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Abstract—As communication energy exceeds computation en-
ergy in future technologies, traditional on-chip electrical intercon-
nects face fundamental challenges in the many-core era. Photonic
interconnects have been proposed as a disruptive technology
solution due to superior performance per Watt, distance indepen-
dent energy consumption and CMOS compatibility for on-chip
interconnects. Static power due to the laser being always switched
on, varying link utilization due to spatial and temporal traffic fluc-
tuations and thermal sensitivity are some of the critical challenges
facing photonics interconnects. In this paper, we propose photonic
interconnects for heterogeneous multicores using a checkerboard
pattern that clusters CPU-GPU cores together and implements
bandwidth reconfiguration using local router information without
global coordination. To reduce the static power, we also propose
a dynamic laser scaling technique that predicts the power level
for the next epoch using the buffer occupancy of previous
epoch. To further improve power-performance trade-offs, we
also propose a regression-based machine learning technique for
scaling the power of the photonic link. Our simulation results
demonstrate a 34% performance improvement over a baseline
electrical CMESH while consuming 25% less energy per bit when
dynamically reallocating bandwidth. When dynamically scaling
laser power, our buffer-based reactive and ML-based proactive
prediction techniques show 40 - 65% in power savings with 0
- 14% in throughput loss depending on the reservation window
size.

Keywords—Network-on-Chips, Photonics, Power Scaling, Ma-
chine Learning.

I. INTRODUCTION

Voltage and frequency scaling combined with aggressive
transistor scaling has paved the way for many-core processors
as the method for improving the performance and power-
efficiency of HPC workloads as demonstrated by industry
and academia. As the demand for higher performance con-
tinues, the parallelism and the speedup offered by GPUs
have become an attractive option when compared to CPU-
only cores. Such heterogeneous platforms, where CPUs and
GPUs are integrated are advantageous since the programmer
can pick either the serialized nature of CPUs or the parallel
nature of GPUs depending of the application characteristics
and thereby, improve the performance. For example, different
commercial chips have demonstrated the power of CPU-GPU
heterogenous architectures such as Intel’s Broadwell [1] and
Skylake [2], NVIDIA’s Tegra X1 [3], and AMD’s Carrizo [4].
CPU and GPU cores share multiple resources within the chip’s

architecture including the network bandwidth, last level cache,
memory controllers, and main memory. Resource management,
allocation and interaction between these resources impact the
performance and energy-efficiency of the entire chip.

One of the critical challenge exists in the design of the
interconnection network that connects the heterogeneous cores
with the caches and memory hierarchy. While traditional
electronics has been used for many-core architectures, energy-
efficiency, resource allocation and scale-out of many-cores puts
enormous pressure on the communication fabric. First, the
communication energy scales slower than compute energy as
showed by Shekar Borkar which makes compute more energy-
efficient than data movement [5]. Second, with heterogeneous
cores, GPUs tend to overwhelm the network resources with
memory requests that are bursty in nature and therefore, the
network must balance the requests between the two cores types
to ensure fairness and minimize latency [6], [7], [8]. Third,
technology scaling will increase the number of cores that can
be integrated on the same chip which will further stress the
limited on-chip network bandwidth [9]. Therefore, traditional
on-chip network design faces several fundamental challenges
in the many-core era.

In the light of the above problems, and as on-chip in-
terconnects scale to support heterogeneous cores, alternative
interconnect technologies such as silicon photonics are under
serious consideration for meeting the networking challenges of
future many-core processors [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21], [22], [23]. A number of criti-
cal advantages of silicon photonics have been demonstrated
including high bandwidth density with wavelength division
multiplexing (WDM), high-speed modulation (10-40 Gbps),
low energy consumption for implementing complex network
topologies and CMOS compatibility. As the technology con-
tinues to mature, working prototypes of the technology have
been published and documented [10]. Few of the challenges
facing the adoption of this disruptive technology are static laser
power consumption, thermal sensitivity, wall-plug efficiency of
the lasers, integration of photonic components and others [24],
[25], [10]. To tackle the static laser power, SLaC proposed
on-chip lasers that have faster turn-on times to create energy
consumption proportional to network traffic [18]. By exploiting
the temporal and spatial distribution of the network traffic,
prior work evaluated bandwidth scaling techniques to improve
performance and energy-efficiency [26], [27]. While the prior
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work in improving energy-efficiency of photonic intercon-
nects is significant, no work has combined bandwidth scaling,
power scaling and machine learning techniques to improve
both power and performance of photonic interconnects for
heterogeneous interconnects.

In this paper, we propose PEARL - Power-Efficient Pho-
tonic Architecture with Reconfiguration via Learning which
effectively combines heterogeneous cores (CPUs and GPUs)
using a checkerboard pattern to implement simultaneously
both dynamic bandwidth and power scaling techniques. The
checkerboard patterns combines both CPUs and GPUs into
a single router where bandwidth reconfiguration is imple-
mented locally without any global coordination. We propose to
use reservation-assist single-writer-multiple-reader (R-SWMR)
that enables fine-grain bandwidth reconfiguration by consid-
ering a sliding window based buffer occupancy. To reduce
the static power due to the laser and the heating power, we
propose to implement dynamic power scaling that utilizes on-
chip lasers with fast turn-on times to implement coarse-grain
power scaling that controls individual lasers (64, 48, 32, 16 and
8 wavelengths). Dynamic power scaling is a reactive technique
that uses the buffer occupancy of the prior window to predict
the power level for the next window

While power scaling is a reactive technique, we also
propose a proactive technique where we determine the power
levels by predicting the number of packets injected by the
heterogeneous cores using machine learning (ML) algorithms.
ML is usually comprised of two phases: (1) in the training
phase, which is often done offline, the ML algorithms auto-
matically build predictive models by learning from the training
examples; (2) in the test phase, these models are applied
to samples not seen during training with the goal of accu-
rately predicting target variables. With learning algorithms, we
achieve different power-performance trade-offs with different
reconfiguration window sizes with the best result achieved
for a window size of 500 cycles. Our simulation results
demonstrate a 34% performance improvement over a baseline
electrical CMESH while consuming 25% less energy per bit
when dynamically reallocating bandwidth. When dynamically
scaling laser power, our buffer-based reactive and ML-based
proactive prediction techniques show 40 - 65% in power
savings with 0 - 14% in throughput loss depending on the
reservation window size.

The major contributions of this paper are as follows:
1. Photonic Interconnects for Heterogeneous Multicores:
We propose photonic interconnects for heterogeneous multi-
cores using a checkerboard pattern that clusters CPU-GPU
cores together and implements bandwidth reconfiguration us-
ing local router information without global coordination. This
fine-grain bandwidth reconfiguration is achieved by consider-
ing a sliding window of buffer utilization for each core type,
thereby balancing the network bandwidth with application
demands.
2. Dynamic Power Scaling Techniques: As the laser and
trimming power dominate photonic link, we propose a dynamic
power scaling technique that utilizes the buffer occupancy as
a metric to predict the laser power for the next reservation
window. This reactive technique where the buffer occupancy
of the prior epoch window determines the ideal laser power
for the next epoch window utilizes on-chip lasers that have

a shorter turn-on time making the power scaling technique
feasible.
3. Machine Learning for Power Scaling:We further improve
the power-performance trade-offs by using machine learning
algorithm for scaling the power consumed by the photonic
link. We propose to use linear regression algorithm in order to
predict the number of packets that will be injected into each
router for the next window. Using the predicted number of
packets, we scale the number of wavelengths and thereby the
power consumed by the photonic link.

II. RELATED WORK

A. Photonic Interconnects for CPUs and GPUs

Previous research has shown that both CPUs and GPUs
with large number of cores can take advantage of the power-
efficiency, lower latencies, and higher bandwidth offered by
silicon photonics [12], [13], [14], [15], [16]. Crossbar-based
architectures such as Corona, 3D-NoC and others use Multiple
Write Single Read (MWSR) which connects multiple source
routers to a single destination router. A token-based arbitration
mechanism is used to prevent multiple routers from communi-
cating on the photonic channel simultaneously. Firefly reduces
the hardware complexity by integrating electrical interconnects
for shorter distances [15]. In Firefly, a Single Write Multiple
Reader (SWMR) crossbar is used to connect single source
router with multiple destination router using a reservation-
assisted implementation. The purpose of the reservation packet
is to inform the rest of the network which router is receiving
the next data packet. This has two effects - (1) The on-chip
network no longer needs a complex token arbitration mecha-
nism associated with MWSR. (2) The R-SWMR decreases the
laser energy cost on the data waveguide by having only one
router listening on the channel to receive the packet. Photonic
interconnects for GPUs have used similar token-based MWSR
[28]. Recently GPU architectures using dual photonic crossbars
have been proposed for 128 computational units (CUs). In the
dual crossbar architecture, MWSR is implemented between
L1 and L2 which facilitates many-to-few communication pat-
tern and SWMR is implemented between L2 and L1 which
facilitates few-to-many communication pattern [13]. In our
proposed work, we use reservation-based SWMR to reduce the
hardware complexity and control while minimizing the latency
for both CPU and GPU workloads.

B. Bandwidth Sharing in CPUs and GPUs

Dynamically managing resources can minimize the en-
ergy consumption and maximize the utilization of network
resources. Token-based arbitration was optimized in several
MWSR architectures to minimize the latency penalty and share
the network bandwidth effectively by providing additional
timeslots to nodes with more workload [29], [30], [12]. In
3D-NoC, a dynamic bandwidth allocation mechanism was
implemented using link and buffer utilization to route traffic to
different layers of the chip to maximize throughput and tolerate
faults [16]. Photonic bandwidth was dynamically allocated
between CPUs and GPUs using R-SWMR communication
mechanism with a table-based task allocation [27]. Such a
coarse-grain bandwidth allocation could occur only at the
boundaries of the task and not at runtime as proposed in
this work. Techniques used for dynamic bandwidth allocation
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in homogenous architectures can easily be adapted to het-
erogenous architectures. A feedback directed virtual channel
partitioning mechanism which allocates different numbers of
virtual channels to both CPUs and GPus has been proposed in
[31]. This mechanism allocates at least one virtual channel to
the CPU and thereby prevents memory-intensive GPU traffic
from starving the CPU traffic of network resources. Moreover,
there has been several proposed ways to manage the cache,
main memory, and data transfer mechanisms in heterogenous
architectures [31], [32], [33], [34], [7].

C. Power Scaling in Photonic NoCs

As static laser power has become a major roadblock, some
of the recent work has targeted techniques to power-gate the
laser source. While prior work assumed external WDM lasers,
these lasers have an efficiency of 5-8% and turn-on time can
exceed 1 μ sec making it infeasible to be used for on-chip
control [35]. Recent work has demonstrated using InP-based
Fabry-Perot lasers than can be switched on within 2 nsec,
which is in the range of typical processing cores [36], [37]. In
SLaC [18], buffer utilization is used to power-gate on-chip
laser sources when the application exhibits low periods of
network activity. With network connected as a flattened but-
terfly, alternate routes are available without isolating routers.
ATAC proposed to turn-off lasers when idle and turns them
on with enough power for one receiver upon receiving a
transmit request [38]. PROBE used a prediction mechanism
to turn waveguides off to save external laser power [39].
Few works have used machine learning to predict the voltage
and frequency levels for electrical NoCs using supervised
and reinforcement learning techniques [40], [41]. However, no
work has used ML to predict power levels of photonic NoCs
for heterogeneous multicores to improve power-efficiency and
performance.

III. PEARL ARCHITECTURE

In this section, we discuss the proposed PEARL archi-
tecture, router microarchitecture, dynamic bandwidth scaling,
power scaling techniques and the machine learning algorithm
to implement power-efficient photonic links for heterogeneous
multicores.

A. Architecture

1) Photonic Interconnects: A photonic link requires (i)
lasers to generate the carrier signal, (ii) modulators and drivers
to encode the data, (iii) medium (waveguides, fibers, free
space) for signal propagation, (iv) photodetectors to detect
light and (v) back-end signal processing (transimpedance am-
plifiers (TIA), voltage amplifiers, clock and data recovery) to
recover the transmitted bit. Figure 1(a) shows the photonic
interconnect which connects two cores A and B with four
different wavelengths which are generated by the laser and
modulated/demodulated by the microring resonators (MRRs).
MRRs have a small footprint ( 12 μm), lower power (0.1 mW)
and can modulate in excess of 18 Gbps with 80 ps modulator
delay. Silicon waveguides, which have a smaller pitch of 5.5
μm, a lower propagation time of 10.45 ps/mm and a signal
attenuation of 1.3 dB/cm are chosen due to ease of integration
with other on-chip photonic components. Finally, germanium-
doped photodetectors are used to detect the multiplexed signal.

Fig. 1: (a) Photonic link connecting cores A and B. (b) Proposed
PEARL architecture consisting of two CPU cores, four GPU compu-
tation units (CUs), L3 cache, memory controller (MCs), router and
interconnected by photonic links.

Due to thermal sensitivity, ring heaters are used to ensure that
the wavelength drift is avoided and signals can be accurately
detected; however other solutions including athermal design,
runtime thermal optimization and backend switching have been
proposed [42], [43], [44]. In this work, we propose on-chip
InP-based Fabry Perot lasers with short turn-on delay. On-
chip lasers with dimensions 50 μm × 300 μm × 5 μm with
each channel operating 128 wavelengths have been shown to
accommodate as many as 256 cores concentrated into 64 tiles
[45]. We assume a smaller configuration of 16 routers with
each cluster consisting of 2 CPUs and 4 GPUs in PEARL
architecture.

2) PEARL Layout: Figure 1(b) shows our proposed
PEARL architecture which consists of 32 CPU and 64 GPU
cores interconnected by the photonic link. In PEARL, a cluster
is made up of two CPU cores, four GPU computational unit
(CUs), one router and corresponding L1/L2 caches. This is
similar to prior heterogeneous multicore configurations that
consider a CPU to occupy twice as much area as one compute
unit and connect a single router for both core types [6], [46].
We propose a 28 nm CMOS-SOI process operating at 1.0
V with CPUs operating at 4 GHz and GPUs operating at
2 GHz. We propose a checkerboard pattern such that each
router is directly connected to two CPU and four GPU cores.
Under high traffic scenarios for one core type, contention is
more manageable since both cores contend locally at each
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TABLE I: Architecture Specifications

CPU GPU

Cores 32 Computation Units 64

Threads/Core 4 Frequency (GHz) 2

Frequency (GHz) 4 L1 Cache Size (kB) 64

L1 Instr Cache (kB) 32 L2 Cache Size (kB) 512

L1 Data Cache (kB) 64
L2 Cache (kB) 256

Shared Components

Network Frequency (GHz) 2

L3 Cache Size (MB) 8

Main Memory Size (GB) 16

TABLE II: Area overhead for PEARL[48], [49], [50]

.

Photonic and Electronic Component Area

Cluster (CPU, GPU and L1 cache) 25 mm2

L2 Cache per Cluster 2.1 mm2

Optical Components
(MRRs and Waveguides)

24.4 mm2

Waveguide Width [51] 5.28 μm
MRR Diameter [12] 3.3 μm

L3 Cache 8.5 mm2

Router 0.342 mm2

On-Chip laser per router 0.312 mm2

Dynamic Allocation 0.576 mm2

Machine Learning 0.018 mm2 [49]

router. Each CPU core has its own private L1 instruction
and data caches and each GPU CU has its own private L1
cache. Within each cluster, there is a shared CPU L2 cache
and a shared GPU L2 cache. The router at each cluster
connects to the shared L3 cache. Table I shows the architecture
specifications used in PEARL architecture and Table II shows
the area overhead for various architecture components (this
also includes the area overhead for dynamic allocation scheme
and machine learning components which will be discussed
later). The cluster includes the CPUs/GPUs and private L1
caches for both core types. The optical components include
the transmitting MRRs, receiving MRRs and the waveguides
connecting the router.

When dealing with multiple caches spread throughout the
architecture, cache coherence becomes pivotal to multiproces-
sor applications. A cache coherence protocol ensures that the
data received is the most recent version. The cache coherence
protocol used with PEARL is NMOESI [47]. All 16 routers are
organized in a 4 × 4 grid and the shared L3 cache is connected
using an optical crossbar. The purpose of the L3 cache is to
decrease the amount of time needed to communicate between
the CPU and GPU sides of the chip. The L3 cache is split
evenly between the CPU and GPU cores. In order for the CPU
to communicate with the GPU, the necessary data needs to be
copied from the CPU bank of the L3 cache to the GPU bank.
For the GPU to communicate with CPU, the necessary data
needs to be copied from GPU bank to CPU bank. The L3
cache is connected to two memory controllers (MCs). In order
to scale up the design to larger core counts, more optical layers
could be added to communicate to different layers of the chip
similar to 3D-NoC architecture [16].

3) Inter-Router Communication: We chose an optical link
with reservation assist (R-SWMR) for the purpose of im-
plementing inter-core communication. Under R-SWMR, the
transmitting router uses the reservation waveguide to broadcast

the signal to the remaining routers connected on the optical link
informing of the intended destination. Then, only the intended
destination listens on the channel while the transmitter sends
the data. Figure 2 shows the router 0 in PEARL architecture.
When a packet is generated from either the CPU or the GPU
core, it is placed in an input buffer and its route is computed
(RC). Next, the reservation broadcast (RB) is converted into an
optical format (E/O) and coupled to the reservation waveguide.
The packet then requests the crossbar in the switch alloca-
tion (SA) stage and traverses the crossbar (BWS). The E/O
conversion occurs by using the electrical drivers to modulate
the ring resonators coupling the signal to the optical link. We
have 4 sets of laser array (LA0−15, LA16−31, LA32−47, and
LA48−63) which transmits the signal onto the channel. This
creates 4 sets with 64, 48, 32 and 16 wavelengths providing
different bandwidths. We will further split the lowest level
of 16 wavelengths into 8 wavelengths when we implement
the power scaling technique. Since we implement R-SWMR,
there are 16 inputs (routers 1 to 16 and L3 cache) and they
are broken into 4 sets of photodetectors (PD0−15, PD16−31,
PD32−47, and PD48−63). At the destination, the reverse process
takes place, where the optical signal is filtered and converted
into electrical format using a combination of photo-detector,
TIA and voltage amplifiers (O/E). The packet is written into
the buffer (BWD) where it can be transferred to its intended
destination routed via the switch allocation (SA). The switch
has 16 inputs from the photodetectors, 8 inputs from the L1
caches and L2 cache from the CPUs and GPUs, one output
to the laser, and 8 outputs to the CPUs and GPUs as shown.
The serializer/deserializer is used to convert the 128 bits of
information into 64 wavelengths for E/O and O/E conversions.

B. Dynamic Bandwidth Scaling

As the GPU has the tendency to flood the network [52],
care must be taken while designing the dynamic bandwidth
allocation algorithm to prevent the GPU from starving the
CPU of network resources. Our proposed dynamic bandwidth
allocation algorithm is designed with the following goals: (i)
the algorithm should work with minimal hardware additions,
(ii) the algorithm should operate locally within the confines
of each router and thereby avoid complex global management,
(iii) the algorithm should prevent the GPU from blocking CPU
traffic within the router architecture, and (iv) the algorithm
should allow simultaneous transmission of CPU and GPU
packets regardless of the packets’ destination.

To implement dynamic bandwidth scaling, we pick local
management of link bandwidth to mitigate the overhead (i.e.
write contention) that is often associated with global bandwidth
management techniques [15]. Figure 2 shows the minimal
hardware addition to implement the R-SWMR link. When a
packet is generated from either the L2 or L1 caches, it is
placed in the corresponding input buffer. The buffer occupancy
sums the number of buffer slots occupied by packets injected
from the CPU and GPU cores and this information is sent to
the dynamic bandwidth allocator (DBA). DBA determines the
amount of bandwidth to assign to each core type by using the
number of buffer slots occupied. Next, the DBA generates a
reservation packet similar to R-SWMR communication scheme
[15]. The number of bits in the reservation packet can be
calculated with ResPacketsize=log( 2 × N × SCPU × SGPU

× D × NL3) where N is the number of non-L3 routers in the
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Fig. 2: Proposed router microarchitecture for PEARL. Buffer occu-
pancy feeds to Dynamic Bandwidth Allocator (DBA) which in turn
controls either reactive dynamic power scaling or proactive ML-based
power scaling.

network, SCPU is the number of different CPU packet types (i.e.
request and response) that can be sent through the network,
SGPU is the number of different GPU packet types that can
be sent through the network, D is the number of different
dynamic allocation possibilities for the data being sent (D =
5 for the proposed dynamic bandwidth allocation algorithm),
and NL3 is the number of L3 routers in the network. The
number of wavelengths needed for the reservation waveguide
can be determined using the ResPacketsize, optical data rate,
network frequency, and the number of routers.

Algorithm 1 which implements dynamic bandwidth alloca-
tion is executed by every router, Rω, 0 ≤ ω ≤ Rmax-1 during
each cycle. To determine the amount of bandwidth to assign to
each core type βocup-CPUω and βocup-GPUω has to be calculated
by summing the buffer occupancy for each core type at each
router. This can be seen in the following formulas:

βocup-CPUω =

∑k−1
i=0 Buf i × ai
BufmaxCPU

(1)

βocup-GPUω =

∑j−1
i=0 Buf i × ai
BufmaxGPU

(2)

Bufω = βocup-CPUω + βocup-GPUω (3)

where k = BufmaxCPU = maximum number of buffer slots
for CPU, j = BufmaxGPU = maximum number of buffer
slots for GPU, Buftotal (= BufmaxCPU + BufmaxGPU) is

Algorithm 1 Dynamic bandwidth and power scaling.

For each router Rω for routers R0 through Rmax-1

1) Calculate βCPU = βocup-CPUω

2) Calculate βGPU = βocup-GPUω

3) Allocate bandwidth to CPU and GPU:

a) if βGPU = 0 and βCPU > 0 then
GPUBandwidth = 0% Bandwidth
CPUBandwidth = 100% Bandwidth

b) else if βCPU = 0 and βGPU > 0 then
GPUBandwidth = 100% Bandwidth
CPUBandwidth = 0% Bandwidth

c) else if βGPU < βGPU-UpperBound then
GPUBandwidth = 25% Bandwidth
CPUBandwidth = 75% Bandwidth

d) else if βCPU < βCPU-UpperBound then
GPUBandwidth = 75% Bandwidth
CPUBandwidth = 25% Bandwidth

e) else
GPUBandwidth = 50% Bandwidth
CPUBandwidth = 50% Bandwidth

4) Send reservation packet via SWMR link
5) Transmit data using allocated bandwidth on FCFS
6) if CurrentCycle mod RW = 0 then

Proceed to Steps 7 and 8
else

Return to Step 0
7) For each RW, sum the total buffer occupancy βtotal

8) At the end of RW , determine WL for Router Rω :

a) if βtotal > Thresholdupper then
WL= 64 Wavelengths

b) else if βtotal > Thresholdmid-upper then
WL= 48 Wavelengths

c) else if βtotal > Thresholdmid-lower then
WL= 32 Wavelengths

d) else if βtotal > Thresholdlower then
WL= 16 Wavelengths

e) else
WL= 8 Wavelengths

the total number of CPU and GPU buffers at each router
Rω, and ai is 1 if the buffer slot is occupied. βCPU-UpperBound

and βGPU-UpperBound are used as thresholds to determine the
bandwidth allocation within the algorithm. Utilizing a brute
force method, the optimal βCPU-UpperBound and βGPU-UpperBound

are determined experimentally on a separate set of benchmarks
than the ones used in the results section of this paper. The
optimal βCPU-UpperBound was determined to be 16% of the total
CPU input buffer space while the optimal βGPU-UpperBound was
determined to be 6% of the total GPU input buffer space. Using
the calculated values for βCPU and βGPU in comparison with
βCPU-UpperBound and βGPU-UpperBound, the bandwidth is assigned
to each core type and the reservation packet is created. Due
to the temporal sensitivity of the CPU, precedence is given to
CPU by considering it first for the 75% bandwidth allocation
within Step 3 of Algorithm 1. After sending and receiving the
reservation packet, the corresponding routers tune the MRRs
to receive the data packets. In order to decide how best to
split the bandwidth allocation, we considered a wide range
of configurations where bandwidth was allocated in steps of
6.25%, 12.5% and 25% and determined that 25% performed
the best.

C. Power Scaling Techniques

The dynamic power scaling scheme described in this
section is a reactive technique that utilizes buffer occupancy
within a reservation window to determine the next reservation
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window’s laser power. The proposed dynamic power scaling
technique is built on top of the PEARL architecture and
Steps 6 through 8 within Algorithm 1 scales the number of
wavelengths to implement power scaling. Steps 0 through 5 are
executed every cycle to dynamically allocate the bandwidth.
Step 6 checks to see if the network has reached the end
of the reservation window, RW. If Step 6 evaluates that the
reservation window is complete, the power scaling mechanism
executes Steps 7 and 8. Step 7 sums up the running buffer
occupancy for all the buffers across the reservation window
(βtotal =

∑
(Bufω/Buftotal)/RW). The power scaling has four

thresholds which creates five laser power states. We assume
a 2 ns turn on delay for all laser scaling applications. The
additional components for the dynamic/ML power scaling
can be seen in Figure 3. In this figure the laser banks are
divided up into four groups of 16 lasers. This would create
the 64, 48, 32, and 16 wavelength states for the dynamic
power scaling. In order to utilize the 8 wavelength state, one
of the 16 wavelength banks would have to be split in half
along with additional control mechanisms. Within Figure 3,
the serializer receives the data from the crossbar and passes it
onto the multiplexer for E/O conversion. When operating at full
bandwidth, 128 bit flit takes two cycles for data transmission
as 32 bits of data are split evenly across the four multiplexer.
When scaling to 48 wavelengths, one additional 32 bit chunk
will be transferred after two cycle delay, therefore taking four
clock cycles. Similarly, with 32 wavelengths, the delay will be
the same as 48 wavelengths. With 16 wavelengths, it would
take eight clock cycles to transmit the flit of 128 bits. The
thresholds used for the dynamic power scaling were chosen
to balance performance (throughput) and power saving and
can be changed to favor either throughput or power. The
laser power increases almost linearly with the number of
wavelengths and provides different power levels. In PEARL,
we implement dynamic bandwidth reconfiguration at the finer
granularity, power scaling is implemented at the coarser gran-
ularity. Intuitively, bandwidth can be scaled between the cores
by re-allocating wavelengths, whereas switching power levels
at the finer granularity can cause fluctuations which can cause
congestion. Implementing the four-bank design also allows for
reducing the trimming power along with the laser for additional
power saving [24].

D. Machine Learning (ML) for Power Scaling

The purpose of ML within the context of the laser power
scaling is to provide a proactive method for determining the
amount of laser power needed at each router within a specified
reservation window. The ML model will be used to predict
the number of packets that will be injected into each router.
Therefore, both the dynamic laser scaling discussed in the
previous subsection 3.3 and ML will predict the ideal power
level for each RW. ML will replace steps 6 to 8 in Algorithm
1. Once the number of packets is determined, one of five
wavelength states will be selected for each router. This ML
technique will be used instead of dynamic power scaling model
discussed in the previous section. It must be noted that in both
dynamic power scaling technique and ML-based power scaling
technique, dynamic bandwidth is scaled as per the steps 0 to
5 in Algorithm 1.

1) Regression Model Derivation: A ridge regression model
is used to predict the number of packets injected into the

Fig. 3: Dynamic power scaling with on-chip laser with proposed
implementation.

network for a given reservation window. The following formula
can be used to calculate the cost function for a set of predicted
values [53].

Ẽ(w) =
1

2

N∑

n=1

{wTφ(xn)− tn}2 + λ

2
‖w‖2 (4)

where ‖w‖2 ≡ wTw = w2
0+w2

1+...+w2
N represents the norm

of the weight vector used by the regression model and the λ
is the regularization coefficient. The tn represents the label for
the training example xn and wTφ(xn) is the label predicted
by the regression model. The trained weight vector w is the
solution of the following convex optimization problem [53]:

w = argmin
w

Ẽ(w) (5)

In order to solve the above equation, the gradient of Ẽ(w)
must be taken and set to zero. The solution for w is as follows
[53]:

w = (λI+ΦTΦ)−1ΦT t (6)

2) Feature Engineering for Dynamic Power Scaling: The
features used in the dynamic power scaling model were
selected for the purpose of predicting the packets that will be
injected into the network. The main constraint for feature se-
lection revolved around the hardware limitations. The features
were selected by using the information already present at each
router. We need counters at each input buffers, access to packet
headers, access to buffers sending packets (CPU/GPU) from
the cores and ability to reset the counters at the end of RW. All
the above information is input to the ML-based power scaling
unit as shown in Figure 2. The L3 router feature (feature
1) is a binary feature used to distinguish between the 16
cluster routers and the L3 cache router. The Core input buffer
utilization features (features 2 and 4) represent the buffers
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TABLE III: Dynamic Laser Scaling Feature List

1. L3 router
2. CPU Core Input Buffer Utilization
3. Other Router CPU Input Buffer Utilization
4. GPU Core Input Buffer Utilization
5. Other Router GPU Input Buffer Utilization
6. Outgoing Link Utilization
7. Number of Packets Sent to a Core
8. Incoming Packets from Other Routers
9. Incoming Packets from the Cores
10. Request Sent
11. Request Received
12. Responses Sent
13. Responses Received
14. Request CPU L1 instruction
15. Request CPU L1 data
16. Request CPU L2 up
17. Request CPU L2 down
18. Request GPU L1
19. Request GPU L2 up
20. Request GPU L2 down
21. Request L3 22. Response CPU L1 instruction
23. Response CPU L1 data
24. Response CPU L2 up
25. Response CPU L2 down
26. Response GPU L1
27. Response GPU L2 up
28. Response GPU L2 down
29. Response L3
30. Number of Wavelengths

connected to the cores at any given router while the Other
router input buffer utilization features (3 and 5) represent the
input buffers connected to links from other routers. Features 6
through 13 could have been core type specific but this would
increase the number of features by eight and add to the delay
and energy to predict the βUpperBound values. There should be
enough information in the buffer utilization feature to negate
splitting features 6 through 13 into core type specific features.
Features 6 and 7 keep track of the packets that stay within the
cluster versus the packets that get sent out into the network.
Features 8 and 9 sum up the number of packet generated at
the given router and the number of packet received from other
routers within the network. Features 10 through 13 are used
to sum up the total number of request and response packets
that move through the router. Features 14 through 30 are used
to track the packet movement throughout the network. Each
feature has a label of request or response. A request packet is
requesting data. A response packet has data. Additionally, the
feature is labeled with the core type and the cache with which
it is associated. The L2 cache features are labeled with an up
or down corresponding to the packet either going to up to an
L1 cache or down to an L3 cache.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the power and performance of
our proposed dynamic bandwidth and power scaling techniques
enhanced with ML for various reservation window sizes on
both CPU and GPU workloads. As PEARL can be imple-
mented without dynamic bandwidth scaling, we create two
variations - one with dynamic bandwidth scaling implemented
called PEARL-Dyn with constant 64 wavelengths operating at
all times and PEARL with First-Come First-Serve(PEARL-
FCFS) with 64 wavelengths. We also create power scaling
variations with different window sizes of 500 and 2000 (Dyn
RW500 and Dyn RW2000) and ML-based power scaling with
similar window sizes of 500 and 2000 (ML RW 500 and

TABLE IV: Benchmarks used for testing ML.

Core
Type

Abbre-
viation

Benchmark Name

CPU FA Fluid Animate
fmm Fast Multipole Method
Rad Radiosity
x264 x264

GPU DCT Discrete Cosine Transforms
Dwrt 1-D Haar Wavelet Transform
QRS Quasi Random Sequence
Reduc Reduction

ML RW2000). The two window sizes 500 and 2000 were
picked after running the ML and dynamic power scaling
model over several window sizes (100-2000) and determining
the window size that provided the best power savings while
improving performance. While we tried large window sizes
(beyond 2000 cycles) to accommodate slow tuning of off-
chip lasers that can be a few microseconds, our training did
not work well. We compare the wavelength scaling along the
four wavelength states of 64, 48, 32 and 16. We introduce a
low wavelength state of 8 wavelengths which is the lowest
power state of our architecture. The 8WL is introduced as an
equivalent to a power-gated design with extremely low power
consumption; complete power-gated design creates fluctuations
that makes predicting the wavelength state very difficult as
buffers fill up very quickly with no outward traffic. We
reintroduced the 8WL state after the model was computed to
help in save power. The dynamic power scaling, ML-based
power scaling, and the PEARL-Dyn architectures utilize the
dynamic bandwidth allocation mechanism described in Steps
1 through 5 in Algorithm 1. As a baseline, we compare our
proposed PEARL architecture to an electrical concentrated
mesh architecture (CMESH). CMESH is designed to have
the same bisection bandwidth as the PEARL architectures
with constant 64 wavelengths. The router microarchitecture is
similar to PEARL 2 with each input port consists of 4 VCs, 4
input buffers per VC, each buffer slot is 128 bits and connects
2 cores, 4 compute units along with L1 and L2 caches as
specified in I.

A. Machine Learning Setup

The number of packets that are being injected into the
router is used as the label for the corresponding vector of
features for predicting the power levels using ML. This label
is chosen over other metrics (i.e., buffer utilization, router
utilization, or link utilization) to minimize the effect the
wavelength state has on the outcome of the prediction. The
buffer, link, and router utilizations vary significantly based
on the number of wavelengths assigned to each waveguide.
Packets received from other routers are going to dictate the
injection of packets at the local router. Thus, minimizing the
effect the number of wavelengths has on the local router’s
injection of packets. If the model was trying to predict the
buffer utilization, setting the laser power state to 8 wavelengths
would cause the buffer to fill at an increased rate due to the
small number of packets leaving the router. In contrast, if the
laser power state was set to 64 wavelengths the buffers would
have a greater chance of being empty. When predicting the
number of packets that will be injected, the core will try to
inject a packet regardless of the laser power state.
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Fig. 4: CPU-GPU packet breakdown for each traffic trace.

TABLE V: Optical components used in estimating the power con-
sumed by PEARL [51], [18], [45]

.

Component Value Unit

Modulator Insertion 1 dB
Waveguide 1.0 dB/cm
Coupler 1 dB
Splitter 0.2 dB
Filter Through 1.00e-3 dB
Filter Drop 1.5 dB
Photodetector 0.1 dB
Receiver Sensitivity -15 dBm
Ring Heating 26 μW/ring
Ring Modulating 500 μW/ring

In order to create an accurate machine learning model three
data sets must be created: training, validation, and testing.
We use two simulators to implement the data collection for
this process. The feature data is collected from a modified
network simulator running real network traffic. The network
traffic is acquired from Multi2Sim [47] full system simu-
lator. Each traffic file consists of one CPU benchmark ran
simultaneously with one GPU benchmark. A total of 12 CPU
benchmarks are acquired from the PARSEC 2.1 [54] and
SPLASH2 [55] benchmark suites. These benchmarks represent
a mix of compute and memory-intensive workloads [56]. There
are 12 GPU benchmarks selected from the OpenCL SDK
benchmark suite. We could not determine whether the GPU
benchmarks were compute or memory-bound, however we
observed the bursty nature of traffic which is typical of GPU
traffic. The training data is created with 6 CPU benchmarks and
6 GPU benchmarks. The benchmarks are combined to create
36 benchmark pairs. The validation data is created using 2 CPU
and 2 GPU benchmarks and is used to tune the λ regularization
coefficient from Equation 4. The CPU and GPU benchmarks
used for the validation data are combined to make 4 benchmark
pairs. Lastly, the testing data is created using 4 CPU and 4
GPU benchmarks. These benchmarks are combined to make
16 benchmark pairs. Abbreviations for each benchmarks can
be seen in Table IV. The training and validation benchmark
pairs are used to gather the feature data described in Table III.

Figure 4 is the packet percentage between each core type
for the real traffic benchmark pairs. Although CPU benchmarks
create more packets than GPU benchmarks, our dynamic band-
width allocation ensures that neither core type monopolizes
the network bandwidth and the bandwidth allocation is based
on demand. The network simulator was used to collect feature
data at each router. The feature set is then given a label and the
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Fig. 5: Energy per bit for competing PEARL networks.

feature counters are set back to zero. The reservation window
for the data collection was fixed to 500 or 2000 network
cycles. The feature collection for each router is offset by
10 network cycles to prevent all the routers from changing
wavelength state within the same network cycle. The initial
feature data is collected using randomly generated wavelength
states. This is done to avoid influencing the ML process
by a predefined pattern. Once an initial regression model is
generated, a second feature collection was implemented. This
process was done with the wavelength states being generated
by the first regression model. The second data collection is
designed to best mimic the testing environment for the final
results.

B. Power Consumption

The optical components and their losses used in the power
estimation of PEARL architecture can be seen in Table V
[57], [58]. There are five different wavelength states considered
for the dynamic laser scaling: 64, 48, 32, 16, and 8. An
aggressive 16 Gbps data rate per wavelength [11], [51] was
chosen to achieve the network frequency from Table I. Initially,
the 8 wavelength state was omitted during the training and
validation of the machine learning model due to the significant
decrease in the prediction accuracy. The 8 wavelength state
was reintroduced after the model was computed to help save in
power consumption. The power values are computed to be 1.16
W, 0.871 W, 0.581 W, 0.29 W and 0.145 W which correspond
to 64, 48, 32, 16 and 8 wavelengths respectively.

The thresholds that change the wavelength states can
dramatically affect the performance of the network. In the non-
ML based approach, buffer utilization was used to predict the
target power level for the next RW. The thresholds for the
ML was chosen based on the number of packets that can exit
the router during any given RW. If the predicted number of
packets that are injected into the router exceeds the amount
of data that can be sent out of the data waveguide, then the
router increases the number of wavelengths used for that RW.
This ise described using the following formula:

PredictPkt× PktSz ≤ WL

state
× DataRate

WL
(7)

where PredictPkt is the number of packet the ML model
predicts, PktSz is the size of the packets sent, WL

state is the
number of wavelengths in the comparing state (in our case 16,
32, 48, and 64), and DataRate

WL is the data chosen for a single
wavelength. The number of features dictates the addition and
multiplies needed to implement ML. In order to compute the
number of packets injected into a router, approximately there
will be 30 multiplies and 29 additions. Assuming 16 bit num-
bers, the total energy needed is 44.6 pJ [49] at a computation
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Fig. 6: Throughput comparison of power scaling architectures with
8WL low state.

time of 5 nanoseconds. The computation time was estimated
using Synopsys Design Compiler. An estimate for the power
needed for the ML calculation is 178.4 μWatts (46.4 μWatts for
adds and 132 μWatts for multiples). This calculation is based
on a 500 cycle reservation window and the energy estimates
were derived from [49]. Since power consumption and delay
will increase with more features, we experimented with lesser
features. However, our results neither improved the power nor
throughput and therefore, we considered all 30 features in our
simulation.

C. Throughput and Power Results

First, we will compare the energy-per-bit of PEARL-
Dyn (with no power scaling) to PEARL-FCFS and CMESH
architectures as shown in Figure 5. We consider three wave-
lengths - 64, 32 and 16 - as static configurations and evaluate
the energy/bit. For the CMESH, we reduce the bandwidth
proportionally to make it comparable to other photonic net-
works. When the bandwidth is constrained from 64 to 32
wavelengths, PEARL-Dyn shows a 19.7% and 3.2% energy
per bit decrease when compared to PEARL-FCFS. PEARL-
Dyn demonstrates a 40.7% and 34.4% decrease in energy
per bit when compared to CMESH, respectively for 32 and
16 wavelengths. Additionally, PEARL-Dyn demonstrates a
91.9% and 88.8% decrease in energy/bit when compared to
CMESH, respectively for 32 and 16 wavelengths. Clearly,
constraining the bandwidth helps to improve both the energy
as well as the throughput of the network when compared
to the CMESH and PEARL-FCFS architectures. With only
bandwidth scaling implemented, PEARL-Dyn improves the
energy/bit of heterogeneous architectures.

Second, we will compare the throughput and power con-
sumed by different designs - we compare the 64WL (PEARL-
Dyn) with no power scaling, Dyn RW500 and Dyn RW2000
that implements only dynamic power scaling with no ML, and
ML RW500 no8WL and ML RW2000 that implement ML for
reservation window sizes of 500 and 2000. In addition, we also
implement a low-power state of 8WL to further save power
(ML RW500). Figure 6 and Figure 7 show the breakdown of
the throughput and laser power for different window sizes.
Figure 8 (a-b) represent the percent of the simulation time
each configuration resides in each dynamic laser scaling states
for ML only. When looking at the throughput in Figure 6, the
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Fig. 7: Average laser power comparison of power scaling architectures
with 8WL low state.

best performing configuration was the ML RW2000 with a
0.3% throughput loss compared the 64 WL baseline. When
comparing the laser power consumption in Figure 7, ML
RW2000 showed 42% improvement over the 64 WL baseline.
The reason for this can be seen in Figure 8(b). ML RW 2000
spends just under 30% of the simulation in the 64 WL state.
Dyn RW2000 shows 8% loss in throughput when compared to
the 64WL baseline. In terms of power savings, Dyn RW2000
shows 55.8% power savings when compared to the 64WL
baseline. Therefore, dynamic power scaling without ML saves
more power than ML-based technique but has a higher loss in
throughput.

The change in reservation window size reduces the
throughput loss when implementing the dynamic laser scaling.
For a reservation window of 500 cycles, Dyn RW500 has a
1.3% throughput loss over the 64 WL baseline. Dyn RW500
had a 46% power savings over the 64 WL baseline. The
ML RW500 and ML RW500 no 8WL configurations perform
the same with regard to throughput and both demonstrate a
throughput loss of 14%. When the 8 WL state is included, ML
RW 500 demonstrates a 65.5% power savings over the 64 WL
baseline compared to the ML RW500 no 8WL’s 60.7% power
savings. This demonstrates that the 8 WL state can improve
the power savings of the architecture. If the application needs
to maintain the throughput of the network, ML RW 2000
demonstrates a negligible throughput loss with a power savings
of 42% when compared to the 64 WL baseline. With ML-
based approach, the maximum power saving is achieved with
a window size of 500, and adding the 8 wavelength state helps
to further improve the power savings. Similarly, window size of
2000 helps in improving the throughput of the architecture by
maintaining high throughput with lesser power savings. This
provides power-performance trade-offs where a window size of
500 could maximize power savings whereas the window size
of 2000 could maximize throughput. Similarly, dynamic power
scaling without ML can provide different trade-offs - window
size of 2000 saves more power (55%) with throughput loss
(8%) where as with window size of 500 shows no throughput
loss (1.3%) but with lower power savings (46%).

To evaluate the predictive performance of our algo-
rithms, we computed the normalized root-mean-square error
(NRMSE) where 1 represents perfect fit and -∞ corresponds
to the worst fit. ML RW500 with and without the 8WL state

488

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:34:17 UTC from IEEE Xplore.  Restrictions apply. 



��
���
���
���
���
���
	��

��
���
���
����

3
�,
�5
��
-�
6�
)�
��
�

	� �� �� �	 � 0�2

��
���
���
���
���
���
	��

��
���
���
����

3
�,
�5
��
-�
6�
)�
��
�

	� �� �� �	 � 0.2

Fig. 8: Wavelength state (a) ML-based power scaling with ML RW500, and (b) ML-based power scaling with ML RW2000.
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Fig. 9: Throughput comparison for RW500 without 8WL low and
baseline architectures.

showed a marginal drop in NRMSE from 0.79 in the validation
phase to 0.68 in the testing phase, whereas the drop in NRMSE
value for the ML RW2000 was more significant as it went
from 0.79 in the validation phase to 0.05 in the testing phase.
However, for ML RW2000 case, the case where we use the
predicted packets to select the highest 64 WL state resulted
in a WL state selection accuracy of 99.9%, indicating that by
accurately selecting the highest state we were able to obtain
the best performance.

Figure 9 shows the throughput when comparing dynamic
power scaling designs with and without ML to FCFS and
CMESH architectures. The results demonstrate that the dy-
namic and machine learning power scaling techniques outper-
form the CMESH topology by 34% and 20% respectively.
Moreover, dynamic power scaling technique shows identical
throughput with PEARL-FCFS architecture and loses around
8% in throughput when compared to PEARL-Dyn with 64
wavelengths. Figure 10 shows the impact on laser power saving
with different reservation window sizes. As seen, the best
throughput was achieved for ML2000 window size which pre-
dicts the highest wavelength state accurately. For ML RW500
and ML RW1000 window sizes, the throughput drops when
compared to the static 64 wavelength state. With a window
size of 500, ML makes the best prediction to maximize power
savings and with a window size of 2000, we get the best
throughput.
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Fig. 10: Throughput comparison of machine learning power scaling
architectures for varying reservation windows.

Third, we evaluate the sensitivity of laser stabilization on
our power and throughput results. From prior work [36] we
expect that the laser to stabilize within 2-10 nsec duration with
improvement in device technology. We conduct a sensitivity
study where laser stabilization period is varied from 2-32
nsec for dynamic power scaling without ML. The power
variations was negligible (less than 1%) for different laser
turn-on latencies as shown in Figure 11. However, since no
data is transmitted during laser stabilization, throughput loss
for Dyn RW500 ranges from 0% to 17.9% with an average
throughput loss of 7.7% from a 2ns to 4ns turn-on delay. The
throughput loss for Dyn RW2000 ranges from 0% to 17.3%
with an average throughput loss of 5.3% from a 2ns to 4ns
turn-on delay.

V. CONCLUSIONS

In this work, we designed a photonic interconnect that
adapts to network traffic generated by heterogeneous mul-
ticores by dynamically scaling both the link bandwidth as
well as the power consumed. The proposed bandwidth scaling
allows fair sharing of network resources between CPUs and
GPUs and our proposed PEARL-Dyn improves throughput by
over 34% when compared over PEARL-FCFS and CMESH ar-
chitectures. To save static power, we designed two techniques -
dynamic power scaling and ML-based power scaling - that op-
erates on top of dynamic bandwidth scaling technique. When
dynamically scaling laser power, our buffer-based reactive and
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Fig. 11: Average laser power comparison while varying laser turn on
time for 2, 4, 16, and 32 nanoseconds.

ML-based proactive prediction techniques show 40 - 65% in
power savings with 0 - 14% in throughput loss depending
on the reservation window size. Both dynamic power scaling
and ML-based technique show power-performance trade-offs
at different window sizes. We believe that ML-based research
can further optimize the power-performance of photonic NoCs
by improving the prediction accuracy.
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and K. Asanović, “Re-architecting dram memory systems with
monolithically integrated silicon photonics,” SIGARCH Comput.
Archit. News, vol. 38, no. 3, pp. 129–140, Jun. 2010. [Online].
Available: http://doi.acm.org/10.1145/1816038.1815978

[24] C. Nitta, M. Farrens, and V. Akella, “Addressing system-level trimming
issues in on-chip nanophotonic networks,” in 2011 IEEE 17th Interna-
tional Symposium on High Performance Computer Architecture, Feb
2011, pp. 122–131.

[25] M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovi, “Addressing
link-level design tradeoffs for integrated photonic interconnects,” in
2011 IEEE Custom Integrated Circuits Conference (CICC), Sept 2011,
pp. 1–8.

[26] R. Morris, A. K. Kodi, and A. Louri, “3d-noc: Reconfigurable 3d
photonic on-chip interconnect for multicores,” in Computer Design
(ICCD), 2012 IEEE 30th International Conference on, Sept 2012, pp.
413–418.

[27] A. Shah, N. Mansoor, B. Johnstone, A. Ganguly, and S. L. Alarcon,

490

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:34:17 UTC from IEEE Xplore.  Restrictions apply. 



“Heterogeneous photonic network-on-chip with dynamic bandwidth al-
location,” in 2014 27th IEEE International System-on-Chip Conference
(SOCC), Sept 2014, pp. 249–254.

[28] N. Goswami, Z. Li, A. Verma, R. Shankar, and T. Li, “Integrating
nanophotonics in gpu microarchitecture,” in Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’12. New York, NY, USA: ACM, 2012, pp. 425–
426. [Online]. Available: http://doi.acm.org/10.1145/2370816.2370878

[29] Y. Pan, J. Kim, and G. Memik, “Featherweight: Low-cost optical
arbitration with qos support,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-44. New York, NY, USA: ACM, 2011, pp. 105–116.
[Online]. Available: http://doi.acm.org/10.1145/2155620.2155633

[30] A. Zulfiqar, P. Koka, H. Schwetman, M. Lipasti, X. Zheng,
and A. Krishnamoorthy, “Wavelength stealing: An opportunistic
approach to channel sharing in multi-chip photonic interconnects,” in
Proceedings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-46. New York, NY, USA: ACM,
2013, pp. 222–233. [Online]. Available: http://doi.acm.org/10.1145/
2540708.2540728

[31] J. Lee, S. Li, H. Kim, and S. Yalamanchili, “Adaptive virtual channel
partitioning for network-on-chip in heterogeneous architectures,” ACM
Trans. Des. Autom. Electron. Syst., vol. 18, no. 4, pp. 48:1–48:28, Oct.
2013.

[32] T. B. Jablin, J. A. Jablin, P. Prabhu, F. Liu, and D. I. August,
“Dynamically managed data for cpu-gpu architectures,” ser. CGO ’12.
New York, NY, USA: ACM, 2012, pp. 165–174.

[33] Y. Kim, J. Lee, J. E. Jo, and J. Kim, “Gpudmm: A high-performance
and memory-oblivious gpu architecture using dynamic memory man-
agement,” Feb 2014, pp. 546–557.

[34] X. Chen, L.-W. Chang, C. I. Rodrigues, J. Lv, Z. Wang, and W.-M. Hwu,
“Adaptive cache management for energy-efficient gpu computing,” in
Proceedings of the 47th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-47, 2014, pp. 343–355.

[35] S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and
K. Morito, “Highly-efficient, low-noise si hybrid laser using flip-chip
bonded soa,” in 2012 Optical Interconnects Conference, May 2012, pp.
12–13.

[36] E. Kotelnikov, A. Katsnelson, K. Patel, and I. Kudryashov, “Highpower
single-mode ingaasp/inp laser diodes for pulsed operation,” Proceedings
of SPIE, vol. 8277 827715, pp. 1–6, 2012.

[37] M. J. R. Heck and J. E. Bowers, “Energy efficient and energy pro-
portional optical interconnects for multi-core processors: Driving the
need for on-chip sources,” IEEE Journal of Selected Topics in Quantum
Electronics, vol. 20, no. 4, pp. 332–343, July 2014.

[38] G. Kurian, J. E. Miller, J. Psota, J. Eastep, J. Liu, J. Michel,
L. C. Kimerling, and A. Agarwal, “Atac: A 1000-core cache-coherent
processor with on-chip optical network,” in Proceedings of the 19th
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’10. New York, NY, USA: ACM, 2010, pp. 477–
488. [Online]. Available: http://doi.acm.org/10.1145/1854273.1854332

[39] L. Zhou and A. K. Kodi, “Probe: Prediction-based optical bandwidth
scaling for energy-efficient nocs,” in 2013 Seventh IEEE/ACM Interna-
tional Symposium on Networks-on-Chip (NoCS), April 2013, pp. 1–8.

[40] Z. Qian, D.-C. Juan, P. Bogdan, C.-Y. Tsui, D. Marculescu,
and R. Marculescu, “Svr-noc: A performance analysis tool for
network-on-chips using learning-based support vector regression
model,” in Proceedings of the Conference on Design, Automation
and Test in Europe, ser. DATE ’13. San Jose, CA, USA:
EDA Consortium, 2013, pp. 354–357. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2485288.2485374

[41] W. Choi, K. Duraisamy, R. G. Kim, J. R. Doppa, P. P.
Pande, R. Marculescu, and D. Marculescu, “Hybrid network-on-chip
architectures for accelerating deep learning kernels on heterogeneous
manycore platforms,” in Proceedings of the International Conference
on Compilers, Architectures and Synthesis for Embedded Systems, ser.
CASES ’16. New York, NY, USA: ACM, 2016, pp. 13:1–13:10.
[Online]. Available: http://doi.acm.org/10.1145/2968455.2968510

[42] L. Zhou, K. Kashiwagi, K. Okamoto, R. P. Scott, N. K. Fontaine,
D. Ding, V. Akella, and S. J. B. Yoo, “Towards athermal optically-
interconnected computing system using slotted silicon microring res-

onators and rf-photonic comb generation,” Applied Physics A, October
2008.

[43] S. Manipatruni, R. Dokania, B. Schmidt, N. Droz, C. Poitras, A. Apsel,
and M. Lipson, “Wide temperature range operation of micron-scale
silicon electro-optic modulators,” Optics Letters, vol. 33, no. 19,
September-October 2008.

[44] M. Georgas, J. Leu, B. Moss, C. Sun, and V. Stojanovic, “Addressing
link-level design tradeoffs for integrated photonic interconnects,” in
CICC, 2011, pp. 1–8.

[45] J. L. Abelln, A. K. Coskun, A. Gu, W. Jin, A. Joshi, A. B. Kahng,
J. Klamkin, C. Morales, J. Recchio, V. Srinivas, and T. Zhang, “Adaptive
tuning of photonic devices in a photonic noc through dynamic workload
allocation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 36, no. 5, pp. 801–814, May 2017.

[46] J. Lee, S. Li, H. Kim, and S. Yalamanchili, “Design space exploration of
on-chip ring interconnection for a cpu-gpu heterogeneous architecture,”
J. Parallel Distrib. Comput., vol. 73, no. 12, pp. 1525–1538, 2013.

[47] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A
simulation framework for cpu-gpu computing,” in Proceedings of the
21st International Conference on Parallel Architectures and Compila-
tion Techniques, ser. PACT ’12, 2012, pp. 335–344.

[48] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “Mcpat: An integrated power, area, and timing
modeling framework for multicore and manycore architectures,” in
Proceedings of the 42Nd Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO 42. New York, NY, USA: ACM,
2009, pp. 469–480.

[49] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC), Feb 2014, pp. 10–14.

[50] X. Zhang and A. Louri, “A multilayer nanophotonic interconnection
network for on-chip many-core communications,” in Proceedings of the
47th Design Automation Conference, ser. DAC ’10, 2010, pp. 156–161.

[51] C. Sun, C.-H. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh,
and V. Stojanovic, “Dsent - a tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in Networks
on Chip (NoCS), 2012 Sixth IEEE/ACM International Symposium on,
2012, pp. 201–210.

[52] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous com-
puting techniques,” ACM Comput. Surv., vol. 47, no. 4, pp. 69:1–69:35,
Jul. 2015.

[53] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2006.

[54] C. Bienia and K. Li, “ PARSEC 2.0: A New Benchmark Suite for Chip-
Multiprocessors ,” in Proc. of the 5th Annual Workshop on Modeling,
Benchmarking and Simulation, June 2009.

[55] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-
2 Programs: Characterization and Methodological Considerations,” in
Proc. of the 22nd International Symposium on Computer Architecture,
June 1995.

[56] C. Bienia, S. Kumar, and K. Li, “Parsec vs. splash-2: A quanti-
tative comparison of two multithreaded benchmark suites on chip-
multiprocessors,” in 2008 IEEE International Symposium on Workload
Characterization, Sept 2008, pp. 47–56.

[57] K. Aisopos, C.-H. O. Chen, and L.-S. Peh, “Enabling system-
level modeling of variation-induced faults in networks-on-chips,” in
Proceedings of the 48th Design Automation Conference, ser. DAC ’11.
New York, NY, USA: ACM, 2011, pp. 930–935. [Online]. Available:
http://doi.acm.org/10.1145/2024724.2024931

[58] J. Ahn, M. Fiorentino, R. G. Beausoleil, N. Binkert, A. Davis,
D. Fattal, N. P. Jouppi, M. McLaren, C. M. Santori, R. S.
Schreiber, S. M. Spillane, D. Vantrease, and Q. Xu, “Devices and
architectures for photonic chip-scale integration,” Applied Physics
A, vol. 95, no. 4, pp. 989–997, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s00339-009-5109-2

491

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:34:17 UTC from IEEE Xplore.  Restrictions apply. 


