Temporal Difference (TD) error more priority
[43], where TD error is given by

dj ¼ jyj �Qðsj; aj; uÞj
¼ jrj þmax

a0
Qðsjþ1; a

0; u�Þ �Qðsj; aj; uÞj: (8)

Also, the samples are sampled stochastically according to
their priority, rj ¼ dj, in order to prevent transitions with
initially low TD error from being forgotten[43]. The proba-
bility of a transition being sampled is

P ðjÞ ¼ rajP
k r

a
k

; (9)

where a is a hyper-parameter which controls how much pri-
ority is given to each transition.

Estimating the action value function depends on updates
corresponding to the same distribution as the expectation.
However, prioritized replay introduces bias because it
changes that distribution in an uncontrolled manner [43].
This is fixed by using importance sampling weights

wj ¼ ðN � P ðjÞÞ�b; (10)

where b is annealed linearly from bstart to 1 by the end of
learning, bstart is a hyper-parameter, and N is the size of the
replay buffer. The required steps for Prioritized Replay can
be seen in lines 16 and 22-23 of Algorithm 1.

5.3 Multi-Step Learning

While in one-step Q-Learning the agent observes a single
reward then uses a greedy action selection at the next state
to approximate the return thereafter, agents using multi-
step returns instead observe multiple rewards before com-
puting the approximation [46], as follows:

R
ðnÞ
j ¼

Xn�1

k¼0

gkrjþk (11)

yj ¼ R
ðnÞ
j þ gn max

a0
Qðsjþn; a

0; u�Þ: (12)

Multi-step target returns with a well-tuned value for n will
often lead to faster learning [38]. The required steps for
multi-step learning can be seen in lines 11-15 and 18-19 of
Algorithm 1.

5.4 Double Deep Q Learning

Q-learning involves maximization in the approximation of
the return, as shown in Equation (4), copied below:

yj ¼ rj þ gmax
a0

Q̂ðsjþ1; a
0; u�Þ: (13)

Due to the maximization step, state-action values suffer
from a maximization, or overestimation, bias. In many
cases, overestimating the value of states can have a signifi-
cant negative impact on performance [40].

In order to alleviate maximization bias, the tabular Dou-
ble Q Learning algorithm instead uses two independent
action-value functions that are updated with equal probabil-
ity [40]. The maximizing action is selected according to the

action-value functionwhich is not being updated. In order to
combine Double Q-Learning with DQNs, rather than declare
two networks and two target networks, Double Deep Q
Learning uses only the online network for Q and the target
network for Q̂ already present in Deep Q Learning and con-
structs the target yj according to Equation (14) below:

yj ¼ rj þ gQ̂ðsjþ1; argmax
a

Qðsjþ1; a; uÞ; u�Þ: (14)

While using the target network as the second Q function
does allow for some correlation between the two Q net-
works, in practice it is sufficient to alleviate maximization
bias [41]. The required steps for Double Deep Q Learning
can be seen in lines 18-19 of Algorithm 1.

5.5 Noisy Networks for Exploration

With engineered annealing schedules, �-greedy methods can
be very effective; however, these totally random, local changes
to the policy are unlikely to lead to large-scale behavioral pat-
terns needed for exploration inmost environments[42].

Consider a normal linear layer in a neural network, Y ¼
uX þ b. An alternative approach to exploration when using
neural networks to approximate the action-value function is
Noisy Networks for Exploration [42] that replace the linear
layer with a noisy linear layer

Y ¼def ðmw þ sw
 �wÞX þ ðmb þ sb
 �bÞ; (15)

where � ¼ ð�w; �bÞ are are randomly sampled, zero mean
noise matrices with fixed statistics, and m ¼ ðmw;mb), and
s ¼ ðsw; sbÞ are matrices of learnable parameters [42]. The
set of parameters is now z ¼def fmsg.

Instead of selecting actions according to an �-greedy pol-
icy, the agent can now act greedily according to a network
using noisy linear layers in place of all linear layers. Ulti-
mately, this allows the agent to learn exploration strategies
unique to the task at hand, while automatically annealing or
increasing the magnitude of noise parameters to sufficiently
explore complex state spaces. Most of the necessary changes
are to the architecture of the Neural Network used to
approximate the action-value function. However, initializa-
tion is handled differently, seen in line 3 of Algorithm 1,
noise must be sampled, seen in lines 8, 17, and 20, and the
actions are selected greedily with respect to the noisy net-
work, seen in line 9 of Algorithm 1.

6 THE LEAD-RL ARCHITECTURE

We used a deep Q network architecture that contained 2
hidden layers and an output layer with one node for each
V/F mode; all layers are fully connected. The first hidden
layer consisted of 16 ReLU units, and the second hidden
layer contains 16 ReLU units. The output layer contains 5
linear units, one corresponding to each action.

6.1 Training and Testing the LEAD-RL Agent

Each router is allocated a different RL agent during training,
leading to 16 unique policies. This means that 16 neural net-
works are trained offline with 16 replay buffers. The reason-
ing was that the optimal policy for a corner router may be
vastly different from the optimal policy of a router in the

FETTES ETAL.: DYNAMIC VOLTAGE AND FREQUENCYSCALING IN NOCS WITH SUPERVISED AND REINFORCEMENT LEARNING... 381

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

center of the mesh; empirically, this has been confirmed as
16 independent agents significantly outperformed a single
agent making decisions for each router. This design choice
adds no computational overhead at test time; the parame-
ters of each neural network can be stored and used to evalu-
ate each action-value at the beginning of each new time
window. The Q network for each router uses as input a vec-
tor of features that are collected for that router. Table 1
shows the features that are collected every each time win-
dow, scaled to be between 0 and 1.

Algorithm 1. Multi-Step Double Deep Q Learning with
Prioritized Experience Replay and Noisy Networks for
Exploration

1: Initialize Prioritized Replay Memory D to capacity N
2: Initialize n-Step Buffer M to capacity n
3: Initialize online Q parameters z ¼ ðm; sÞ, m at random and

si;j ¼ :047
4: Initialize target Q̂ parameter z� ¼ z

5: for each episode do
6: Observe and scale state vector s1
7: for t = 1,T do
8: Sample zero mean noise E
9: Select action at using a greedy policy on Qðst; �; z; EÞ
10: Execute at then observe reward rt and next state stþ1

11: Store ðst; at; rtÞ at the end of M
12: Pop ðst�nþ1; at�nþ1; rt�nþ1Þ from the front of M

13: Calculate R
ðnÞ
t�nþ1

14: Store transition ðst�nþ1; at�nþ1; R
ðnÞ
t�nþ1; stþ1Þ in D

15: Sample a prioritized minibatch of transitions
ðsj; aj; RðnÞ

j ; sjþnÞ from D
16: Calculate the IS weightswj for all sampled transitions j
17: Sample zero mean noise E0

18: Select each a0j such that a0j ¼ argmaxa Qðsjþn; a; z; E0Þ
19:

yj ¼ R
ðnÞ
j if terminal

R
ðnÞ
j þ gnQ̂ðsjþn; a

0
j; z

�; E0Þ else

(

20: Sample zero mean noise E00

21: Calculate the TD error dj ¼ ðyj �Qðsj; aj; z; E00ÞÞ2
22: Update the priorities of each sampled transition j using dj
23: Perform a gradient descent step on ðw
 dÞwith

respect to the network parameters z
24: Every C steps set z� ¼ z

25: end for
26: end for

TheLEAD-RL agents are trained offline usingAlgorithm1,
and tested using Algorithm 2which stops learning in order to
eliminate the significant overhead that learning entails; as a
result, the overhead added at test time is only the overhead
introduced to evaluate the neural network.

Algorithm 2. Using the Trained Policy at Test Time

1: Load weights z ¼ ðm; sÞ for action-value function Q
2: Set all si;j ¼ 0
3: Observe and scale state vector s1
4: for t = 1,T do
5: Select action at using a greedy policy on Qðst; �; zÞ
6: Execute at then observe next state stþ1

7: end for

While multi-step learning, double learning, and priori-
tized replay used in Algorithm 1 were found to increase
convergence speed, thus speeding up the training process,
only noisy networks were found to have a significant impact
on the final performance of LEAD-RL. As higher training
speeds can enable tuning over a larger space of architec-
tures, all these techniques were used in our experiments. In
addition, all of the improvements to DQN add no additional
overhead to the model at test time, thus the increased train-
ing speed came at no additional cost.

6.2 Reward Function Engineering

Unlike benchmark environments in RL such as Atari games
or walking challenges, there is no intrinsic reward function
in this application, so it had to be engineered from scratch.
Ideally, we would use optimization target values calculated
at the end of each trace file: throughput per cycle, latency
per packet, and total energy. However, one reward only at
the end of each trace would make the rewards very sparse,
which introduces numerous challenges in the RL setting.
Instead, it was necessary to engineer a reward which could
provide a non-zero value at most timesteps. A simple linear
combination of the number of packets sent in the previous
RW window, pt, and the dynamic energy consumed in the
previous RW, et seems to be an obvious solution

rt ¼ pt � �et; (16)

where � is a tunable hyper-parameter to control the tradeoff
between throughput and energy consumption.

However, there appears to be a flaw in the reward func-
tion; the data being run through the simulator was gener-
ated in advance of the simulation. This means that the total
number of packets in each trace file is constant with respect
to the simulation. Unlike the throughput per cycle metric
that needs to be optimized, the number of packets pt used in
the reward is not divided by the total number of cycles
in the simulation, because this number is not known at
timestep t during the simulation. This could be an issue in
an undiscounted reward setting, where the packet term in
the cumulative reward would be the same, no matter what
policy is used. However we are operating in the discounted
setting in which the value of the next state and action
Qðs0; a0Þ is multiplied by a discount factor, g 2 ½0; 1�. There-
fore, if g < 1 the agent perceives sending packets sooner
as more rewarding. Nevertheless, this leads to a relatively

TABLE 1
Reduced Feature Set Used for LEAD-RL

Reinforcement Learning Feature Set

Feature 1: Current Input Buffer Utilization
Feature 2: Outgoing Link Utilization All Directions
Feature 3: Incoming Link Utilization All Directions
Feature 4: Requests Sent by All Cores
Feature 5: Requests Received by All Cores

The size of the feature set as well as computational overhead
is drastically reduced with no significant impact on agent
performance/energy savings.

382 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 3, MARCH 2019

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

complicated relationship between the discount factor, g,
and �, which makes tuning difficult. Instead, we chose to
formulate the reward as

rt ¼ �ðbt þ �etÞ; (17)

where bt is the buffer utilization of the previous timestep.
While we are no longer directly optimizing throughput per
cycle, including �bt in lieu of pt in the reward makes both
terms dependent on the actions selected by the agents.
When trained with Algorithm 1, the agent using the reward
described by Equation (17) was able to outperform agents
using reward described by Equation (16). All results in this
paper used the reward formulation from Equation (17).

7 EXPERIMENTAL EVALUATION

Multi2sim [30], a cycle accurate full system simulator, is
used to generate trace files using industry standard bench-
marks such as blackscholes and FFT. A total of 14 trace files
are generated using both PARSEC 2.1 [31] and SPLASH2
[32] benchmarks. Our in house network simulator uses the
generated traces as input for real traffic patterns. It is crucial
that LEAD be trained and tested using real traffic patterns
because they are more indicative of real world performance
than synthetic workloads. LEAD uses six benchmarks for
training, three for validation, and five for testing. All LEAD
models and the Baseline use the same five test traces, to
allow for a fair experimental comparison. The main results
in terms of dynamic energy, throughput, and latency are
shown in Fig. 5 and summarized below:

1) LEAD-t achieves an average dynamic energy sav-
ings of 15.4 percent for a loss in throughput of 0.8
percent with no significant impact on latency, rela-
tive to the baseline.

2) LEAD-RL saves 20.3 percent dynamic energy rela-
tive to the baseline model, at the cost of a 1.5 percent
decrease throughput and a 1.7 percent increase in
latency.

a) Relative to LEAD-t, RL enabled the saving of an
additional 4.9 percent energy at the cost of an
additional 0.7 percent decrease in throughput
and an additional 1.5 percent increase in latency.

Note that because all features are local to the router, if
more routers/cores were added to the network all LEAD
models could be easily scaled to the new architecture with
no change in the algorithms.

7.1 Linear Regression Training and Evaluation

All three linear regression based LEAD models are trained
separately on the same extracted features but with different
labels. After the regression models have been trained and
validated, they are exported back into our network simula-
tor where they are used to predict labels. These labels are
then used to select the appropriate modes, based on a set of
tuned thresholds. In order to determine the optimal buffer
utilization thresholds for the LEAD-t model, we performed
an exhaustive threshold study.

Fig. 6 shows the results of tuning the threshold on the
barnes benchmark. The x-axis has 4 values which corre-
spond to the four thresholds used to determine what mode a
router should operate in for the next epoch. For example, 5/
10/20/25 implies that when the buffers are predicted to be
less than 5 percent full for the next epoch, the router should
operate in mode 1 for the next epoch. When the routers are
predicted to be between 5 and 10 percent full, the routers
should operate in mode 2. When the routers are predicted to
be between 10 and 20 percent full it should operate in
mode 3. When the router is predicted to be between 20
and 25 percent full it should operate in mode 4. Finally,
when a router is predicted to be more than 25 percent full it
should operate at the highest mode for the next epoch. The
tuning results show that the best threshold combination was
5/10/20/25, yielding 15.51 percent energy savings for a
5.35 percent throughput loss on the barnes benchmark.
Therefore we use this threshold combination for our LEAD-t
model on the 5 test traces.

A breakdown of the time spent in each mode for all
LEAD models is shown in Fig. 8. This breakdown is mea-
sured as a percentage of the total cycles all routers in the
network operated at each of the five different voltage levels
compared to the total number of simulation cycles. A com-
parison of the throughput, dynamic energy, and energy
delay product (EDP) is shown in Fig. 7 where the data is
normalized against a baseline that does not apply DVFS.
We used the best performing thresholds 5/10/20/25 from
Fig. 6 and due to space constraints only show various time
window sizes for LEAD-t. LEAD-t performed very similar
for both 500 and 1,000 cycles, resulting in 16-17 percent

Fig. 5. Performance of LEAD-RL and LEAD-t as a percentage of the baseline model.

Fig. 6. Throughput loss/dynamic energy savings across multiple thresh-
old selections for the lu trace with a window size of 100.

FETTES ETAL.: DYNAMIC VOLTAGE AND FREQUENCYSCALING IN NOCS WITH SUPERVISED AND REINFORCEMENT LEARNING... 383

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

energy savings at the cost of 3-4 percent less throughput.
LEAD-D saved 34-35 percent dynamic energy, far more that
LEAD-t, however at a cost of 40-43 percent loss in through-
put. LEAD-G is similar to LEAD-D in that it achieved even
greater energy savings than LEAD-D of 42 percent for an
almost equal loss in throughput of 42 percent. Fig. 7c shows
that the EDP for all models follows the same trend as total
dynamic energy. A more detailed discussion of the super-
vised LEADmodels is presented in [45].

7.1.1 Overhead for Linear Regression

Because training is performed offline, the overhead incurred
by the linear regression based LEAD models reduces to the
runtime energy/area/timing cost to generate predictions
and select corresponding V/F levels on a per router basis.
Runtime overhead can be simplified to the cost of making
predictions, which requires gathering local router features
and multiplying them by their trained weights. Then these
values are all summed to calculate the prediction. Other
work [29] has already calculated the energy and area over-
head to perform many different types of operations. A

single 16 bit floating point addition consumes 0.4 pJ with
an area cost of 1360 um2. A single 16 bit multiply consumes
1.1 pJ with an area cost of 1640 um2. We use 39 features for
label generation for all linear regression based LEAD mod-
els which leads to 39 multiplies and 38 additions. The total
energy overhead is 58.1 pJ with a total area overhead of
0.12mm2. Using Synopsys we also estimate the timing over-
head to be 3-4 cycles. Predictions are made on a per router
basis but only need to be generated once per time window,
thus we can simply increase the epoch size to decrease the
energy overhead. Units can be shared to reduce area over-
head at the expense of increased timing costs.

7.2 RL Agent Training

The agents are trained using the Barnes, Bodytrack, Dedup,
Ferret, Ocean, and Swaptions benchmarks, which were
sampled randomly from the 9 training and validation
traces. The remaining 3 benchmarks, FFT, Raytrace, and
Black, were used for tuning the hyper-parameters. Because
learning is offline, the policy is static at test time. To ensure
the agent was converging to the optimal solution for any
given trace file, the replay buffer had to be sufficiently large
to store traces from every training benchmark simulta-
neously. Therefore, the agent was trained for at least 100 K
timesteps, which typically amounts to approximately 2-3
passes over the training traces. To ensure that a sufficient
number of samples are in the replay buffer to avoid de-
correlation at the beginning of training, no gradient updates
are performed until the replay buffer is filled with at least
Train Start Size = 10 K samples.

The actual stopping condition also depends on the param-
eters of the noisy networks. For these experiments, training
was considered complete when the noise parameters s

Fig. 8. Breakdown of time spent in each mode by routers during testing
for various LEAD models.

Fig. 7. (a) The throughput for linear regression based LEAD models compared against baseline and greedy. (b) The normalized total dynamic energy.
For LEAD-t, we also show how the model performed at two different window sizes of 500 and 1,000 cycles. (c) The normalized energy delay product
with LEAD-t evaluated for window sizes of 500 and 1,000 cycles.

384 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 3, MARCH 2019

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

stopped changing to a significant degree. The s variance
parameters can be interpreted as the agent’s uncertainty
with respect to the true state of the NoC environment and
the optimal action to take in that state. Empirically, we have
observed that rewards that are highly non-stationary are cor-
relatedwith high values of s. With this in mind, the behavior
of the s parameters was also used to tune hyper-parameters
such that the reward function shows a more stationary view
of the expected return. Table 2 shows the values of all the
hyper-parameters used during the training of the LEAD-RL
model. Because the space of possible hyperparameters is
very large, hyperparameters were selected by performing a
greedy, hyperparameter-wise sequential search: starting
from default values, the hyperparameters were each tuned
one-by-one until values which appeared to perform best
were found. The significance of �, g, and s on final perfor-
mance is discussed in depth in Section 8.

7.3 RL Agent Evaluation

The RL agents are trained offline, which means that at test
time learning is stopped, no experience is appended to the
Replay Buffer, and no gradient descent steps are performed.
The policies for all of the agents remain static and determin-
istic and proceed according toAlgorithm 2. This only requires
querying the trained neural network to select actions. Online
training instead would use lines 8-24 of Algorithm 1 at test
time, which would require maintaining a prioritized replay
buffer at each router, keeping noisy parameters (more than
doubling the number of parameters), estimating gradients
with respect to all of these parameters for each update, and
hardware to enable these functions. Correspondingly, the
computational cost at test timewould be orders of magnitude
higher than for offline training. However, by stopping train-
ing at test time, the agents lose some flexibility in adapting to
non-stationary environments. This challenge was largely
overcome by tuning the minibatch size, the replay buffer
size, introducing Prioritized Experience Replay, and using a
diverse set of benchmarks for training.

7.3.1 Architecture and LEAD-RL Overhead

As with the other LEAD models, the additional overhead
incurred by LEAD-RL can be reduced to the runtime energy/
area/timing cost to compute the state-action value for each
mode and switch to the corresponding V/F levels on a per
router basis. This overhead must be considered in terms of

the number of agents which is heavily dependent on network
topology. LEAD-RL is applied to ameshwith a concentration
factor of four in order to reduce the number of agents and cre-
ate a smaller neural network so that computational overhead
is minimized. If LEAD-RL were applied to a mesh with con-
centration factor of 1, the number of agents would equal the
network size. This would result in a larger neural network
with the potential for increased power savings at the cost of
increased computational overhead. LEAD-RL uses a neural
networkwith two hidden layers with 16 neurons each and an
output layer with 5 nodes. The three layers must be com-
puted in sequential order, e.g., layer onemust gather features
and compute its values before the next layer can be com-
puted. We could flatten the network but area overhead
would increase. With our current design it is possible to par-
allelize all units and operations within each layer. For layer
onewe have a total of 80multiplies, 64 additions, and 16 com-
parisons. For layer two we have a total of 256 multiplies, 240
additions, and 16 comparisons. For the third layer we have a
total of 80 multiplies, 75 additions, and 5 comparisons. This
equates to a total of 416multiplies, 379 additions, and 37 com-
parisons to gather the features, compute state-action values,
and to select the V/F mode with the largest action value. The
total energy cost is a result of the total number of operations
performed and does not change with parallel components;
however we can reuse components between layers to reduce
area overhead. The total energy overhead is 609.2 pJ and the
total area overhead is 0.746 mm2, which can be further
reduced to 94.5 pJ and 0.081 mm2, respectively, by reducing
the precision from 16 bit to 8 bit. The total timing overhead is
11-12 cycles. State-action values are calculated on a per router
basis and only need to be generated once per time window.
Once again, we can reduce the energy overhead simply by
increasing the time window. We could reduce area overhead
by sharing more units, however timing overhead would
increase. Additionally, we can make algorithmic improve-
ments to reduce the number of parameters in the neural net-
work, thus reducing the number of necessary operations.
Recent work [47] shows that significant redundancy exists in
neural networks andweak connections can be pruned reduc-
ing the number of parameters by as much as a factor of 10.
Additionally, model compression using distilled knowledge
from a larger neural network can be used to train a smaller
neural network [48]. In other words, we can use the trained
neural network from this paper to train a smaller equivalent
networkwith less energy and area overhead.

8 DISCUSSION OF LEAD-RL

The RL architecture presented here for DVFS led to a better
energy versus throughput tradeoff compared to linear regres-
sion based LEAD, in addition to providing significant design
benefits such as scalability. On the other hand, the architec-
ture needed at test time is more complex. In this section, we
discuss several key insights regarding the RL approach to
DVFS and comparewith results from relatedwork.

Model Behavior of RL versus Supervised Models. From Fig. 8
we can see that LEAD-t routers spend the majority of their
time in the highest mode of operation in order to meet strict
performance demands. However, we see that this model
can still effectively transition into lower modes in order to

TABLE 2
Hyperparameters

Hyperparameter Value

Replay Buffer Size 100 K
Train Start Size 10 K
Minibatch Size 64
Learning Rate 0.0001
Target Net Update Freq. 128
Priority, a 0.6
bstart 0.4
sinit 0.047
n steps 3
� 0.1
g 0.9

FETTES ETAL.: DYNAMIC VOLTAGE AND FREQUENCYSCALING IN NOCS WITH SUPERVISED AND REINFORCEMENT LEARNING... 385

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

exploit low network traffic and save energy. LEAD-D has
the most equal mode distribution due to its’ gradually
changing nature. However, this does not equate to the best
energy savings and performance trade-off as it is never
allowed to transition directly into the optimal mode, only
into the direction of the optimal mode. We see that LEAD-G
spends the majority of its’ time in the lowest mode of opera-
tion in order to maximize energy savings, but this also leads
to massive performance degradation. In contrast, LEAD-RL
routers spend the majority of their time in lower modes of
operation, with a much more even distribution of time spent
in higher modes when network-loads shift. This more grad-
ual change in voltage mode as load shifts can be thought of
as a blend of LEAD-t and LEAD-D and showcases the
improved energy savings of LEAD-RL. Because LEAD-t
routers must meet strict performance requirements, this
model is best in a high-load environment. LEAD-D routers
react slowly to changing traffic patterns, therefore this
model would be best suited to low-medium load environ-
ments with lax performance requirements. LEAD-G routers
focus solely on energy savings; therefore, this model would
be best suited to low-load environment with no perfor-
mance requirements. The flexibility of the RL approach ena-
bles the LEAD-RL agents to effectively learn an optimal
behavior for any load environment, under arbitrary perfor-
mance requirements. Thus, LEAD-RL routers can maintain
strict performance requirements while still gradually chang-
ing voltage levels as load shifts.

Advantages over Supervised Learning. LEAD-RL brings sev-
eral benefits over previous LEAD models; the first being
improved overall energy versus throughput tradeoff. Con-
trolling the energy versus throughput tradeoff can be done
through a single hyper-parameter � in the reward function,
as shown in Fig. 9. Larger values result in more energy sav-
ing at the cost of throughput, while smaller values result in
less throughput loss at the cost of more energy. This allows
easy application specific tuning by a designer. Furthermore,

generalizing the agent to use more than 5 DVFS modes is
simple, as it requires only adding more output nodes in the
router’s deep Q network. In contrast, increasing the number
of modes in the supervised LEAD models requires increas-
ing the number of corresponding thresholds, which in turn
increases the time complexity of the grid search procedure
for threshold tuning.

RL versus Supervised Learning Based Policies. As seen in
Fig. 8, the policies learned by LEAD-RL agents are much
more diverse than LEAD-t, while reducing dynamic energy
and maintaining high throughput, unlike LEAD-D where
added diversity does not translate into a good energy versus
throughput tradeoff.Whereas LEAD-t looks almost bi-modal,
spending greater than 90 percent of cycles inmodes 1 and 5 in
4 out of 5 test traces, LEAD-RL was able utilize modes 2, 3,
and 4 effectively to reduce the energy cost of eachworkload.

Per Router Learning and Exploration. The noisy network s

parameters are expected to converge to a value representing
the stochasticity of the action-value function estimation.
Fig. 11 shows the behavior of the s parameters during train-
ing for a subset of the routers. It can be seen that each agent
develops its own exploration strategy in order to find its
optimal policy: router 12, for instance, converges much
faster and requires less exploration than the other routers.
This lends credence to the idea that the problem, or at least
the representation of the problem, for each agent differs to
some degree. In addition, the different final values for the
average s parameter magnitude indicates that an optimal
solution requires a separate policy for each router.

Non-Stationarity and Static Policy. Due to the highly
non-stationary nature of the observations, which arise from
differences in workloads across both sections of traces and
different traces, in combination with static policies being
implemented at runtime, learning a general policy for the
problem proved challenging. To overcome this, the size of
the replay buffer needed to be sufficiently large to hold
transitions from multiple trace files, otherwise the value

Fig. 9. Performance of LEAD-RL as a percentage of the baseline model when varying the value of �.

Fig. 10. Performance of LEAD-RL as a percentage of the baseline model when varying the value of g.

386 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 3, MARCH 2019

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

function would continue to vary significantly. Additionally,
the size of minibatch sampled from the replay buffer had to
be large enough to capture a good estimate of the true gradi-
ent; using minibatches that were too small also resulted in a
less stable policy. Minibatches of size 64 were sufficient
when prioritized replay was used, though without priori-
tized replay minibatches needed to be significantly larger.
Finally, as more data was added to the training set, perfor-
mance improved, hence the importance of using many
training traces. In practice, data could potentially be accu-
mulated and used to continuously train better models.

Noisy Network Initialization. The initialization of the noisy
parameters s was found to be of significant importance in
this problem. When the initial values were too small, the
agent tended to converge to sub-optimal policies. When the
initial values were too large, the noisy parameters con-
verged to larger values, which in turn caused the mean
parameters m to also converge to larger values. The result-
ing more complex model subsequently had poor generaliza-
tion performance, i.e., a lower average reward (energy
versus throughput tradeoff) at test time.

Sensitivity to Discounting Factor. When tuning g, values
whichwere too small were found to cause convergence to pol-
icies which are only locally optimal. In other words, the agent
prioritizes actions which maximize reward over intervals
which are too short. Conversely, values of gamma that were
too large resulted in the agent considering future states which
were not significantly affected by the current action. As a
result, the expectation of the return is more non-stationary
leading to slow or non-convergence of the value function esti-
mation. Results for 3 values of g are shown in Fig. 10.

Better Reward Function. Due to simulator limitations, we
could not get a truemeasure of throughput at every timewin-
dow. While a significant improvement in performance was
achieved usingAlgorithm 1with the reward in Equation (17),
replacing �bt with a true measure of throughput could lead
to further improved results. In our experiments the agent
was accurate estimating value functions, evidenced by an
average loss per transition at every update of 5 � 10�5, and a
flattening of the average s parameter magnitudes, seen in
Fig. 11, indicating that the state-action space has been suffi-
ciently explored. If a true measure of throughput were used
in place of �bt, it may be possible to more closely optimize
for the end goal of maximum energy savings and minimum
throughput loss.

Comparison with Related Work. In [54], RL achieved
33 percent dynamic energy savings when DVFS was applied
to NoC, LLC, and other uncore components, at a cost of
2.5 percent decrease in throughput. In contrast, in our work
DVFS is applied only to the NoC. We expect that using
LEAD-RLwith these additional chip components would fur-
ther improve energy savings. In [9], RL was applied in a
multi-tasking environment to doDVFS of the core. However,
to achieve the 20.3 percent energy savings reported in our
work, their approach would result in a greater loss in
throughput, of 4.5 to 13.5 percent. In [26], cache coherence
properties were used to optimize voltage and frequency set-
tings, leading to energy savings of 40 percent at a cost of
3 percent in throughput. However, the RL agents in our
work do not have access to cache coherence information, as
such the results are not comparable.

9 CONCLUSION

We presented LEAD Learning-enabled Energy-Aware Dynamic
voltage/frequency scaling for multicore architectures, a collec-
tion of machine learning approaches that are trained to proac-
tively switch among a predefined set of DVFS modes in order
to reduce energy consumption in NoCs, with minimal impact
on throughput and latency. In the new LEAD-RL approach,
a DVFS selection model is trained for each router in a mesh
architecture, usingmodern reinforcement learning techniques
such as deepQ-networks, noisy networks, replay buffers, and
prioritized replay. The new RL approach is more scalable
than the previously introduced supervised learning models,
does not require expensive threshold tuning, and allows for
an easier adjustment of the dynamic energy versus through-
put tradeoff. All models are trained offline in order to mini-
mize energy and area footprint at runtime. Simulations on a
4 � 4 concentrated mesh architecture using PARSEC and
Splash-2 benchmarks show that the supervised learning
LEAD models can achieve an average dynamic energy sav-
ings of 15.4 percent for a loss in throughput of 0.8 percent with
no significant impact on latency. When reinforcement learn-
ing is used, LEAD increases average dynamic energy savings
to 20.3 percent at the cost of a 1.5 percent decrease in through-
put and a 1.7 percent increase in latency. Ultimately, LEAD-
RL serves as a model which can be easily tailored to the needs
of the workload, is trained automatically without much
human engineering, and is scalable to large networks with
many cores/routers and an arbitrary number of DVFSmodes.

ACKNOWLEDGMENTS

This research was partially supported by US National Sci-
ence Foundation grants CCF-1054339 (CAREER), CCF-
1420718, CCF-1318981, CCF-1513606, CCF-1703013, CCF-
1547034, CCF-1547035, CCF-1540736, and CCF-1702980. We
thank the anonymous reviewers for their excellent feedback.

REFERENCES

[1] A. K. Mishra, R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and
C. R. Das, “A case for dynamic frequency tuning in on-chip
networks,” in Proc. Annu. IEEE/ACM Int. Symp. Microarchit., 2009,
pp. 392–303.

[2] R. David, P. Bogdan, and R. Marculescu, “Dynamic power man-
agement for multicores: Case study using the intel SCC,” in Proc.
Int. Conf. VLSI Syst.-on-Chip, Oct. 2012, pp. 147–152.

Fig. 11. Average s parameter magnitude versus time: To reduce clutter,
the figure shows only 8 randomly selected routers.

FETTES ETAL.: DYNAMIC VOLTAGE AND FREQUENCYSCALING IN NOCS WITH SUPERVISED AND REINFORCEMENT LEARNING... 387

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

[3] P. Bogdan, R. Marculescu, S. Jain, and R. Gavila, “An optimal con-
trol approach to power management for multi-voltage and fre-
quency islands multiprocessor platforms under highly variable
workloads,” in Proc. Int. Symp. Netw. Chip, May 2012, pp. 35–42.

[4] L. Shang, L. Peh, and N. K. Jha, “Power-efficient interconnection
networks: Dynamic voltage scaling with links,” Comput. Archit.
Lett., vol. 1, no. 1, pp. 6–6, Jan. 2002.

[5] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/fre-
quency scaling in chip-multiprocessors,” in Proc. Int. Symp. Low
Power Electron. Des., Aug. 2007, pp. 38–43.

[6] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using
on-chip regulators,” ACM Trans. Archit. Code Optimization, vol. 8,
Apr. 2011, Art. no. 1.

[7] S. Yeng, R. A. Shafik, G. V. Merrett, E. Stott, J. M. Levine, J. Davis,
and B. M. Al-Hash, “Adaptive energy minimization of embedded
heterogeneous systems using regression-based learning,” in Proc.
25th Int. Workshop Power Timing Model. Optimization Simul.,
Sep. 2015.

[8] R. Jain, P. R. Panda, and S. Subramoney, “Machine learned
machines: Adaptive co-optimization of caches, cores, and on-chip
network,” in Proc. Des. Autom. Test Eur. Conf. Exhib., Apr. 2016,
pp. 253–256.

[9] G. Dhiman and T. S. Rosing, “Dynamic voltage frequency scaling
for multi-tasking systems using online learning,” in Proc. Int.
Symp. Low Power Electron. Des., Aug. 2007, pp. 207–212.

[10] H. Richard, “Machine learning based DVFS for energy efficient
execution of multithreaded workloads,” Dissertations and Theses
Technical Reports-Computer Science, Texas State University,
Nov. 2014, https://digital.library.txstate.edu/handle/10877/5363

[11] X. Chen, Z. Xu, H. Kim, P. V. Gratz, J. Hu, M. Kishinevsky,
U. Ogras, and R. Ayoub, “Dynamic voltage and frequency scaling
for shared resources in multicore processor designs,” in Proc.
ACM/IEEE Des. Autom. Conf., Jul. 2013, Art. no. 114.

[12] H. Shen, J. Lu, and Q. Qiu, “Learning based DVFS for simulta-
neous temperature, performance and energy management,” in
Proc. 13th Int. Symp. Quality Electron. Des., Mar. 2012, pp. 747–754.

[13] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural net-
works from overfitting,” J. Mach. Learn. Res., vol. 15, pp. 1929–1958,
Jun. 2014.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[15] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int.
Conf. Mach. Learn., 2015, pp. 448–456.

[16] L. Chen, D. Zhu, M. Pedram, and T. Pinkston, “Power punch:
Towards non-blocking power-gating of NoC routers,” in Proc. Int.
Symp. High-Perform. Comput. Archit., Jul. 2015, pp. 378–389.

[17] H. Bokhari, H. Javaid,M. Shafique, J. Henkel, and S. Parameswaran,
“darkNoC: Designing energy-efficient Network-on-Chip with
Mult-Vt Cells for dark silicon,” in Proc. ACM/IEEE Des. Autom.
Conf., Jun. 2014, pp. 1–6.

[18] L. Chen, L. Zhao, R. Wang, and T. Pinkston, “MP3: Minimizing
performance penalty for power-gating of Clos Network-on-Chip,”
in Proc. IEEE 20th Int. Symp. High Perform. Comput. Archit.,
Feb. 2014, pp. 296–307.

[19] L. Chen and T. Pinkston, “NoRD: Node-router decoupling for
effective power-gating of On-Chip routers,” in Proc. 45th Annu.
IEEE/ACM Int. Symp. Microarchit., Dec. 2012, pp. 270–281.

[20] A. Samih, R. Wang, A. Krishna, C. Maciocco, C. Tai, and
Y. Solihin, “Energy-efficient interconnnect via router parking,” in
Proc. IEEE 19th Int. Symp. High Perform. Comput. Archit., Feb. 2013,
pp. 508–519.

[21] R. Das, S. Narayanasamy, S. Satpathy, and R. Dreslinski, “Catnap:
Energy proportional multiple Network-on-Chip,” in Proc. 40th
Annu. Int. Symp. Comput. Archit., Jun. 2013, pp. 320–331.

[22] R. Parikh, R. Das, and V. Bertacco, “Power-aware NoCs through
routing and topology reconfiguration,” in Proc. 51st ACM/EDAC/
IEEE Des. Autom. Conf., Jun. 2014, pp. 1–6.

[23] I. Vaisband and E. Friedman, “Dynamic power management with
power Network-on-Chip,” in Proc. IEEE 12th Int. New Circuits
Syst. Conf., Oct. 2014, pp. 225–228.

[24] M. Manda, S. Pakala, and P. Furth, “A multi-loop low-dropout
FVF voltage regulator with enhanced load Regulation,” in Proc.
IEEE 60th Int. Midwest Symp. Circuits Syst., Aug. 2017, pp. 9–12.

[25] T. Bai, V. Lee, and E. Ipek, “Voltage regulator efficiency aware
power management,” in Proc. 22nd Int. Conf. Archit. Support Pro-
gram. Languages Operating Syst., Apr. 2017, pp. 825–838.

[26] R. Hesse and N. Jerger, “Improving DVFS in NoCs with coher-
ence prediction,” in Proc. ACM/IEEE Int. Symp. Netw.-on-Chip,
Sep. 2015, Art. no. 24.

[27] S. Son, K. Malkowski, G. Chen, M. Kandemir, and P. Ragha-
van, “Integrated link/CPU voltage scaling for reducing energy
consumption of parallel sparse matrix applications,” in Proc.
20th IEEE Int. Parallel Distrib. Process. Symp., Apr. 2006,
pp. 297–297.

[28] G. Magklis, P. Chaparro, J. Gonzalez, and A. Gonzalez, “Indepe-
ndent front-end and back-end dynamic voltage scaling for a
GALS microarchitecture,” in Proc. Int. Symp. Low Power Electron.
Des., 2006, pp. 49–54.

[29] M. Horowitz, “1.1 computing’s energy problem (and what we can
do about it),” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech.
Papers, Feb. 2014, pp. 10–14.

[30] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim: A
simulation framework for CPU-GPU computing,” in Proc. Int.
Conf. Parallel Archit. Compilation, 2012, pp. 335–344.

[31] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for
chip-multiprocessors,” in Proc. 5th Annu. Workshop Model. Bench-
marking Simul., Jun. 2009.

[32] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” in Proc. ACM/IEEE Int. Symp. Comput. Archit.,
Jun. 1995, pp. 24–36.

[33] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal,
L.-S. Peh, and V. Stojanovic, “DSENT—A tool connecting emerg-
ing photonics with electronics for opto-electronic networks-on-
chip modeling,” in Proc. IEEE/ACM 6th Int. Symp. Netw. Chip,
2012, pp. 201–210.

[34] A. Bianco, P. Giaccone, and N. Li, “Exploiting dynamic voltage
and frequency scaling in networks on chip,” in Proc. IEEE 13th Int.
Conf. High Perform. Switching Routing, Jun. 2012, pp. 229–234.

[35] S. Usman, S. U. Khan, and S. Khan, “A comparative study of
voltage/frequency scaling in NoC,” in Proc. IEEE Int. Conf.
Electro-Inf. Technol., May 2013, pp. 1–5.

[36] J. Zhan, N. Stoimenov, J. Ouyang, L. Thiele, V. Narayanan,
and Y. Xie, “Optimizing the NoC slack through voltage and fre-
quency scaling in hard real-time embedded systems,” in Proc.
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., Nov. 2014,
pp. 1632–1643.

[37] D. Zoni, F. Terraneo, and W. Fornaciari, “A DVFS cycle accurate
simulation framework with asynchronous NoC design for power-
performance optimizations,” J. Signal Process. Syst., vol. 83,
pp. 357–371, Jun. 2016.

[38] R. Sutton and A. Barto, Reinforcement Learning: An Introduction, 1st
ed. Cambridge, MA, USA: MIT Press, 1998.

[39] V.Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness,M. Bellemare,
A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou,H.King,D.Kumaran,D.Wierstra,
S. Legg, andD. Hassabis,“Human-level control through deep rein-
forcement learning,”Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[40] H. V. Hasselt, “Double Q-learning,” in Proc. Int. Conf. Neural Inf.
Process. Syst., 2010, pp. 2613–2621.

[41] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in Proc. 13th AAAI Conf. Artif.
Intell., 2016, pp. 2094–2100.

[42] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A.
Graves, V. Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blun-
dell, and S. Legg, “Noisy networks for exploration,”
arXiv:1706.10295, 2017.

[43] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized expe-
rience replay,” in Proc. Int. Conf. Learn. Representations, 2016.

[44] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for par-
tially observable MDPs,” arXiv:1507.06527, 2015.

[45] M. Clark, A. Kodi, and R. Bunescu, “LEAD: Learning-enabled
energy-aware dynamic voltage/frequency scaling in NoCs,” in
Proc. 55th Annu. Des. Autom. Conf., Jun. 2018, Art. no. 82.

[46] R. Sutton, “Learning to predict by the methods of temporal differ-
ences,”Mach. Learn., vol. 3, no. 1, pp. 9–44, 1988.

[47] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights
and connections for efficient neural networks,” in Proc. 28th Int.
Conf. Neural Inf. Process. Syst., 2015, pp. 1135–1143.

388 IEEE TRANSACTIONS ON COMPUTERS, VOL. 68, NO. 3, MARCH 2019

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

https://digital.library.txstate.edu/handle/10877/5363

[48] C. Bucilua, R. Caruana, and A. Niculescu-Mizil, “Model compre-
ssion,” in Proc. 12th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, 2006, pp. 535–541. [Online]. Available: http://doi.acm.
org/10.1145/1150402.1150464

[49] C. Watkins and P. Dayan,“Q-learning,” Mach. Learn., vol. 8, no. 3/
4, pp. 279–292, 1992.

[50] J. Yin, S. She, M. Oskin, and G. H. Loh, “Toward more efficient
NoC arbitration: A deep reinforcement learning approach,”
in Proc. IEEE 1st Int. Workshop AI-assisted Des. Architecture,
Los Angeles, CA, Jun. 2018.

[51] J. A. Boyan and M. L. Littman, “Packet routing in dynamically
changing networks: A reinforcement learning approach,” in Proc.
6th Int. Conf. Neural Inf. Process. Syst., Nov. 1993, pp. 671–678.

[52] S. J. Lu, R. Tessier, and W. Burleson, “Reinforcement learning for
thermal-aware many-core task allocation,” in Proc. 25th Edition
Great Lakes Symp. VLSI, May 2015, pp. 379–384.

[53] Y. Bai, V. W. Lee, and E. Ipek, “Voltage regulator efficiency aware
power management,” in Proc. 22nd Int. Conf. Archit. Support Pro-
gram. Languages Operating Syst., Apr. 2017, pp. 825–838.

[54] X. Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, and
U. Ogras, “In-network monitoring and control policy for DVFS of
CMP Networks-on-Chip and last level caches,” in Proc. IEEE/
ACM 6th Int. Symp. Netw.-on-Chip, Jun. 2012, pp. 43–50.

Quintin Fettes received the BS degree in com-
puter science from Ohio University, Athens, in
2017. He is currently working toward the MS
degree in computer science at Ohio University.
His research interests include the general field of
deep reinforcement learning with a focus on
applications in dynamic voltage and frequency
scaling (DVFS) in network-on-chips (NoCs), and
theoretical work on policy gradient methods and
attention networks. He is a student member of
the IEEE.

Mark Clark received the BS degree in computer
engineering from Ohio University, Athens, in 2016
and is currently working toward the MS degree in
electrical engineering at Ohio University. His
research interests include network-on-chips
(NoCs), dynamic voltage and frequency scaling
(DVFS), and power-gating. He is a student mem-
ber of the IEEE.

Razvan Bunescu received the PhD degree in
computer science from the University of Texas at
Austin, in 2007, with a thesis on machine learning
methods for information extraction. He is cur-
rently an associate professor in computer science
with Ohio University. His research interests lie in
the general area of machine learning, with a
focus on applications in computational linguistics,
biomedical informatics, computer architecture,
software engineering, and music analysis. His
research has been funded by grants from the
National Science Foundation and the National
Institutes of Health. He is a member of the IEEE.

Avinash Karanth received the MS and PhD
degrees in electrical and computer engineering
from the University of Arizona, Tucson, Arizona, in
2003 and 2006, respectively. He is currently a pro-
fessor of electrical engineering and computer
science with Ohio University, Athens, Ohio. His
current research interests include computer archi-
tecture, optical interconnects, chip multiproces-
sors (CMPs), and network-on-chips (NoCs). He
was a recipient of the National Science Foun-
dation CAREER Award in 2011, the Best Paper

Award at the ICCD2013 conference and his papers have been nominated
for best paper at the IEEE Symposium on NoCs in 2010 and the IEEE
Asia and South Pacific Design Automation Conference (ASP-DAC) in
2009. He is a senior member of the IEEE and amember of the ACM.

Ahmed Louri received the PhD degree in com-
puter engineering from the University of Southern
California, Los Angeles, CA, in 1988. He is the
David and Marilyn Karlgaard endowed chair pro-
fessor of electrical and computer engineering
with the George Washington University, which he
joined in August 2015. He is also the director of
the High Performance Computing Architectures
and Technologies Laboratory. From 1988 to
2015, he was a professor of electrical and com-
puter engineering with the University of Arizona,

and during that time, he served six years (2000 to 2006) as the chair of
the Computer Engineering Program. From 2010 to 2013, He served as a
program director with the National Science Foundation’s (NSF) Director-
ate for computer and information science and engineering. He directed
the core computer architecture program and was on the management
team of several cross-cutting programs, including: Cyber-Physical Sys-
tems; Expeditions in Computing; Computing Research Infrastructure;
Secure and Trustworthy Cyberspace; Failure-Resistant Systems, Sci-
ence Engineering and Education for Sustainability; and Cyber-Discovery
Initiative, among others. He conducts research in the broad area of com-
puter architecture and parallel computing, with emphasis on intercon-
nection networks, optical interconnects for scalable parallel computing
systems, reconfigurable computing systems, and power-efficient and
reliable Network-on-Chips (NoCs) for multicore architectures. Recently,
he has been concentrating on: energy-efficient, reliable, and high-
performance many-core architectures; accelerator-rich reconfigurable
heterogeneous architectures; machine learning techniques for efficient
computing, memory, and interconnect systems; emerging interconnect
technologies (photonic, wireless, RF, hybrid) for NoCs; future parallel
computing models and architectures (including convolutional neural net-
works, deep neural networks, and approximate computing); and cloud-
computing and data centers. He has published more than 160 refereed
journal articles and peer-reviewed conference papers, and is the co-
inventor on several US and international patents. He is a fellow of the
Institute of Electrical and Electronics Engineers (IEEE), a member of
IEEE Computer Society (CS) Technical Committee on Computer Archi-
tecture, the IEEE CS Technical Committee on Parallel Processing, the
IEEE CS Technical Committee on Microprocessors & Microcomputers,
and the Optical Society of America.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

FETTES ETAL.: DYNAMIC VOLTAGE AND FREQUENCYSCALING IN NOCS WITH SUPERVISED AND REINFORCEMENT LEARNING... 389

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:05:59 UTC from IEEE Xplore. Restrictions apply.

http://doi.acm.org/10.1145/1150402.1150464
http://doi.acm.org/10.1145/1150402.1150464

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

