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Abstract—As the number of processing cores and associated
threads in chip multiprocessors (CMPs) continues to scale out,
on-chip memory access latency dominates application execution
time due to increased data movement. Although tiled CMP archi-
tectures with distributed shared caches provide a scalable design,
increased physical distance between requesting and respond-
ing cores has led to both increased on-chip memory access
latency and excess energy consumption. Near data processing
is a promising approach that can migrate threads closer to data,
however prior hand-engineered rules for fine-grained hardware-
level thread migration are either too slow to react to changes in
data access patterns, or unable to exploit the large variety of data
access patterns. In this article, we propose to use reinforcement
learning (RL) to learn relatively complex data access patterns
to improve on hardware-level thread migration techniques. By
utilizing the recent history of memory access locations as input,
each thread learns to recognize the relationship between prior
access patterns and future memory access locations. This leads to
the unique ability of the proposed technique to make fewer, more
effective migrations to intermediate cores that minimize the dis-
tance to multiple distinct memory access locations. By allowing
a low-overhead RL agent to learn a policy from real interaction
with parallel programming benchmarks in a parallel simulator,
we show that a migration policy which recognizes more complex
data access patterns can be learned. The proposed approach
reduces on-chip data movement and energy consumption by an
average of 41%, while reducing execution time by 43% when
compared to a simple baseline with no thread migration; fur-
thermore, energy consumption and execution time are reduced
by an additional 10% when compared to a hand-engineered
fine-grained migration policy.

Index Terms—Chip multiprocessors (CMPs), data movement,
reinforcement learning (RL), thread migration.

I. INTRODUCTION

MANYCORE architectures suffer from both energy and
performance penalties that exacerbate with the increase
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in the number of processing cores and associated threads [1].
As on-chip and off-chip memory access points become
increasingly scattered around the on-chip interconnect fabric,
memory access latency and energy consumption will increase
as a result of longer round-trip request and response distances
for data traversal. As technology scales into the subnanome-
ter regime and provides opportunities to integrate hundreds of
processing cores on a single chip, the cost of moving data
in terms of energy and performance is currently dominating
overall chip costs [1].

Near data processing is a powerful technique for reducing
on-chip data movement during task execution [2]. Rather than
repeatedly moving data from its on-chip storage location to
the locus of computation, threads are moved closer to the
locus of the data they require; if the cost (latency and energy)
of moving the thread is lesser than the cost of moving the
data, then the overall on-chip data movement is significantly
reduced [2]–[11]. By reducing the distance data travels on
the chip, both energy consumed by the on-chip network and
memory access latency can be reduced.

Prior work advanced a deadlock free, fine-grain thread
migration scheme that can take advantage of local memory
access patterns to migrate threads at the granularity of a few
cycles [6], [8], [9], [11]–[13]. Such a model used a distributed
nonuniform memory architecture (NUMA) where each core
has a slice of shared cache, and every cache line corresponds
to a unique core where the data is located on chip. By enforc-
ing a single copy of the data to be present on-chip, prior
work avoids the complexity and performance drawbacks of
cache coherence protocols. However, the performance benefits
come at a cost of increased memory access latency since the
data must be repeatedly requested from the remote core every
time it is required because the data cannot be cached locally.
To mitigate the loss in performance, prior work used simple
hand-engineered rules which recognize one type of data access
pattern to migrate the threads. However, prior thread migra-
tion techniques are either too slow to react to changes in data
access patterns or too simple to exploit the large variety of
data access patterns.

In this article, we propose to use reinforcement learning
(RL) to learn data access patterns to improve hardware-level,
deadlock-free thread migration techniques. In the proposed
scheme, we use a history of recent memory accesses and their
on-chip location to train a low-overhead RL policy to make
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migration decisions. By using the recent history of memory
access locations as input, each thread learns to recognize the
relationship between prior access patterns and future memory
access locations. This enables the proposed technique to make
fewer, more effective migrations to intermediate cores that
minimize the distance to multiple remote memory locations
simultaneously. By training RL agents on real interactions
within parallel programming benchmarks in a parallel simula-
tor, we show that a migration policy based on more complex
data access patterns can be learned. The main contributions of
this article are as follows.

Recognition of Complex Access Patterns: In [11] and [13],
simple manually engineered rules trigger thread migration
whenever a fixed number of consecutive accesses to remote
data is observed. In this article, we show that a more intel-
ligent, RL-trained policy can further reduce on-chip data
movement. The proposed RL formulation relaxes constraints
on where the threads can migrate and this allows the threads
to move to intermediate cores that place the thread closer to
multiple remote data locations. In Section III-A, we illus-
trate how the proposed RL policy learns to combine many
local memory access statistics in a more sophisticated way to
improve both energy and execution time.

Low-Overhead RL to Make Migration Decisions: As each
thread can theoretically make a decision on whether or not
to migrate on every memory access, it was crucial to design
an RL solution that had minimal overhead. While tabu-
lar RL algorithms would be the quickest to determine the
optimal core to migrate, the size of the state–action table
can be prohibitively large to store in memory. Therefore, we
use the six most recent memory accesses and the current
location of the thread on chip as features for approximate
Q-learning [14], [15], as well as other approximations to
reduce the cost of computing migrations.

RL as an Improvement Operator for Existing Solutions: In
the proposed formulation, there are approximately 1.76 × 1016

possible states. We use the simple policy from [9] and [11]
to collect experience for pretraining the RL agent. Effectively,
this forces the RL agent to first learn the value of a known,
good policy, and then fine tune it to form a better, more
complex policy. In this sense, the proposed algorithm can be
thought of as a policy improvement operator on the previous
policy. This step proved crucial to good performance.

Less On-Chip Traffic Than Existing Methods: We compared
the performance of our proposed algorithm to a baseline that
never migrates, as well as against our implementation of the
NUMA architecture described in [9], [11], and [13] using the
Snipersim simulator [16]. Relative to the baseline, the RL
approach was able to save 41.1% energy and reduce execution
time by 43.1% on a set of Splash2 [17] and Parsec [18] bench-
marks. Likewise, when compared to the prior work from [9],
the proposed RL algorithm saved an additional 10.2% energy
and reduced execution time by an additional 9.6% on the same
set of benchmarks.

II. BACKGROUND

In this section, we provide background on the key aspects of
the prior thread-migration-based framework described in [9];

Fig. 1. Example 4 × 4 mesh architecture using NUMA design. Each core
is connected to its immediate neighbors by links. Each core views all cache
slices as a single, logical cache; however, accessing data on nonlocal cache
slice will require the core to go on the network.

this prior work is referred to as TM throughout this article. We
also provide background on RL and the RL algorithm used to
learn the migration policy.

A. Prior Hardware-Level Thread Migration

1) Remote Access Cache: In the NUMA architecture used
in [6], [8], [9], [11], and [13], the address space is divided
among the cache slices such that each cache line is assigned
a unique home core. Suppose a thread T running on core
C is reading or writing data with address A whose home
core is H. If H = C, T behaves normally such that the
value is read/written without interacting with the on-chip
interconnection network. On the other hand, if H �= C, T
must issue a request on the on-chip interconnection network
and wait for a response for the memory operation to be com-
pleted. When compared to a directory-based cache coherence
protocol, an important difference is that the remote cache block
is never cached locally at C. Thus, accessing the cache line at
H incurs round trip costs every time it is accessed. An example
of a 4 × 4 mesh-based NUMA architecture is shown in Fig. 1.

2) Fine-Grained Deadlock-Free Thread Migration: Prior
work in [9] seeks to exploit data locality by moving threads
to the locus of data. Instead of remotely requesting memory
operations, T could choose to migrate within the on-chip
interconnection network to core H and execute the memory
operation locally. Fig. 2 shows the migration decision process
for a 5-stage pipeline architecture. If T is able to execute a suf-
ficient number of memory operations on the remote core, the
migration will have been “worth it.” In [9], a thread T chooses
to migrate if it executes ζ = 3 consecutive memory accesses
to a remote core. After ζ consecutive accesses to the remote
core, the hardware interrupts the execution of the thread and
sends it on the on-chip interconnection network to the remote
core.

If a Thread T1 is migrating to core H and a thread T ′ is
already executing there, T ′ must be evicted. As described thus
far, there are situations in which repeated evictions could lead
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Fig. 2. This shows the migration decision process in a 5-stage pipeline. At the
execution stage, the migration policy (hand-engineered or RL) identifies the
home core of a memory address for a memory access instruction (load/store).
This outputs a core, which can indicate either a migration or a decision to
stay.

Algorithm 1 Fine-Grained Thread Migration [9]
1: Input: a predetermined migration threshold ζ

2: Input: thread T executing on core C
3: Input: address A whose home core is H
4: procedure ONMEMORYACCESS(T, C, H, ζ )
5: if T.last == H then
6: T.d = T.d + 1
7: else
8: T.d = 1
9: T.last = H
10: if T.d == ζ then
11: T.d = 0
12: if H �= C then
13: if T.ncore == H then
14: Migrate T to H.nctxt
15: else
16: if T ′ occupies H.gctxt then
17: Evict T ′ to T ′.ncore.nctxt
18: Migrate T to H.gctxt

19: else
20: T stays at core C

to deadlock scenarios. To prevent deadlock, each core is made
to have two thread contexts for which the core can multiplex
execution [6], [9], [12], [13]. One context on each core H is
marked as the native context H.nctxt for the thread initialized
to that core; and the other context is marked as the guest con-
text H.gctxt. Only the thread initialized to a core can execute
on its native context; we will use T.ncore to denote the core
that can run T in its native context. As a result, for every
thread T , there exists a native context, on the core T.ncore,
which can only be occupied by T; this guarantees that T can
always return to an unoccupied thread context where it can
resume execution after being evicted from a guest context.
Furthermore, to prevent livelock scenarios in which threads are
repeatedly migrated before making any progress, each thread
is required to execute at least one instruction upon migrat-
ing to a new core. The migration policy implemented by TM
is shown in Algorithm 1. There, the depth counter attribute
T.d keeps track of the number of consecutive accesses made
by thread T to the same core, whereas T.last denotes the

core at which the most recently accessed memory address was
located.

B. Reinforcement Learning

RL is a type of machine learning which attempts to
maximize a cumulative reward signal that an agent receives
after performing actions in an environment. The reward is a
scalar value describing progress toward a goal after being in
a state and taking an action, and can be sparse and noisy. The
formal setting for RL is the Markov decision process (MDP),
represented as a tuple (S, A, P, R, γ ) where:

1) S is the set of all states s;
2) A is the set of all actions a;
3) P : S × A → S is the model dynamics; it gives the

probability of transitioning from the current state s to
the next state s’ upon taking the action a;

4) R : (S×A)×S → IR yields rewards for state transitions;
5) γ is a discount factor that controls how far into the future

the agent will optimize the reward.
The goal of the agent is to learn an optimal policy

π∗ : S → A which maps states to actions such that the
long-term expected reward is maximized. It can be shown
that the optimal policy is π∗(s) = arg maxa Q∗(s, a), where
the action-value function Q∗ satisfies the Bellman optimality
equation [19]

Q∗(s, a) =
∑

s′,r
P
(
s′, r|s, a

)(
r + γ max

a′ Q∗(s′, a′)
)

. (1)

When the state space is small and discrete, the tabular Q-
learning algorithm [19] is guaranteed to find the optimal
action-value function Q∗(s, a) by storing the value of every
possible state–action pair in a table, provided that the agent
visits every possible state–action pair a sufficient number of
times. One common approach to ensure this is to use an ε-
greedy policy, which chooses the action that maximizes the
action-value function with probability 1 − ε, but reserves a
small probability ε for selecting random actions [20].

1) Double Q-Learning With Linear Function
Approximation: When the state space is large, as we
will show later is the case for our proposed problem for-
mulation, it is difficult or impossible to store the entire
state–action table in memory and visit every state–action
pair in a reasonable amount of time. In these cases, the
action-value function can be approximated by some differ-
entiable function Q(s, a; θ) where θ is a set of real-valued
parameters, and the states are represented as vectors s ⊆ IRd;
this allows the agent to generalize to unseen state–action pairs
and learn more quickly. However, Q-learning with function
approximation is known to be unstable when the parameters
are updated via gradient descent [20]. To improve stability
during learning, [14] added a target network, i.e., a copy
of the action-value function that updates more slowly, and
experience replay, i.e., a buffer that stores old experience
then samples mini-batches from it to get a better estimate
of the gradient. We adopt a version of this algorithm that
exclusively updates parameters offline and uses linear function
approximation in lieu of a deep neural network. This is to
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Fig. 3. (a) and (b) Show two examples of thread migrations made by the RL policy RL-TM and the baseline hand-engineered policy TM. The transparent
gear shows the thread at its current location. The black lines show migrations made by RL-TM, whereas the red lines correspond to migration made by TM.
RL-TM migrates in both scenarios: in (a) from Core 6 to Core 7, and in (b) from Core 1 to Core 5. TM migrates the thread only in (a), from Core 6, after
observing three consecutive accesses to Core 15, whereas in (b), it never observes three consecutive accesses to the same core. The legend key is shown in
(c). A detailed walkthrough of each scenario is provided in the text.

Algorithm 2 Double Q-Learning With Linear Function
Approximation and Offline Learning [14], [15]

1: Input: A Linear Function Q : S × A × IRd → IR
2: Initialize Replay Memory D to capacity M
3: Initialize online Q parameters θ randomly
4: Initialize target Q̂ parameter θ− = θ

5: for each Episode do
6: Observe state vector s0 ∈ IRd

7: for each t in Episode do
8: Select at via an ε-greedy policy on Q(st, ·; θ)

9: Execute at then observe rt+1 and st+1
10: Store (st, at, rt+1, st+1) in D

11: for each Update Step do
12: Sample a minibatch of (sj, aj, rj+1, sj+1) from D
13: Select each a′

j = arg max
a

Q(sj+1, a; θ)

14:

yj =
{

rj+1 if terminal

rj+1 + γ Q̂(sj+1, a′
j; θ−) else

15: Calculate the TD error δj = (yj − Q(sj, aj; θ))2

16: Perform a gradient descent step on δ w.r.t. θ

17: Every C steps set θ− = θ

keep the simulator simple and fast, and to minimize the
overhead of computing the optimal action, respectively. The
target network is used in a double Q-learning setting [15],
[21] to alleviate maximization bias and speed up learning.
The full procedure that we used to learn the optimal policy
is described in Algorithm 2. As seen in lines 13 and 14 of
Algorithm 2, the online network parameterized by θ is used
to select the next actions, while the offline target network
parameterized by θ− is used to provide their corresponding

state–action values, effectively decorrelating action selection
from action evaluation. Finally, when the buffer is full, new
transitions are added by replacing older transitions at random.
In Section III-B, we explain the use of this algorithm for
training thread migration RL agents.

III. REINFORCEMENT LEARNING FOR HARDWARE-LEVEL

THREAD MIGRATION

This section discusses the proposed RL-based thread migra-
tion (RL-TM). First, we use a walkthrough example of RL-TM
that shows the advantages of RL-TM over the prior TM
approach. Second, we introduce a formulation of hardware-
level thread migration as a low-overhead RL problem. Last, we
will discuss the RL overhead and implementation complexity.

A. Walkthrough Example of Proposed RL-TM
Versus Prior TM

Fig. 3 illustrates the different migration decisions made by
the proposed RL-TM and the prior TM algorithms on two
real examples. The red −k clouds indicate memory accesses
k time steps in the past, e.g., −1 for the most recent memory
access, and −2 for the memory access before it. Similarly,
the green +k clouds indicate memory accesses k time steps
in the future, e.g., +1 indicates the upcoming memory access.
At the time of the migration decision, RL-TM is aware of the
location of the upcoming memory access as well as the prior
five memory accesses, whereas TM operates using the location
of the upcoming and previous two memory accesses.

Consider the example of the thread executing on Core 6 in
Fig. 3(a). Upon observing the location of the access labeled
+1, but prior to performing the actual memory access, RL-TM
migrates to Core 7 which is one hop away from Core 6 to its
right. This moves the thread controlled by RL-TM closer to
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five future accesses, while moving it further from only a single
future access. On the other hand, the same thread, when con-
trolled by TM, it observes three consecutive accesses (labeled
−5,−4, and −3) to Core 15 and immediately migrates to Core
15 prior to performing the access labeled −3. As a result,
under TM, the thread made a more costly three-hop migration
to Core 15, moving it closer to three future memory accesses,
but also farther from five future memory accesses.

In Fig. 3(b), based on the five prior accesses labeled with red
clouds and the upcoming access labeled +1, RL-TM migrates
the thread one hop away, from Core 1 to Core 5, which ends
up closer to all six future memory accesses. On the other hand,
TM does not migrate the thread, because no three consecutive
accesses are made to any single core. This is a good exam-
ple of the relative complexity of our policy. While TM was
unable to identify a pattern which indicated a migration would
be beneficial, RL-TM was able to consider a weighted combi-
nation of prior memory access locations to make a migration
which ultimately reduced overall on-chip data movement. In
both examples, by exploiting learned patterns that correlate
previous with future access locations, RL-TM is more effec-
tive than TM at reducing the total distance of future accesses
and also at lowering the cost of migrations.

B. Threads as Reinforcement Learning Agents

Each thread is associated with an RL agent that attempts to
minimize the overall on-chip traffic. An agent collects local
information about recent memory accesses from its operating
core and then uses that information to make migration decisions
prior to completing each individual memory access. As shown
in Fig. 2, the RL-TM algorithm identifies the home core for a
memory access instruction in the execution stage and passes
this information to the RL agent. This location along with the
previous five memory access locations forms an access history
of length k = 6 which is used as input to the RL policy to
select a core. If the core is the current location of the thread,
the thread does not migrate and either executes the memory
access locally or issues a remote request on the interconnection
network. If the core is nonlocal, execution is interrupted, the
thread context is serialized, and the thread is sent to the remote
core where it resumes execution of the instruction.

Formally, there are N possible actions, where N is the num-
ber of cores in the network. For a thread running on core m,
selecting action n corresponds to migrating to core n if m �= n,
or staying at the same core otherwise. The state contains
information about the current location of the thread and the
core at which the data for the k most recent memory accesses
is located. Importantly, the most recent memory access has
not been completed yet when the state vector is formed; the
agent has identified the location of the upcoming access and is
making a decision on whether or not it should migrate before
completing that access, as shown in Fig. 2. The location of
each of the k most recent memory accesses ma1, ma2, . . . , mak

and the current thread location tl are encoded as one-hot
vectors of length N. The resulting k + 1 one-hot vectors
are then concatenated to form the overall state vector, i.e.,
st = [ma1, ma2, . . . , mak, tl].

The reward is computed after each completed memory
access as a sum of a data cost and a thread migration cost

r(st, at) = −dhops(st.ma1) − tsize ∗ thops(at, st.tl) (2)

where dhops is the round-trip number of hops the current
memory access needs to reach the requesting core, tsize is the
size of the thread in flits, and thops is the number of hops the
thread travels to migrate from the current core st.tl to the core
indicated by action at. The first term thus corresponds to the
network traffic cost incurred from accessing data, whereas the
second term estimates the network traffic cost caused by thread
migration. Note that when at = st.cl, no migration happens,
and thus thops(at, st.tl) = 0. Because the reward decreases as
the amount of traffic increases, an agent seeking to maximize
the reward is encouraged to make migration decisions that
reduce the distance traveled by data in a way that optimally
offsets the cost of migrating the thread.

During training, the agents follow Algorithm 2. One episode
is considered to be a complete run of a single benchmark appli-
cation, so each iteration of the outer for loop on lines 5–17
begins when a benchmark application starts. A new timestep
begins when an agent (operating from the perspective of a
thread) identifies the location of a memory access, but before
the memory access has been completed; for this reason, each
agent has its own set of timesteps and follows lines 7–10 asyn-
chronously. At line 8, each agent uses previously observed
memory access locations and the location of the upcoming
memory access as the state st. The state st is used as input to
the function Q to select the action at that determines the core
to move to (or stay at). At line 9, the agent executes the migra-
tion decision then waits until the memory access location for
the next memory access instruction is known; the reward rt+1
is computed and the new location is used to compute the next
state st+1. Finally, at line 10, the agent stores the full tran-
sition information, (st, at, rt+1, st+1) in the experience replay
buffer. At this point, one iteration of the first inner for-loop has
completed and the agent is ready to make another migration
decision for timestep t+1. After the benchmark application has
finished, lines 11–17 are executed for a fixed number of steps.
In these steps, the algorithm repeatedly samples minibatches of
the transitions stored by each agent to update the parameters θ .
Because all agents try to solve the same optimization problem,
i.e., minimize traffic due to on-chip data movement, they use
the same policy. Therefore, they share the same action-value
function Q(S, A; θ) and experience replay buffer D, which
requires the simulator API to globally communicate transi-
tion, action selection, and update information during training.
Allowing the agents to share experience and use the same pol-
icy has the added benefit that training will have a lower sample
complexity and thus proceed much faster. Furthermore, for the
first ten episodes of training, the behavior policy in line 8 of
Algorithm 2 is replaced with the deterministic policy from [9],
which migrates a thread to a core C if and only if it made three
consecutive accesses to that core. After ten episodes, the agent
follows its own ε-greedy policy shown on line 8, to improve
on the initial deterministic policy.

At test time, each thread performs thread migration accord-
ing to Algorithm 3. In step 2, a copy of the trained parameters
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Algorithm 3 Low-Overhead RL at Test Time
1: Input: A Linear Function Q : S × A → IR
2: Load previously trained Q parameters θ

3: Observe state vector s0 ∈ IRd

4: for each t do
5: Select action at using an ε-greedy policy on Q(st, ·; θ)

6: Execute at then observe next state st+1

is loaded into the L1-D cache for each core so that threads can
access the trained policy without the need for nonlocal com-
munication. Additionally, the specialized hardware described
in Section III-C is added to each core to facilitate low-overhead
computation of migration decisions, which results in a very
low-overhead RL policy at test time. Similar to training, each
agent has its own set of timesteps and executes lines 4–6
of Algorithm 3 asynchronously. At line 5, each agent uses
the location of previously observed memory access locations
and the upcoming access location to form the state vector
st; st is then used as input to the function Q to select the
action at, which determines the core to migrate to (or stay
at). Finally, at line 6, the agent executes at and waits to
observe the location of the next memory access to form the
next state st+1. This loop continues indefinitely as long as
threads need to execute memory access instructions. While
using a fixed policy may lead to lower adaptability at test time,
prior work has shown that a single, well-selected thread migra-
tion policy can work well across a wide range of application
benchmarks [9], [11], [13].

C. Overhead of Reinforcement Learning at Test Time

The total number of parameters requiring storage at test
time is calculated as follows. There are k + 1 one-hot vectors
used as input, each of length N, where N denotes the number
of cores. The first k vectors represent the location of the k
most recent memory accesses by a thread, whereas the last
one-hot vector represents the thread’s current location. In our
experiments, k and N were 6 and 16, respectively, as seen in
Tables I and II. Given that a distinct set of parameters is needed
for each of the N actions for computing their action value,
this implies that the total number of parameters is (k + 1)N2.
However, at test time, the policy is copied into each core; the
one-hot vector that represents the location of the thread is not
needed anymore. Thus, only kN2 parameters must be stored
at each core. To further reduce the storage and computation
overhead of Algorithm 3, the 32 b floats used at training time
are converted to 8 b integers at test time. In total, the action-
value parameters are stored in approximately 1.5 kB of the
L1-D cache at each core.

To further reduce the overhead, during testing, we restricted
the agents to make migration decisions only on every 6th
memory access. Fig. 4 shows the energy and execution time of
RL-TM as the period of migration decisions is varied. While
the performance on splash2-fft is slightly better for a period of
5, the 0.3% performance gain would be offset by the increased
overhead cost (Section III-D) of making more frequent migra-
tion decisions. Additionally, we found that it was possible to

Fig. 4. Energy and execution time performance of RL-TM relative to the
baseline RA-Only on splash2-fft as the migration period is varied.

TABLE I
SYSTEM CONFIGURATION

reduce the number of cores considered at test time with a
simple heuristic: a minimal bounding box was formed to con-
tain all cores corresponding to the last k memory accesses.
On average, this reduced the number of actions considered
from N = 16 (the number of cores) to N0 = 9.87, which is a
38.31% decrease in computation.

Because all k input vectors use one-hot encoding, mul-
tiplication with the corresponding parameter vectors simply
requires looking up the parameters corresponding to the index
of the nonzero element in the one-hot vector. Given that there
are k input vectors, this implies that k parameters must be
summed up for each of the N0 pruned actions. The resulting
N0 action-values must then be compared to find the maxi-
mum. Finally, selecting actions on every 6th access reduces the
total number of selections to (1/6) of the number of memory
accesses. Overall, the time complexity consists of kN0 8 b
integer lookups, (k − 1)N0 8 b integer additions, and N0 − 1
8 b integer comparisons.

D. RL-TM Unit Implementation

The RL unit first uses adders to sum k 8 b integers for an
average of ten actions on each migration decision; these sums
represent the action-value for each of the pruned actions. To
sum the k values, we utilize carry-save adders (CSA) orga-
nized in a Wallace tree [23] to ensure a low propagation
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TABLE II
RL HYPERPARAMETERS

delay. Furthermore, a Brent–Kung adder (BKA) [24] is uti-
lized to minimize power and area overhead. The ten sets of
k weights are assigned to a unique adder unit to compute
the sums asynchronously; the resulting ten sums are passed
to a comparator tree to find the maximizing action, which is
returned and used to make a migration decision. The RL unit
implementation is shown in Fig. 5. After modeling the hard-
ware unit in Verilog HDL and synthesizing via Synopsys DC
Ultra using the NanGate 45-nm open-cell library, results show
a timing overhead of 1.7 ns (< 5 cycles) and a power overhead
of 5.23 pJ, while the area overhead is 7813 μm2. Including
the RL units, the total area of the chip is 746.14 mm2; thus,
collectively the 16 RL units occupy 15.9% of the total area of
the chip. Because migration decisions are computed every six
memory accesses in this design, the timing and energy over-
head per memory access is effectively 0.28 ns and 0.87 pJ,
respectively. Using the specialized hardware added to each
core, this yields a timing and energy overhead of 1 cycle
and 0.87 pJ on average for every migration decision. In con-
text, 1.4% of the total cycles are spent computing migration
decisions. Overall, the resulting energy and timing penalty are
negligible relative to the total energy consumption and execu-
tion time. While already small, these overhead numbers will
decrease significantly as the architecture is modernized into
the sub-10-nm scale.

IV. PERFORMANCE EVALUATION

This section discusses the network simulator, its configu-
ration, and its use in training and evaluation of the proposed
RL-TM scheme.

A. Simulation Setup

The evaluation was performed using the Snipersim
multicore simulator [16] on a set of Splash2 [17] and
Parsec [18] benchmarks. Snipersim is designed to use a
directory-based memory hierarchy when organized in a
network on chip mesh architecture. Accordingly, the simulator
was modified to enable the remote access memory architecture
described throughout this document. Furthermore, the simula-
tor does not support hardware-level thread migration out of
the box. To enable these experiments, the simulator was also
modified to compute the cost in latency and energy associated
with migrating threads over the interconnection network. For

Fig. 5. RL-TM unit block diagram showing: (a) adder and comparator tree
organization and (b) Wallace tree adder.

a fair comparison to [9], which was originally evaluated on a
different simulator, we implemented their migration algorithm
on the modified copy of Snipersim using the same simula-
tion parameters. The relevant chip design specifications can
be seen in Table I; notably, the system uses only 16 cores
due to the time complexity of making migration decisions
frequently at every core during the simulation. As simulator
technology improves along with computational power, train-
ing thread migration models on a larger number of cores will
become more feasible, with the results in Section V indicating
that it will scale effectively.

For the RL-enabled thread migration described in previous
sections, henceforth referred to as RL-TM, a trained RL policy
will be queried on every memory access by every thread on the
chip as seen in Fig. 2. The migration policy of the TM model
compares the number of consecutive accesses to memory on
the same core to a predetermined threshold; RL-TM replaces
that simple manually engineered policy with a policy learned
using a more complex combination of network statistics via
Algorithm 2.

B. RL-TM Evaluation Procedure

We use a leave-one-out evaluation scenario, where at every
step a single Splash2 or Parsec benchmark is used for test-
ing, whereas all the remaining benchmarks are used to gather
experience and train the RL policy; this process is repeated so
that each benchmark is used for testing once. By never using
the test benchmark during training, the leave-one-out evalua-
tion results reflect how well a trained policy generalizes to an
unseen benchmark. The hyperparameters used during training
can be seen in Table II.

V. RESULTS AND ANALYSIS

We compare the proposed RL-TM to both a remote-access-
only (RA-Only) baseline which can never migrate threads
and TM. A breakdown of the execution time for each of the
benchmarks can be viewed in Fig. 6. It can be seen that the
RL-enabled thread migration algorithm reduces the total exe-
cution time by an average of 43.1% relative to RA-Only, and
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Fig. 6. Shown is execution time of the thread migration frameworks discussed. All values are normalized to the value of the RA-Only migration framework.

Fig. 7. Energy consumption of the three thread migration policies.

Fig. 8. Percentage of cache accesses which were local to the accessing thread’s core.

by an additional 9.6% relative to TM. Additionally, the com-
parison of energy consumption is presented in Fig. 7. Here,
it is shown that the RL-enabled thread migration algorithm
reduced the overall energy consumption by 41.1% relative to
the RA-Only baseline and an additional 10.2% compared to
TM. Figs. 9 and 10 show that across all benchmarks, the num-
ber of migrations and evictions using RL-TM were reduced
by 79.3% and 54.0%, respectively. The average distance (in
hops) each memory access must travel round-trip on chip is
shown in Fig. 11. RL-TM reduces the average access distance
by 23.7% relative to RA-Only, and an additional 1.1% relative
to TM. Finally, Fig. 12 shows the normalized energy consump-
tion of RL-TM when it is trained using applications from one
benchmark suite evaluated using the application from the other
benchmark; results are normalized to the energy consumption
of RL-TM when trained using benchmark applications from
both benchmark suites, excluding the application being evalu-
ated. Fig. 12(a) shows an average increase of 2.6% in energy
consumption, whereas Fig. 12(b) shows a mean increase of

3.4%. While it is possible that similarity among applications
within the same benchmark suite (see splash2-lu.cont and
splash2-lu.ncont) helps boost performance to some degree, it
is also possible that the relative drop in performance when
restricting the training set is simply due to a less diverse
training set.

A. Analysis of Learned Policy

Results in Figs. 6 and 7 show that RL-TM is a more effec-
tive thread migration algorithm than prior work while also
maintaining enough generality to work across multiple bench-
mark suites using the same set of hyperparameters. Thus,
the results indicate that using the hyperparameters shown in
Table II would lead to effective thread migrations on a wide
variety of parallel applications with little or no added design
complexity, allowing the methodology to be extended to new
applications easily, and could improve with a wider variety of
training data. The rest of this section will analyze and explain
the performance of RL-TM.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:59:06 UTC from IEEE Xplore.  Restrictions apply. 



3646 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 9. Number of migrations performed by RL-TM relative to the TM algorithm of [9]; RA-Only is omitted because it never migrates threads.

Fig. 10. Number of evictions caused by RL-TM relative to the algorithm of [9]; RA-Only is omitted because it never migrates threads.

Fig. 11. Shown is the normalized mean memory access distance (in hops) for each method; for each algorithm on each benchmark, this is the expected
distance each memory access will have to travel on-chip to be completed.

To understand why RL-TM is working, it is useful to
first look at the number of migrations and evictions shown
in Figs. 9 and 10. These show that the overall number of
migrations and evictions for RL-TM is significantly reduced
when compared to TM. Additionally, Fig. 11 shows that
RL-TM manages to reduce the average access distance by
a smaller amount. Together, these three results show that
RL-TM is able to achieve better data locality with a much
smaller number of migrations. Migrations have a very large
overhead due to the large thread context that must be sent
over the interconnection network, so making less migrations
significantly reduces timing and energy overhead for thread
migration schemes. Interestingly, Fig. 8 shows that RL-TM
slightly improves over the RA-Only baseline by 2% increased
local access rate, but makes 14.3% less local accesses than
TM. This displays the other strength of RL-TM; where TM
is only ever able to migrate to a core where it has made
multiple consecutive memory accesses, RL-TM is also able to
migrate to intermediate cores that are close to multiple caches
from which it needs data. In other words, while RL-TM less

frequently moves directly to cores that can cache the data it
needs, the benefit of moving to intermediate cores allows it to
migrate less frequently while maintaining better data locality
than RA-Only and TM. This reliance on intermediate cores
suggests that RL-TM will become increasingly beneficial as
the number of cores grows when compared to either baseline,
as RL-TM will minimize expected distance to data, which will
be increasingly distributed among a larger number of cores.
While this indicates that a trained RL policy could become
even more useful with higher core counts, the performance of
the algorithm under practical constraints imposed by a growing
state–action space remains an empirical question and is left for
future work.

B. Need for Bootstrapping

In the proposed RL formulation, there are approximately
1.76 × 1016 possible states. Rather than throwing out the valu-
able policy used by TM, we use it as the initial policy for the
RL agents. Effectively, this forces the RL agent to learn the
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Fig. 12. (a) and (b) Show the energy consumption of RL-TM when restricting the training set to include applications from only one benchmark suite,
normalized to the energy consumption when RL-TM is allowed to train on all benchmark applications except the one being evaluated. In (a) RL-TM was
trained using the four Parsec benchmarks then evaluated on the seven Splash2 benchmarks. In (b) RL-TM was trained on Splash2 benchmarks and evaluated
on Parsec benchmarks.

value of a known, good solution, and then fine-tune it into
a better, more complex policy. This bootstrapping step was
instrumental for obtaining good performance with RL-TM,
which effectively makes RL-TM a policy improvement algo-
rithm. A similar approach was taken in [25], where a policy
gradient RL algorithm was used to improve a simpler search
algorithm to play the game of Go. This view suggests that col-
lecting data from other manually engineered policies, which
make good migrations based on other simple access patterns,
and using that data to pretrain RL-TM could further improve
performance.

VI. RELATED WORK

The most similar and a direct inspiration to our work is the
work in [6], [8], and [9]. There, the authors focused on intro-
ducing the concept of a directoryless, shared-memory protocol
that relied on informed, fast, provably deadlock-free thread
migration to reduce cache miss rates. The authors used a pro-
gram counter to track the number of consecutive accesses
to remote cores; after a predetermined, hand-selected num-
ber of remote accesses to the same core, a thread would
interrupt execution and migrate via the chip interconnection
network to the location of the remote data. Our work adopts
the idea of a NUMA memory design that relies on migrations
to improve data locality, but uses a history of memory access
locations to train a low-overhead RL policy to make deci-
sions to migrate to any core in the network, rather than just
the core associated with the remote access. In [11], this idea
was improved upon by introducing a stack-based core architec-
ture. This allowed the system to dynamically decide to migrate
differing amounts of the thread context, thus reducing the over-
head incurred by migrating a thread over the interconnection
network. Reference [3] introduces the idea of computation
migration; this is shown as an alternative to bringing data
to the locus of computation, where programmers annotate
the location where procedures should be run to improve data
locality. Rather than copying memory to multiple locations
and using a coherence protocol, [26] explore systems to reac-
tively place pages and threads on chip according to dynamic

measurements made at runtime at the programming language
level. Weissman et al. [27] introduced a thread migration tech-
nique in an SMP multiprocesor system which is performed
by the operating system at timeslice granularity; OS-based
migration protocols such as [27] were effective for achiev-
ing long-term goals like load balancing, but due to the high
overhead of such methods, optimizing data locality for short
bursts of data accesses is better suited for methods like those
presented in this article. Jiang and Chaudhary [28] used a
programming language-level method to identify idle cycles
at compile time which could be utilized to hide the over-
head of these relatively high-overhead programming language
level and OS-level migration schemes. Similarly, [29] attempts
to alleviate the overhead of migrating call-stacks by com-
piling functions to a machine-independent string so that a
programmer can specify when to move function execution
on a heterogeneous system. Forbes et al. [10] introduced a
system that makes migration decisions both via compile-time
optimization and via an OS-level system that analyzes the run-
time behavior of threads. On the other hand, [4] and [5] utilize
both dynamic voltage and frequency scaling and thread migra-
tion to save energy while sidestepping the area/performance
overhead penalties of using DVFS alone; likewise, all methods
rely on a central arbiter or handshake that makes the deci-
sion to migrate threads to a higher or lower frequency core
based on their current workload, and cannot be considered
truly low-overhead or fine-grained. In an attempt to further
reduce the latency of the actual migration, [10] introduces the
Teleportation Register File and special migration hardware to
reduce the amount of time it takes to migrate threads on a
heterogeneous chip in a register-based ISA, rather than the
stack-based ISA used by [11].

Additional work has been done which focuses on the
heterogeneous nature of modern system-on-chips (SoCs).
Huang et al. [30] attempted to map tasks to the appro-
priate type of processing element in heterogeneous SoCs;
this idea is improved in [31] by dynamically scheduling
tasks which communicate to a single processing element.
Similarly, Masood et al. [32] decomposed applications to
tasks then dynamically maps these tasks onto processing
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elements at runtime to minimize communication between
tasks. Xiao et al. [33] utilized compile-time optimization
to identify dependent instructions, then partitions them into
tasks; an RL-based task scheduler then attempts to place
tasks on their preferred type of processing element such that
the distance to other tasks which they communicate with is
minimized. While similar in spirit to thread migration, the
aforementioned task mapping algorithms dynamically provide
only initial mappings for tasks, and they could benefit from
thread migration algorithms, such as the proposed algorithm
RL-TM, which allow threads to move after their initial map-
ping; this is especially true in parallel applications which
require frequent communications between many threads.

In addition, RL has been applied to many other tasks
on the network-on-chip (NoC). Power management is
frequently addressed by training RL agent(s) to make
dynamic voltage and frequency scaling decisions for on-
chip components [34]–[36]. Additionally, RL policies have
been used to save energy by learning to power-gate
NoC components with the goal of reducing static power
consumption [34], [37]. Wang et al. [37] used RL to pro-
vide adaptive error detection and correction in the NoC.
Ipek et al. [38] used RL to learn an adaptive scheduling
policy for the memory controller in a chip multiprocessor.
Another common application of RL in the NoC is learning
dynamic/adaptive routing schemes [39]–[41]; each of these
works attempt to alleviate network congestion by introduc-
ing a dynamic routing algorithm learned via RL. On the other
hand, our proposed RL-TM algorithm attempts to dynamically
assign threads to cores for any parallel processing application,
and is orthogonal to all of the above RL-for-NoC work.

VII. CONCLUSION

Researchers predict the number of cores on multicores
will reach the thousands in the near future. The proposed
RL-TM offers a proof of concept that low-overhead approx-
imate RL can be used to train a policy which effectively
utilizes intermediate cores to make migrations to minimize
the expected access distance for future memory accesses.
By stripping out test-time learning which is characteristic
of most contemporary RL algorithms and making several
other improvements, RL-TM requires negligible overhead to
compute migration decisions. Compared with a simple base-
line that never migrates threads, the proposed methodology
reduces execution time by 43.1% and energy consumption
by 41.1%. When compared to a similar algorithm which uti-
lizes a human-engineered rule, RL-TM reduces execution time
by an additional 9.6% and energy consumption by an addi-
tional 10.2%. Data collected from experiments shows that this
decrease can largely be attributed to a 79.3% decrease in the
number of migrations made, a 54.0% reduction in thread evic-
tions and the use of intermediate cores as migration locations
to improve data locality. RL-TM is able to do this by boot-
strapping from the simpler human-engineered policy. Finally,
the experiments on both Splash2 and Parsec benchmarks
suggest that our proposed methodology generalizes to many
parallel applications. Future work could diversify the set of

benchmarks even further as simulators become more efficient
and computers to run experiments become faster. Altogether,
RL-TM is a general approach to hardware-level thread migra-
tion which effectively reduces on-chip data movement to both
reduce execution time and save energy.
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