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Abstract— Data compression has been commonly employed
to reduce the required memory size for emerging applications
with large storage needs like Big Data and Machine Learning
(ML). When considering the flexibility of decompression and
its hardware implementation, variable-to-fixed length codes (e.g.,
Tunstall codes) are usually selected. However, memories are prone
to suffer different types of errors, causing the stored data to
be corrupted; if an error affects the compressed data, it can
propagate and cause corruption in a sequence of bits of the
decompressed data. Therefore, error resilience should be built-in
as part of the memory design to provide reliable data, especially
for safety-critical applications. However, Error Correction Codes
(ECCs) that are widely used for memory protection, are not
very efficient to protect compressed data, because ECCs further
increase the memory size and the additional decoding process
can impact the latency to decompress the stored data. In this
paper, an efficient error-resilient data compression technique
with Tunstall codes is proposed; it requires almost no memory
overhead and can correct most errors during the decompression
process by introducing a conversion table. An enhanced design is
also presented to reduce the impact of errors when they cannot
be corrected. The proposed scheme has been implemented and
evaluated on three ML datasets; results show that it can deal
with up to 99.98% errors with almost no memory overhead when
Tunstall codes with smaller than 16-bit symbols are employed.
The scheme has also been evaluated for two ML applications;
results show that even though a small number of errors cannot
be corrected in the proposed scheme, they have an extremely low
impact on the classification results and the protection overhead
is significantly lower than existing ECC techniques.

Index Terms— Data compression, error resilience, Tunstall
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I. INTRODUCTION

AS Big Data and Machine Learning (ML) have been
widely advocated and employed in the last decade,

the volume of data handled by computing systems has
increased dramatically. Storage of data has become a major
challenge due to technology (such as CMOS scaling) and often
strict requirements in many resource-constrained platforms.
A commonly used solution to address this issue is to employ
data compression by coding, because it requires no change
in the processor architecture and can be performed nearly
transparently to the system hardware [1], [2]; so, instead
of the original dataset, only the compressed data that has
a significantly smaller size, needs to be stored in memory.
When the dataset needs to be accessed for an application,
the compressed data is read out of memory and then,
decompression is performed to recover the original dataset.

An often-employed category of data compression codes
is the fixed-to-variable length (FV) codes like Huffman
codes [1]; they compress a dataset by converting a fixed
length of elements (i.e., data patterns) to a variable length
of binary bits (i.e., symbols). To achieve a lower compression
ratio, frequent data patterns are usually assigned to symbols
of smaller size. However, symbols have variable lengths,
so errors (as introduced next) changing one symbol to another
with different length, may likely propagate in all subsequent
symbols, causing them to shift forward or backward. Another
disadvantage of FV codes is that despite large hardware,
they incur in a significant decompression latency, because
the location of each symbol cannot be promptly identified
(i.e., decompression must be performed serially symbol by
symbol, and usually in software). Another category is variable-
to-fixed length (VF) codes like Tunstall codes [2], [3], [4]; VF
codes convert data patterns with variable length to symbols
with fixed length. While their compression ratio is usually
worse than FV codes, they are readily indexable due to the
fixed length symbols, so more attractive when considering
the decompression flexibility and a hardware implementation.
In the decompression of VF codes, the compressed data can be
divided into single blocks, so that all blocks are decompressed
in a single clock cycle. Moreover, errors affecting a symbol
of VF codes have a smaller impact than in FV codes, because
they are bounded in a single symbol.

Memories are prone to suffer from errors, causing
data corruption. For example, radiation-induced soft errors
[5], [6], [7], [8], pose a significant reliability issue for
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memories, as they can erroneously flip the value stored in a
memory cell. This may have no impact on some applications
that are naturally tolerant to errors to a large extent (and in
which error protection techniques are often not employed).
However, such data corruption is not acceptable in some
safety-critical applications allowing zero or very small error
rates because an incorrect outcome may cause a potential
system failure [9], [10], and thus, error protection techniques
are required for memories. This is also applicable to memories
that store compressed data, because even a single error (the
most common type of errors [5], so considered in this paper)
may corrupt a sequence of bits in the decompressed data.

Error Correction Codes (ECCs) are widely used to provide
error protection for memory [11], [12], [13], [14]. By adding
several ECC bits to each memory word, errors can be
detected/corrected during the decoding process, such that
the correct data is finally provided. The overhead due
to ECCs originates from two sources: i) the additional
memory cells in each word for storing the ECC bits; ii)
the hardware for the encoder that generates the ECC bits
and the decoder that performs error detection or correction.
Therefore, even though the overhead is significantly lower than
other redundancy-based protection techniques like duplication
or triplication [15], the use of ECCs for memories storing
compressed data in resource-constrained platforms or high-
performance systems presents unique challenges: i) the size of
compressed data can also be large, so an ECC further increases
the required memory size; ii) there is already a large number
of memory reads in Big Data/ML applications, so ECC
decoding that is performed prior to decompression, further
increases the burden on timing. Therefore, with the need of
memory protection against errors and the limitations of using
ECCs, an error protection technique with reduced latency
and hardware area is always attractive. This has motivated
this paper to propose an efficient error-resilient scheme
with low impact on both memory size and decompression
latency.

The main contributions of this paper are as follows:
• An error protection scheme for a memory that stores data

compressed by using VF codes (in particular, Tunstall
codes), is proposed; it detects/corrects up to 99.98%
errors in the memory with a slight or almost no memory
overhead when Tunstall codes with smaller than 16 bits
symbols are used. Moreover, it also significantly reduces
the latency added to the unprotected implementation
compared to existing protection techniques.

• When an error cannot be detected/corrected, an additional
enhanced design reduces its impact, so that it affects
only up to a few elements and does not propagate,
hence preventing the occurrence of a so-called global
error.

The rest of the paper is organized as follows. Section II
reviews data compression by utilizing Tunstall codes, the
impact of errors on data compression and traditional error
protection solutions. Section III presents the proposed error-
resilient compression scheme that can correct nearly all errors;
an improvement is further designed to reduce the impact of the
remaining uncorrectable errors. The error protection capability

Fig. 1. Flowchart of data compression/decompression.

and memory overhead of the proposed schemes have been
evaluated in Section IV. The use of the proposed scheme
in two applications including k Nearest Neighbors [16] and
Stochastic Computing-based Neural Networks [17] is studied
in Section V. Finally, the paper ends with the conclusion in
Section VI.

II. PRELIMINARIES

Codes are often employed for compressing data; instead
of the original dataset, compressed data is stored in a
memory, so significantly reducing the required memory size.
When the original data needs to be accessed/used, it is
recovered by decompressing the stored data once it is read
out from the memory (as illustrated in Fig. 1). In this section,
a brief description of data compression codes focusing on
Tunstall codes and implementations are first provided. Then,
the impact of errors in the memory is discussed. Finally,
error-resilient and protection techniques employing ECCs are
reviewed, and the need for efficient alternative approaches is
discussed.

A. Tunstall Codes

Prior to introducing Tunstall codes, a terminology is
introduced for clarification:

• The dataset refers to the original uncompressed data
stream (e.g., AABABCAAAB).

• An element is the basic member (i.e., numbers, letters,
etc.) of the dataset (e.g., A, B, C).

• The data pattern is a set of few elements in a specific
order; for Tunstall codes, the data patterns have a variable
length (e.g., B, AB).

• A symbol is a set of a binary bits that are associated
with each data pattern; for Tunstall codes, symbols have
a fixed length (e.g., 000, 010).

• A codeword refers to the compressed dataset (e.g.,
101010001100000).

Next, for simplicity, a dataset that consists only of elements
A, B, C is used as an example to introduce the compression
mechanism of Tunstall codes. To compress such a dataset with
N different elements and maximize the average number of data
patterns, the standard n-bit Tunstall code [1] is designed as:

N + k (N − 1) ≤ 2n, (1)

where k is the number of iterations to determine data patterns.
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Fig. 2. An example of determining data patterns to compress a dataset with
elements {A, B, C} by using a 3-bit Tunstall code.

To determine the data patterns, all elements are sorted
by their frequency1 p first; then the most frequent element
is removed from the list and utilized to build new patterns
with each of the original elements in the first iteration. For
example, consider a dataset with p(A) = 0.6, p(B) = 0.3 and
p(C) = 0.1; element A is removed first and then the new
patterns AA, AB, AC are obtained with p (AA) = 0.36, p
(AB) = 0.18, p (AC) = 0.06. Therefore, the list of patterns is
updated (i.e., including B, C, AA, AB, and AC). In the second
iteration, the most frequent pattern of the updated list (i.e.,
AA) is removed to build new patterns by combining it with
the original elements. Therefore, the pattern list is updated to
B, C, AB, AC, AAA, AAB, AAC (with p (AAA) = 0.216,
p (AAB) = 0.108, p (AAC) = 0.036). The same process
applies to the remaining k-2 iterations, until the largest value
of k for which Eq. (1) holds, is reached. Then different
Tunstall symbols are assigned to each pattern. Assume that
a 3-bit Tunstall code is employed in the example considered
previously; the procedure to determine the data patterns using
two iterations and the mapping with symbols in a sequential
binary order are illustrated in Fig. 2.

Once the data patterns have been prepared and the mapping
with symbols is determined, the compression is performed by
serially checking all elements of the dataset with each pattern
from the most frequent to the least frequent ones. Once a
pattern is matched, it is kept as a part of the codeword and
the remaining elements are checked with each pattern again,
until all elements have been encoded. Consider the example
shown in Fig. 2; if the dataset is AABABCAAAB, the encoded
codeword (i.e., the compressed data) is 101010001100000.

Since compression is performed on a pattern-by-pattern
basis, the last few elements may not match any pattern. A
solution is to pad one or more additional elements to make
them match a predetermined pattern; then these extra elements
are removed during decompression. However, in this case the
size of the original dataset must be stored a priori, that can
have disastrous consequences if it is affected by an error [3].
Another solution is to take them as an additional data pattern
and assigning a remaining symbol; this is feasible because
there are always some symbols unused for any pattern (as per

1The assumption that each element has an independent frequency is taken
in this paper. However, the proposed scheme also applies to the case where
elements are dependent; this is valid because the proposed scheme uses the
same data patterns as in the original unprotected scheme (that are determined
based on either the dependency or independency of elements).

Fig. 3. Impact of different errors (marked in red) on the decompressed data
(compression is based on Fig. 2).

observation 2 in Section III-A) and this will be employed in
this paper.

When the dataset needs to be accessed, the compressed data
is read out from the memory and the decompression process
is executed. This is implemented by checking every n bits
(i.e., a symbol) to identify the associated data pattern as per a
look-up table (which also needs to be stored in memory). The
decoding procedure is completed once all data patterns have
been recovered from the codeword; the original uncompressed
dataset is then output.

B. Memory Errors and Their Impact

Memories can be affected by different types of errors,
causing bit flips. For example, it has been experimentally
observed that radiation-induced errors have become a
significant reliability issue for memories [5], [8]. This occurs
because different types of radiation particles exist in almost
every operational environment of ICs. If a particle hits
through a circuit node of a memory cell, additional charge
is generated; then, the voltage of the node is changed if
the accumulated charge exceeds a threshold amount (known
as critical charge [6], [7]). As a result, the value stored in
this memory cell flips from “0” to “1” or the other way
around. Another example of bit-flip errors is the retention
errors in DRAMs caused by cell discharge [18], or errors
caused by overlapping of levels in emerging memories like
phase-change memory [19]. Even though the probability of
error occurrence is not very high (e.g., average 0.91 radiation-
induced errors per day in a 14 MB 40 nm SRAM [8] and
the rate increases proportionally for a larger memory or an
advanced technology), they cannot be ignored in safety-critical
applications. Since single bit errors are the most common
scenario [5], they are considered in this paper.

When the memory is used to store compressed data, errors
can be classified in the following two types as per the impact
on the final decompressed data; this is illustrated in Fig. 3 by
considering again the previous example of Fig. 2.

Local errors: a local error modifies a symbol of the stored
codeword to another symbol, and the data patterns related to
these two symbols have the same length. In this case, the
error only changes a limited number of elements in the entire
decompressed data, i.e., having a local impact. For example,
in Fig. 3, a local error only causes an incorrect element B
after decompression, but it does not change the length of the
dataset.

Global errors: a global error modifies one symbol of the
stored codeword to another symbol, but the data patterns
related to these two symbols have different lengths. In this
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Fig. 4. Using ECCs to protect memory data: (a) diagram of the circuits;
(b) flowchart of data compression/decompression with ECC protection.

case, the error is spread to the decompressed data, causing all
remaining elements (starting with the element related to the
incorrect symbol) to be corrupted, i.e., having a global impact.
For example, in Fig. 3, a global error causes the absence of
an element A after decompression, so shifting and corrupting
all remaining elements starting from the fourth element.

Both types of errors cause data corruption, but global
errors tend to have a significantly larger impact. For example,
in some ML algorithms like classifiers, the training datasets
are usually large, so they are compressed to save storage
requirement. As a local error only affects one or a limited
number of instances, it likely has a slight or negligible impact
on the classification result. However, a global error may make
features and labels to shift after decompression and affect
a significant part of the training dataset, causing incorrect
classification results.

C. Error Correction Codes

Error Correction Codes (ECCs) have been widely used
in the past decades to protect memories against errors
[11], [12], [13], [14]; they have been utilized into many custom
memory chips [20]. As shown in Fig. 4 (a), when ECCs are
employed, the data is encoded before writing into the memory
to generate ECC bits. These bits are stored together with the
original data in each word, so considered as redundancy. If bit-
flip errors occur in the memory, they can be detected/corrected
as per different ECC algorithms in the decoding process once
the data is read.

The simplest ECC is the Single Parity (SP) check, that
requires only one ECC bit and detects any single bit errors
(i.e., the most common type of error). When error correction
must be provided for a memory, Single Error Correction
(SEC) codes (such as the Hamming code [12]) are usually
selected due to the small redundancy added to the data and
the low implementation complexity in hardware. By utilizing
log2(d)+1 redundant bits (where d is the length of the data
being protected), SEC codes correct any single bit errors in a
memory word.

As introduced previously, the use of ECCs for memories
storing compressed data in resource-constrained platforms or
high-performance systems, presents unique challenges due to

the additional ECC bits and decoding process. Hence, it is of
interest to explore the inherent redundancy of the compression
codes to achieve error resilience with low impact on the overall
memory size and decompression latency.

III. PROPOSED SCHEME

In this section, several observations on the data compression
process are initially provided; they are used to propose an
efficient error protection scheme. Then, the proposed scheme
is analyzed regarding error detection and correction; an
improved design is also provided. An example is then given
to illustrate the proposed scheme in more detail. Finally,
the decompression table required in the proposed scheme is
illustrated.

A. Properties of Data Compression With Tunstall Codes

The proposed scheme is designed as per the following two
observations on data compression using Tunstall codes:

Observation 1: Some data patterns have a higher probability
of occurrence (i.e., those with a larger value of pattern
frequency p) and some are less frequent. Moreover, many
datasets have a skewed distribution, for example some features
of ML datasets can only have a few values (as related to
different classifications).

Observation 2: In most cases, few symbols are left unused
for any pattern, because the “=” in Eq. (1) is usually not met
(i.e., “<” is met in most cases). Moreover, some predetermined
data patterns may not occur in the encoding procedure, and
thus their related symbols are also not used.

These observations make it possible to exploit the inherent
redundancy of Tunstall codes to provide error resilience; so,
by carefully assigning symbols for the data patterns, most
errors can be detected and corrected, as discussed next.

B. Data Compression

In the proposed data compression scheme, the data patterns
are initially determined as per the process introduced in
Section II-A, and five sets of Tunstall symbols {S1}, {S2},
{S3}, {S4}, {S5} are determined by using Algorithm 1. Then,
a specific mapping rule between the data patterns and these
sets of Tunstall symbols is implemented as per the following
steps.

Step 1: assign symbols {S1} obtained in line 2 or 4 of
Algorithm 1 that have at least Hamming distance2-3 from each
other for the most frequent patterns (MFPs). This allows that
in the presence of errors, a symbol associated with an MFP
cannot be changed and be associated to another MFP.

Step 2: keep all symbols {S2} obtained in line 5 or 8 of
Algorithm 1 that have distance-1 from each symbol of {S1} as
unused. They are used for recovering the correct MFPs when
any symbol of {S1} is corrupted by an error.

2In this paper, the Hamming distance of two symbols is defined as the
number of bits that are different between these two symbols. For example,
two symbols having Hamming distance-3 means that they have three bits with
different values.
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Step 3: assign all symbols {S3} obtained in line 10 or 12 of
Algorithm 1 that have distance-2 from the symbols of {S1}
for the least frequent patterns (LFPs).

Step 4: assign symbols {S4} obtained in line 17 of
Algorithm 1 for the remaining patterns. Note that there may be
some spare symbols {S5} obtained in line 18 of Algorithm 1
for which no pattern is assigned.

Finally, the original dataset is compressed by converting
each pattern from the beginning to the end of the dataset
to the associated symbols. The codeword with a significantly
smaller size, is stored in the memory instead of the original
dataset. In the proposed scheme, only the symbols of {S1},
{S3} and {S4} are used for compression, while the symbols
of {S2} and {S5} are used for error protection. Algorithm 1
essentially provides an alternative to the traditional method of
assigning Tunstall symbols; it is implemented in software prior
to storing the symbols, so no dedicated hardware design is
required.

Algorithm 1 ∗ Process to Determine Tunstall Symbols Used
in the Proposed Data Compression Scheme.

1: Prepare all possible 2n symbols {S} as per the size of
Tunstall codes n;
2: {S1} = Dis3 ({S}, all-zero symbol);
3: if Size ({S1}) >= numdp
4: {S1} = Part ({S1}, numdp);
5: {S2} = Dis1 ({S}, {S1});
6: Finish;
7: else
8: {S2} = Dis1 ({S}, {S1});
9: {Saux} = Setdiff ({S}, {S2});
10: {S3} = Dis2 ({Saux}, {S1});
11: if Size ({S1}) + Size ({S3}) >= numdp
12: {S3} = Part ({S3}, numdp – Size ({S1}));
13: Finish;
14: else
15: {Saux} = Setdiff ({Saux}, {S1});
16: {Saux} = Setdiff ({Saux}, {S3});
17: {S4} = Part ({Saux}, numdp – Size ({S1}) – Size

({S3}));
18: {S5} = Setdiff ({Saux}, {S4});
19: end
20: end

∗Definition of functions: Dis3(input1, input2) denotes the process to obtain a
set of symbols in input1 with at least Hamming distance-3 from each other,
starting with input2; Dis1/Dis2(input1, input2) denotes the process to obtain a
set of symbols in input1, with Hamming distance-1/2 from input2; Part(input1,
input2) denotes the process to output only the first input2 members of input1;
Setdiff(input1, input2) denotes the process to remove input2 from input1;
Size(input) denotes the process to calculate the number of members in input;

C. Data Decompression

The specific mapping rule used in the proposed compression
scheme permits a decompression of data that is resilient to
errors on the stored codeword. This is achieved by employing
the proposed decompression process. In particular, if a symbol
in the received codeword that is being checked to recover a

Fig. 5. Flowchart of the proposed error-resilient data compression/
decompression.

data pattern, belongs to {S1} or {S2}, it is decoded as the
corresponding MFP; otherwise (i.e., it belongs to {S3} or
{S4}), it is decoded as the corresponding LFP. If {S5} exists
and one of the spare symbols is received, it is decoded as a
random pattern. This decompression process is implemented
using a conversion table in addition to the standard look-up
table (LUT) that is used to store data patterns in the traditional
scheme.

In the traditional scheme, the sequential Tunstall symbols
are often used in the mapping rule. For example, if an 8-bit
Tunstall code is utilized, symbols starting with 00000000 in
a sequential order are used to map the data patterns as per
the traditional mapping rule. In this case, a standard LUT
only needs to store the data patterns for decompression.
In particular, each data pattern is stored in the row associated
to the binary sequence of the Tunstall symbol mapped to
this pattern; for example, the pattern associated to symbol
00000000 is stored in row0, the pattern associated to symbol
00000001 is stored in row1, etc. Hence, the decompression is
simply performed by utilizing the content of each symbol of
the codeword as an address/location of the standard LUT to
retrieve its associated data pattern.

In the proposed scheme, a specific mapping rule is utilized;
recall that only symbols of {S1}, {S3}, and {S4} are used for
compression while the remaining symbols of {S2} and {S5}
are used for error correction. Therefore, the stored symbols
are not sequential, so the standard LUT is not applicable.
To address this issue, an additional conversion table can be
simply combined with the standard LUT to retrieve the data
patterns. As shown in Fig. 5, this conversion table stores the
location of each pattern stored in the standard LUT. Once
a symbol is received, its content is used as an address (i.e.,
row’) to access the conversion table first to obtain a location
information (i.e., row); then, this information is considered as
an address of the standard LUT to further locate the correct
data pattern.

Hence, in the proposed scheme, mapping from Tunstall
symbols to data patterns during decompression is rather
straightforward and by introducing a conversion table, the
original decompression can be transparently used. Moreover,
error protection is also implemented as part of the translation
(so in a single memory access). This is performed by linking
the symbols used for error protection to the positions in the
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standard LUT associated to the corrected data patterns. For
example, consider an 8-bit Tunstall code again; 00000000 is
used for mapping the first MFP; symbols with distance-1 from
it (e.g., 00000001, 00000010, . . . , 10000000) are reserved in
{S2} for correctly recovering this MFP. Therefore, the position
in the LUT for this MFP (i.e., 00000000) can be also stored in
row’1, row’2, . . . , row’128 in addition to row’0; then, if any of
these reserved symbols is received, the corrected data pattern
is identified and the error is immediately corrected. As shown
in Fig. 5, if Pattern0 is the first MFP and stored in row0 of
the standard LUT, row0 is stored in row’0 of the conversion
table for recovering Pattern0 in the error-free case and also
stored in row’1, row’2, etc. for correctly recovering Pattern0
under errors.

As shown in Fig. 5, the proposed scheme only introduces
an additional step for accessing the conversion table to the
unprotected case (Fig. 1); it is more efficient than an ECC
scheme (Fig. 4) in terms of latency, because a data access
is significantly less complicated than the encoding/decoding
process. The size of the conversion table is n · 2n bits when
an n-bit Tunstall code is employed because there are at most
2n combinations of a received symbol that can be correct
or incorrect. Even though this conversion table also needs
to be stored in a memory together with the standard LUT,
it incurs in a small memory overhead as evaluated in the next
section. These tables may also be corrupted by memory errors;
however, different from the memory storing the compressed
data, the size of such table is small, so an ECC can be
employed because its incurred overhead is acceptable. This
is not further pursued in this paper, because it would be
negligible compared to the overhead associated with protecting
the compressed data.

D. Error Resilience of Decompressed Data

When the codeword is stored in memory, four cases that
include all possible error scenarios are illustrated to show the
error resilience of the data after decompression.

Case 1: an error has affected a symbol mapping to one MFP.
As per steps 1 and 2 in the proposed mapping implementation,
this incorrect symbol should have been moved from {S1} to
{S2} that consists of symbols having distance-1 from {S1}.
This is valid because a single bit error that is considered in
this paper, changes the distance with a magnitude of 1. In this
case, the error is detected and corrected, and the correct MFP
is recovered during decompression.

Case 2: an error has affected a symbol mapping to one
LFP considered in step 3 of the proposed mapping scheme.
Similar to case 1, this symbol should have been changed from
{S3} to {S2}, {S4} or {S5} if there are some spare symbols
left. If it belongs to {S2}, the error can be detected but a
miscorrection occurs, because it is decoded as an MFP during
decompression. If it belongs to {S4}, the error cannot be
detected. If it belongs to {S5}, the error can be detected but
may not be corrected, because a different LFP may be output.
However, most of the patterns associated to the symbols of
a compressed data are always MFPs, therefore the case in

which an error affects one LFP has a smaller probability of
occurrence than case 1.

Case 3: an error has affected a symbol mapping to one LFP
considered in step 4 of the proposed mapping scheme, but it
still belongs to {S4}, so the error cannot be detected. However,
this case also has a small probability of occurrence.

Case 4: an error has affected a symbol mapping to one LFP
considered in step 4 of the proposed mapping scheme, and it
is changed from {S4} to {S5}. In this case, the error can be
detected, because a spare symbol of {S5} is found, but it may
not be corrected in some cases, because a random pattern will
be output during decompression. Again, this case has a small
probability of occurrence.

Overall, the proposed scheme can detect and correct most of
the errors (i.e., those affecting a symbol mapping to an MFP,
which are more likely to occur). As for some errors that cannot
be detected or corrected, their impact is significantly reduced
by utilizing an improved mapping; this will be presented next.

E. Improved Mapping Scheme

To reduce the impact of uncorrectable errors, the proposed
mapping scheme can be improved by converting global
errors into local errors because they have a smaller impact
on data integrity than global errors. This is performed by
assigning a number of symbols to data patterns with the same
sequence length, which has been initially discussed in [3] in
the transmission of compressed data over a communication
channel. To further explore this approach, in particular, the
following conditions are employed: i) when assigning symbols
{S3} for LFPs in step 3 of the proposed mapping scheme,
each symbol that has distance-2 from a symbol in {S1} (i.e.,
assigned for one MFP) is assigned for one LFP with the
same length as the related MFP; ii) in step 4 of the proposed
mapping scheme to assign symbols {S4}, data patterns with
the same length are mapped to symbols with at least distance-1
and patterns with different lengths are mapped to symbols with
at least distance-2; iii) if {S5} exists and one of the spare
symbols is received, then it is decoded as a random pattern
related to a symbol with distance-1 from it. These conditions
guarantee that once a miscorrection occurs, an incorrect pattern
with the same length as the correct pattern is provided as
output in most cases, so only causing a local error with no
additional consequences.

Moreover, as per the method of generating Tunstall codes
reviewed in Section II-A, patterns predicted in the same
iteration have the same length and they only differ in the last
element. This property can be exploited to further reduce the
impact of local errors; by assigning distance-1 symbols for
the patterns only differing in the last element, local errors
then only affect a single element, likely having a negligible
impact.

F. Example

An example shown in Fig. 6 is used to discuss the proposed
scheme in more detail. In this case, a dataset that consists
of elements A, B, C is considered again; an 8-bit Tunstall
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Fig. 6. Example to illustrate the proposed scheme (incorrect symbols or patterns due to memory errors are marked in red).

code is utilized for compression. By employing the proposed
compression process, the following steps are countered:

Step 1: 00000000 is assigned for the first MFP, then
11100000 that has distance-3 from 00000000, is assigned for
the second MFP, and so on; these symbols form {S1}.

Step 2: symbols with distance-1 from 00000000 (i.e.,
1000000, 01000000, . . ., 00000001), from 11100000 (i.e.,
01100000, 10100000, . . ., 11100001), and from all other
symbols as assigned in step 1 are not used for any pattern;
they are reserved in {S2}.

Step 3: 00000011 that has distance-2 from 00000000,
is assigned for one LFP that has the same length with the
first MFP, and 11100101 that has distance-2 from 11100000,
is assigned for another LFP that has the same length with the
second MFP, and so on; these symbols form {S3}.

Step 4: assign the remaining symbols that have at least
distance-1 from each other for patterns with the same length
(e.g., 10101010 for pattern D and 10101110 for pattern
C) and those have at least distance-2 for patterns with
different lengths, until all patterns are mapped. These symbols
form{S4}; {S5} consists of the spare symbols (if any). Once
the above steps are completed, the codeword that is the
compressed data is obtained and stored in the memory.

The decompression process is implemented by using the
conversion table and standard LUT. If a symbol belonging to
{S1} is found in the received codeword, the corresponding
MFP is recovered; this case should be error free, because
all symbols for the MFP have distance-3 with each other
and all symbols with distance-1 from them have also been
reserved for unused, so no single error can change a symbol
to one of {S1}.

Instead, for a symbol belonging to other sets, an error may
have happened. If the symbol is found in {S2} as consisting
of unused symbols, then it should have been affected by
an error; moreover, it must be associated to an MFP or an
LFP in the error-free case, because the symbols for these
patterns have a distance-1 from {S2}. This is illustrated
for cases 1 and 2 in Fig. 6; an error changes the original
symbol 00000000 associated to an MFP AAA or the original
symbol 00000011 associated to an LFP AAC, to 00000001 in
{S2}. In these cases, the corresponding MFP is provided as
output, because it has a larger probability to be corrupted.
This permits error correction for case 1: once the incorrect

symbol 00000001 is received, row’1 of the conversion table
is located and its content 00000000 that refers to row0 of the
standard LUT is established; thus, the error is corrected, and
the MFP AAA is correctly recovered. For case 2, outputting
AAA results in a miscorrection, because the corrupted pattern
was an LFP AAC. However, this is only a local error, because
only one element is corrupted between AAC and AAA; this
is achieved due to the additional constraint in step 3 of the
compression process analyzed in the improved scheme, which
guarantees that the output MFP has the same length as the
affected LFP.

If the received symbol belongs to {S3} or {S4} (e.g.,
symbol 10101010 in case 3 of Fig. 6), it is decoded as the
corresponding pattern (i.e., pattern D); even if an error has
occurred and cannot be detected, it only affects one element
of the decompressed dataset (e.g., changing pattern C to D)
as per the improved design discussed previously. If a spare
symbol in {S5} (e.g., symbol 11110101 in case 4 of Fig. 6)
is found, an error must have changed another symbol with
distance-1 from it (e.g., symbol 11100101 has been changed),
so the error can be detected. In this case, the pattern related
to a random symbol with distance-1 from this spare symbol
is output; however in this way, the error may be corrected
(e.g., pattern AC in Fig. 6), or a miscorrection may occur (e.g.
another pattern with two elements instead of AC is output in
Fig. 6).

IV. EVALUATION

In this section, the effectiveness of the proposed scheme is
evaluated by covering three widely used large ML datasets.
Traditional error protection schemes including Single Parity
(SP) check and Single Error Correction (SEC) codes are used
for comparison. Moreover, the case for uncompressed data
with different error protection schemes is also evaluated to
show the advantage of data compression by using the proposed
scheme.

A. Experimental Setup

1) Datasets: The training set of three datasets taken from a
public repository [21] are used: Record Linkage Comparison
Patterns [22] (3,200,000 samples with 81 different numerical
features), Census Income (520,976 samples with 99 different
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Fig. 7. Total number of memory words (including that for the decompression tables) required by different schemes for (a) Record Linkage Comparison
Patterns; (b) Census Income; (c) Bank Marketing dataset.

TABLE I
DATA COMPRESSION FOR DIFFERENT DATASETS

numerical features), and Bank Marketing [23] (1,519,152
samples with 6315 different numerical features).

2) Compression Codes: Tunstall codes with different size
(i.e., n) are utilized for data compression. A numerical element
is represented by 16 binary bits: the most significant bit is
for the sign, seven bits for the integer part and eight bits for
the decimal part. Table I shows the compression information
of employing Tunstall codes with different sizes, including
the compression ratio, the number of possible patterns (as
per Eq. (1)), the number of patterns used in the compression
process, and the number of patterns that can be theoretically
protected by employing the proposed scheme. As per Table I,
the number of bits n of the Tunstall code symbols increases,
so does the compression ratio and also the fraction of symbol
values that are not used; thus, the proposed scheme tends
to be resilient to more errors for larger values of n. Note
that both existing SP/SEC schemes and the proposed schemes
do not change these compression ratios or the efficiency of
Tunstall codes; however, an additional memory overhead may
be incurred. Such evaluation is pursued in the subsequent
subsection.

3) Error Injection: Single bit errors, which are the most
common class of errors in a memory, are considered as error
model in the experiments. The error position is randomly
selected with a uniform distribution and then the related bit
is flipped. 100,00 trials of error injection were performed in
different schemes to evaluate the average impact.

4) Evaluation Metrics: Prior to evaluating the hardware
overhead required for different schemes in subsequent
subsections, the main hardware modules in each case are
summarized next.

• Unprotected scheme: a memory storing compressed data
and a memory storing a LUT for decompression.

• SP/SEC scheme: a memory storing compressed data and
ECC bits, a memory storing a LUT for decompression,
an encoder circuit for generating the ECC bits, and a
decoder circuit for detecting or correcting errors.

• Proposed scheme: a memory storing compressed data,
a memory storing a standard LUT and an additional
conversion table for decompression.

Since memory accounts for the largest part of the area/power
of the entire implementation in all cases, the memory size that
is proportional to these overheads is evaluated in Section IV-B;
moreover, the error resilience that can be achieved by utilizing
such memory size for different schemes is also compared.
Then, Section IV-C evaluates the latency introduced to
compression and decompression; since the memory read/write
latency is the same in all schemes, only the additional latency
required for performing error protection is evaluated and
compared.

B. Error Resilience & Memory Size

The percentage of errors that are handled in different
schemes is given in Table II, in which the memory
overhead required for storing the compressed data and the
decompression tables in different cases is also compared in
terms of number of words (assuming that a memory with
64 bits/word is utilized).

Table II show that the proposed scheme can detect/correct
most of the errors and the percentage of detected errors is
larger than corrected in all cases. This is expected because
only errors affecting symbols in {S1} can be corrected, while
those affecting {S3} or generating symbols in {S5} can also be
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TABLE II
COMPARISON FOR ERROR RESILIENCY AND MEMORY SIZE FOR DIFFERENT SCHEMES

Fig. 8. Percentage of error protection versus the extra memory overhead for
Record Linkage Comparison Patterns dataset.

detected. As for traditional schemes, all errors can be detected
(corrected) by employing the SP check (SEC codes); however,
these schemes require additional memory to store the ECC
bits.

As per Table II, when considering the entire memory size,
the proposed scheme incurs in a negligible overhead for
small Tunstall codes; the overhead is significant when a large
Tunstall code is employed, but this is still lower than SEC in
most cases. Fig. 7 (a) shows the total number of memory words
required for the Record Linkage Comparison Patterns dataset
in different cases; the proposed scheme (that can correct more
than 84.12% errors) only requires a small memory overhead
compared with the unprotected scheme, and smaller than the
SP check as well as the SEC. This is also the case for the
Census Income dataset (Fig. 7 (b)) when n is smaller than
11; for this dataset, the proposed scheme requires a larger
memory overhead than the SP scheme when larger Tunstall
codes are used, it can still correct 76.40% to 97.88% errors,
while of course SP cannot correct any. Moreover, the SEC
code still incurs in the largest memory size for all cases. For
the Bank Marketing dataset (Fig. 7 (c)), the proposed scheme
is not efficient when large Tunstall codes are used, because the
required conversion table is also large; however, for the other
cases, it corrects more than 90% errors with a lower memory
size than the SEC code.

To better show the overhead for error resilience in terms
of memory size, results for the Record Linkage Comparison
Patterns dataset are plotted in Fig. 8 as an example; a stronger
error resilience tends to be achieved at the cost of a larger
memory size. Therefore, this plot shows that the proposed
scheme is very attractive for resource-constrained platforms
because it requires an extremely low overhead while correcting
most errors, even though not all. Moreover, error protection
can be implemented as part of the translation in a single
memory access during the decompression process as discussed
previously; hence, the proposed scheme is also more efficient
in terms of latency than ECC techniques that require an
additional decoding process to correct errors.

It is of interest to also consider the case of uncompressed
data for comparison purposes. The comparison results are also
given in Table II. For example, compared with compressed
data protected by the proposed scheme, an additional 2.77 to
5.96 times (3.17 to 6.70 times) the memory overhead is
introduced by the SP (SEC) scheme to detect 4.49% to 12.79%
more errors (correct 9.66% to 15.88% more errors) for the
uncompressed Record Linkage Comparison Patterns dataset.

Next, Table III shows the impact of uncorrectable errors in
the unprotected and the proposed schemes, i.e., the percentage
of uncorrectable global errors and local errors (the results for
the SP scheme are the same as for the unprotected schemes,
because no error can be corrected). As per Table III, most of
the errors in the unprotected memory have a global impact on
the decompressed data; in the proposed scheme, the percentage
of uncorrectable errors is significantly reduced, and these
errors tend to have a local rather than a global impact by
carefully considering the mapping in the improved design.
Finally, for the SEC scheme, the rather large memory overhead
is incurred even though all errors can be corrected.

Overall, the proposed scheme can correct most errors with
an extremely small memory overhead; even if some errors
cannot be corrected, by improving the mapping between data
patterns and Tunstall symbols, local errors are dominant, thus
the impact of errors is reduced. These advantages make the
proposed scheme more attractive to resource-limited platforms.
It should be also noted that under a constant error rate, a large
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TABLE III
PERCENTAGE OF ERRORS THAT CANNOT BE CORRECTED IN DIFFERENT SCHEMES

TABLE IV
ADDITIONAL LATENCY (ns) INCURRED FOR ERROR PROTECTION

size memory may have more cells to be affected by the errors.
Hence a smaller memory size required by the proposed scheme
may also have this inherent advantage, i.e., a larger probability
of having at most a single error in the entire memory.

C. Latency for Error Protection

To show the efficiency of the proposed scheme in terms of
also latency required for error protection, the additional latency
introduced to data compression/decompression by different
protection schemes is evaluated and compared next. For the
proposed technique, such overhead is only required during
decompression for accessing the conversion table; for SP and
SEC, an additional encoding latency is required once data is
compressed, and an additional decoding latency is required
prior to data decompression (Fig. 4 (b)).

The latency overhead is evaluated by implementing different
schemes at the RTL level and automatically mapping the
design to a 32 nm technology library [24] using the Synopsys
Design Compiler. The constraint of delay optimization is
set during synthesis to evaluate the best timing performance
that can be achieved; this is performed for all circuits for
fair comparison. Since the memory used for storing the
compressed data is assumed to have 64 bits per word, an SP
(SEC) requires 1 (7) parity bit to protect these data bits
[12]. As per the evaluation results given in Table IV, the
proposed scheme incurs in a significantly smaller latency for
error protection compared to existing techniques; moreover,
such advantage will become evident when the compressed data

has a large size and needs to be stored in a large number of
memory words, because error protection is performed word
by word and all latency results reported in Table IV must
be multiplied by the number of memory words. A pipelined
scheme can be implemented to reduce the impact of ECC
decoding on the decompression delay for the entire system;
however, it still may increase either the delay per clock
cycle or the number of clock cycles, which can also degrade
the operating frequency. In any case, even when the use
of pipelining can reduce the impact of the ECC on the
decompression latency, the area benefits of the proposed
scheme still make it of interest for resource constrained
applications. Compared to the SP/SEC, the proposed scheme
also does not require the encoding and decoding circuits in
addition to any parity bits; hardware metrics (such as for area
and power) required for these circuits are not further discussed
because they are negligible compared to the memory overhead.

V. APPLICATIONS

The proposed error-resilient data compression scheme can
be beneficial in many applications that process a large
volume of data and perform compression on the stored
data to reduce storage requirements, such as ML [25],
image/video processing [26], digital signal processing [27],
wireless systems [28], and automatic test equipment [29].
Next, two ML applications are taken as examples to evaluate
the effectiveness of the proposed scheme. In ML inference, the
training data samples (like for the k Nearest Neighbors (kNNs)
classifier), or the parameters of a trained model of large size
are often stored in a compressed version [30]; this also applies
to ML training because the training set usually has a very
large size. In all these cases, the compressed data is possibly
accessed many times for frequently performing classification
tasks or conducting the complex training for a single or several
combined algorithms [31]. An error (especially a global error)
in the compressed data can result in incorrect classification
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Fig. 9. Impact of single errors on kNNs in different schemes for (a) Record Linkage Comparison Patterns (with optimal k = 3 to achieve a classification
accuracy of 99.96% in the error-free case); (b) Census Income (with optimal k = 19 to achieve a classification accuracy of 80.17% in the error-free case);
(c) Bank Marketing dataset (with optimal k = 17 to achieve a classification accuracy of 89.89% in the error-free case).

results or hyperparameters. Therefore, an efficient error-
resilient data compression scheme like the proposed approach
is of interest, especially for hardware-constrained platforms or
systems with limited computing resources.

Next, the inference process of a kNNs classifier [16] and
the training process of a Stochastic Computing-based Neural
Network (SC-NN) classifier [17] are considered, because in
both cases, the training set that is compressed and stored
in a memory, needs to be accessed. The three ML datasets
considered in Section IV are used again. The following
evaluation metrics are assessed for each application.

i) Since the paper focuses on memory errors occurred
in hardware, the percentage of classification results
changed are evaluated to reflect the impact of errors
in different schemes at a higher system level, i.e.,
the change on each final result computed by using
the hardware with errors. Moreover, the classification
accuracy of different models in each scheme is also
evaluated to assess the impact of errors on the
classification performance.

ii) Moreover, the memory size that is proportional to the
hardware area and power required for different schemes,
is also evaluated and compared.

A. Application 1: kNNs Inference

kNNs is one of the simplest but powerful classifiers; the
training set of a kNNs classifier is used to determine the
optimal number of the nearest neighbors (i.e., the value of k)

and then stored in memory for inference. The class of a
coming data sample is predicted by performing a majority
voting among the classes of its neighbors once its distance
to all stored data samples is computed. Therefore, errors on
the stored features and labels of training samples may modify
the classification result, because the error may change one or
more neighbors.

Before evaluating the impact of different error-resilient
data compression schemes on the classification results of the
kNNs classifier, the value of the optimal k and associated
classification accuracy are determined first as per the error-
free data. Then, errors are injected (also by using the method
explained in Section IV-A) in the memory that stores the
compressed training set unprotected or protected by different

techniques; the decompressed data is then used to evaluate the
classification results for the testing set.

Fig. 9 shows the percentage of classification results changed
by a single error and the classification accuracy under errors
in different schemes. Results show that when the traditional
SEC codes are employed, no classification results are changed
because errors can be fully corrected; however, this is achieved
by requiring 1.11 to 1.12 times the original memory size
required to store the unprotected compressed data (as evaluated
in Section IV-B and Fig. 7). When the proposed scheme is
employed, the percentage of classification results changed due
to an error is extremely low (i.e., below 0.38% in most cases,
and in some cases 0) and it only requires a small memory
overhead in most cases. For a few cases (i.e., when large
Tunstall codes are employed), the proposed scheme has no
impact on the classification results, but it incurs in large
memory size, so an SEC code is more efficient for these cases.

B. Application 2: SC-NN Training

An NN is another widely used ML technique to perform
classification over a wide range of applications [32]. It includes
one input layer, one or more hidden layers and one output
layer, consisting of neurons per layer. By providing the input
neurons to the NN, the features are then activated by using
the activation function (e.g., tanh or ReLU [33]) in the next
layers; this offers the NN a better classification accuracy than
for example kNNs in most cases. Since NNs usually deal with
large volumes of data, the required hardware (e.g., memory
and arithmetic logics) may not be acceptable in resource-
constrained platforms; thus in this case, data compression
that reduces the memory and stochastic computation that
reduces the arithmetic circuits complexity are attractive for
implementing NNs. In stochastic computation, the basic
arithmetic operation of NNs (e.g., multiplication, addition and
activation functions) can be implemented at a significantly low
complexity, for example only one AND gate is required to
perform multiplication in a unipolar SC design. Additionally,
stochastic computation inherently provides error protection
during computation, so efficient error protection is usually
required for only the memory that stores the training dataset
and the NN parameters.

Next, an SC-NN of [17] is used to evaluate the impact of
errors on the classification result. Errors are injected in the
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Fig. 10. Impact of single errors on SC-NNs in different schemes for (a) Record Linkage Comparison Patterns (with a hidden layer of 16 neurons to achieve a
classification accuracy of 99.98% in the error-free case); (b) Census Income (with a hidden layer of 31 neurons to achieve a classification accuracy of 81.63%
in the error-free case); (c) Bank Marketing dataset (with a hidden layer of 96 neurons to achieve a classification accuracy of 90.91% in the error-free case).

memory storing the compressed training set and the network
is retrained; then the percentage of classification results of
the testing set modified due to the error in different cases,
as well as the classification accuracy of different schemes,
are compared in Fig. 10. Results have the same trend as for
the kNNs; the impact of errors on the classification results
in the proposed and SEC schemes are similar or even the
same (in particularly, close or equal to zero) in most cases,
but SEC requires a larger memory overhead. Again in a few
cases when large Tunstall codes are employed, an SEC code
is more efficient because in these cases, the proposed scheme
requires a large conversion table that increases the memory
size.

Overall, compared with existing memory protection tech-
niques, the proposed scheme is more attractive when these
classifiers are implemented in resource-constrained platforms
(e.g., Internet of Things devices) because it can achieve a
nearly complete error protection at a lower hardware overhead.

VI. CONCLUSION AND FUTURE WORK

In this paper, an efficient error-resilient data compression
scheme using variable-to-fixed length codes (namely Tunstall
codes), is proposed against single bit-flip memory errors.
Since the 2n symbols of the n-bit Tunstall coding are usually
not fully assigned during compression, the mapping between
Tunstall symbols and data patterns in the proposed scheme has
been carefully designed for error resilience of the memory
storing the compressed data. Moreover, an enhanced design
has been presented to reduce the impact of uncorrectable
errors.

Compared to existing ECC techniques that are widely
used to provide error protection for memories, the proposed
technique does not need to store any ECC redundancy bits
in each memory word; it only needs a conversion table for
decompression. The scheme has been evaluated for several ML
datasets. The results have shown that the proposed scheme
can correct up to 97.88% errors, with almost the same
memory size as the unprotected scheme in most cases; by
comparison, the Single Error Correction (SEC) code corrects
2.12% more errors, but at an overhead of 1.12 times the
memory size. However, for larger Tunstall codes, SEC is
more efficient, because the conversion table required by the

proposed scheme is also large. In addition to the memory size
requirement, it has also been shown that the proposed scheme
is attractive in terms of latency for error resiliency, because it
does not require any ECC encoding/decoding process, but it
controls errors as part of the translation in a single memory
access during the decompression process. Two ML classifiers
(i.e., the kNNs and SC-NNs) have been utilized to evaluate
the impact of the proposed scheme on the classification
results. Results show an extremely low (nearly zero in few
cases) impact on the classification results in the proposed
scheme for all datasets considered. Therefore, when Tunstall
codes with smaller than 16-bits symbols are employed for
data compression, the proposed scheme is best suitable for
resource-constrained platforms, because it provides an almost
complete error resilience at a significant lower hardware
overhead compared with existing techniques.

Even though single bit-flip errors are considered in this
paper, the proposed scheme would also be applicable to handle
single stuck-at errors, as another common type of errors in
both conventional and emerging memories. Future works could
be pursued in the following aspects: (i) further extend the
proposed scheme for different variants of Tunstall codes (such
as the codes of [34]), and (ii) efficient protection schemes for
multiple bit errors are also of interest, because ECCs with a
powerful correction ability typically incur in extremely large
memory redundancy and decoding latency.
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