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Abstract—Deep Neural Network (DNN) applications are pervasive.
However as demands for these applications continue to increase, so
is the challenges for designing flexible and scalable architectures for
multi-application implementation. Such accelerators require innovative
architecture with flexible Network-on-Chips (NoCs), parallelism exploita-
tion, and better on-chip memory organization to adequately support the
diverse computation, memory, and communication needs. In this paper,
we propose Venus, a versatile DNN accelerator design that can provide
efficient communication and computation support for multi-applications.
Venus is a tile-based architecture with a distributed buffer where each
tile consists of an array of processing elements (PEs) and a portion of the
distributed buffer. The other salient feature of Venus is a flexible Network-
on-Chip (NoC) that can dynamically adapt to the communication needs
of various running applications thus maximizing data reuse, reducing
DRAM accesses, and supporting multiple dataflows with an overall aim of
better execution time and better energy efficiency. Simulation results show
that our proposed Venus design outperforms state-of-art accelerators
(NVDLA [1], ShiDianNao [2], Eyeriss [3], Planaria [4], Simba [5]).

I. INTRODUCTION

Deep Neural Networks (DNNs) have pervaded every aspect of our
life such as image recognition, video processing, and many others [6],
[7]. Despite their wide popularity, the continued explosion of DNNs
is posing many stringent memory bandwidth and communication
requirements on the underlying hardware. Even though several DNN
accelerators with flexible NoCs [4], [8], [9] have been proposed and
implemented, the majority use a centralized buffer design which poses
major challenges for running multiple applications at the same time.

The applications of distributed buffers have been proposed to
alleviate the bandwidth requirements for DNN applications [5], [10].
For example, Simba [5] has adopted distributed buffers to alleviate the
aggregated bandwidth, but unfortunately, it lacks enough flexibility to
support various dataflows required for running multiple applications.
Multi-application and multi-tenant DNN accelerators with flexible ar-
chitecture have been proposed [4], [8], [9]. Herald [8] presents a het-
erogeneous dataflow accelerator, which deploys multiple accelerator
substrates (i.e., sub-accelerators), each supporting different dataflow.
MAERI [9] proposes a reconfigurable tree-based NoC among the
PEs to provide flexible fabric for multiple dataflows. Planaria [4]
employed a reconfigurable systolic array, which provides flexible and
cost-effective computing resource fission to accommodate different
dataflows. However, these accelerators are all based on a centralized
buffer architecture which unfortunately can not adequately satisfy
the bandwidth, data reuse, and the availability of multiple dataflows
required by running multiple applications.

Supporting flexible dataflows with distributed buffers could be
challenging, as current dataflows are mostly optimized for accelera-
tors with centralized buffers. Consequently, the direct application [5]
of such dataflows may result in data duplication. Data duplication
limits the effective capacity of on-chip buffers, resulting in reduced
on-chip data reuse opportunities and increased off-chip memory

accesses. As a result, data duplication necessitates substantial area
overheads for the accelerator chips with increased SRAM buffer size.
Therefore, dataflows that can eliminate excessive data duplication and
memory access overheads are urgently needed in accelerators with
distributed buffers. To the best of our knowledge, very few research
efforts have simultaneously proposed a flexible NoC design and dis-
tributed buffering with dataflows that can eliminate data duplication
and redundant memory accesses in one combined architecture.

In this paper, we introduce Venus, a versatile accelerator archi-
tecture with distributed buffers that can accommodate the varied
dataflows required by multiple DNNs. The main contributions of this
paper are:

• A comprehensive exploration of dataflows and identification
of suitable ones that can eliminate excessive data duplication
and memory accesses overheads in accelerators with distributed
buffers while maintaining the simplicity of on-chip data move-
ment.

• A versatile accelerator architecture to support multiple ap-
plication execution. The proposed accelerator adopts a tiled
architecture design, where each tile consists of a distributed
buffer and an array of PEs. The flexible NoC can dynamically be
configured to support various traffic patterns of a given dataflow
for any given running application.

• Two new algorithms for dataflow selection and hardware con-
figuration. The proposed algorithms can dynamically select
suitable dataflow parameters and construct the interconnection
configurations, aiming to provide higher performance and energy
efficiency.

We evaluate the proposed Venus with a cycle-accurate simulator
that can accurately capture the behavior of each hardware component
of the DNN accelerator. Simulation results show that our proposed
Venus design achieves 81%, 79%, 90%, 75%, and 50% runtime
reduction and 73%, 71%, 86%, 69%, and 62% energy consumption
reduction on average when compared to baseline designs (NVDLA
[1], ShiDianNao [2], Eyeriss [3], Planaria [4], Simba [5]) respectively.

II. PROPOSED DATAFLOW

A variety of dataflows have been proposed in current DNN accel-
erator with centralized buffer for heterogeneous DNN applications
execution, but very few of them can be efficiently applied to a design
with distributed buffer.

DNNs are composed of a number of convolutional lay-
ers, each of which can be formulated with multiple attributes
(N,K,C, S,R,X, Y and X ′ = X − S + 1, Y ′ = Y − R + 1)
shown in Fig. 1(a) (stride = 1), to represent the batches of the
input activation (N), the number of input channels (C), the number
of output channels (K), and the width and height of weight filter
(S, R), input activation (X, Y), and output activation (X’, Y’).
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Fig. 1: (a)A convolutional DNN layer example, (b)a tiled convolu-
tional DNN layer example.
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Fig. 2: (a) Nested loop representation of the parallelization strategy
and mapping example of the conventional WS dataflow, (b)Nested
loop representation of the parallelization strategy and mapping ex-
ample of the proposed dataflow.

The high-degree parallelism of loop structures and rhythmic com-
putation patterns are inherently suitable for customized accelerators.
Existing DNN accelerators’ on-chip buffer capability is limited,
each DNN layer has to be tiled into multiple smaller chunks to
improve data locality, which is called tiling [11]. Fig. 1(b) shows the
tiled convolutional DNN layer example by using the tiling factors
(Ti, i ∈ {N,K,C, S,R,X, Y,X ′, Y ′}).

Fig. 2(a) shows the nested loop representation of the parallelization
strategy and mapping example of the tiled convolutional layer by
using conventional weight-stationary (WS) dataflow [1]. The tiled
weight and input matrices are distributed into each distributed buffer
in parallel, which is called parallelization. The number of partitioned
matrices are called parallel factors Pi. The attributes c and k are
spatially parallelized (denoted as Ver Paral For and Hor Paral For)
on a 2×2 titled-based accelerator in horizontal and vertical direction,
where each tile represents a collection of computing units and
distributed buffer. Since attributes k and c are the indices for the
weight matrix (W[k][c][r][s]), the weight matrix is fully distributed
across all the tiles. On the other hand, the input matrix (I[n][c][x][y])
isn’t dependent on k, and therefore, the input partition remains
duplicating at each row. Because of the data duplication, the on-
chip buffer cannot be efficiently utilized. It will diminish possible
on-chip data reuse opportunities and increase DRAM accesses with
significant energy consumption and latency overhead. The major issue
of conventional dataflows is the data duplication or complicated
communication patterns when they are applied to a design with a
distributed buffer. This raises the need for the dataflows that can
efficiently be applied to a DNN accelerator with distributed buffer.

To meet the raised requirements, we need to examine the root
cause of data duplication in existing designs. The primary reason is
that only one index (c) of the input matrix (I[n][c][x][y]) is parallelized
in a two dimensional accelerator design. As such, to fully distribute
a matrix, at least two indexes have to be parallelized across each row
and column. For example, we use a parallelization strategy depicted
in Fig. 2(b) to illustrate the concept. For a nested loop with multiple
attributes, both weight and input matrices can be partitioned and
distributed in 2 × 2 tiles. Each tile consists of a distributed buffer

Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Parallelization
Strategies

C ✓

N ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

K ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

S ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

X ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Y ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Supported
dataflows IS/WS IS/WS/RS IS/WS/

RS/OS

Fig. 3: All dataflow candidates that are suited for distributed buffer.

to store all the input, weight, and output matrices. If attributes c and
n are parallelized in different directions (Horizontal and Vertical), the
input matrix will be fully distributed across each row and column.
Similarly, the weight matrix will be fully distributed. This is because
c and k are two attributes of the weight matrix. Then the on-chip
buffer can be fully utilized and the proposed dataflow can effectively
reduce the off-chip memory accesses by increasing the data reuse
opportunities.

Following this principle, many parallelization strategies are qual-
ified to avoid the data duplication issue. The rationale behind our
choice is to reduce the communication complexity. Unlike conven-
tional CPUs with sophisticated hardware support, it is relatively hard
to enable fine-grained data movement in DNN accelerators with
scratchpad memory, where data movement is managed by software.
Given this, we would like to execute DNN layers with simple data
movement patterns like ring. To achieve this, we observe that both
input and weight matrices have to be partitioned with the equivalent
number of indexes. In addition, to reduce the diameter of ring,
attribute c has to be parallelized, as each channel is independent
of each others. In other words, there is no communication between
input and weight matrices across different channels.

As a result, the dataflows that can efficiently be applied to a design
with a distributed buffer have three requirements: (1) at least two
indexes of both weight and input matrices have to be parallelized
across each row and column, (2) both weight and input matrices
have to be partitioned with the equivalent number of indexes, and (3)
atrribute c must be parallelized. All the supported dataflow candidates
are shown in Fig. 3.

III. VENUS ARCHITECTURE

The proposed overall Venus accelerator design aims to provide
adequate computation and communication support in pursuit of
various data reuse opportunities of heterogeneous DNN applications.
To achieve this, Venus adopts a tiled architecture design to improve
overall on-chip memory bandwidth. In addition, a flexible NoC is
designed to enable the flexible dataflow choices for heterogeneous
DNN applications execution.

The overall Venus consists of a control unit, interconnects, and
a collection of computation units. The control unit connects to the
host (e.g., CPUs) via a host interface. The control unit receives
requests from the host and stores them in the request dispatcher,
shown in Fig. 4. The request dispatcher sends the compiled request
to the dataflow selection unit to select the suitable dataflow. Then
the hardware configuration unit creates the interconnect configuration
that can enable the execution of the selected dataflow according to
the result of the dataflow selection unit.

The accelerator uses configuration instructions to configure the
interconnects so that it can flexibly enable on-chip communication
and data reuse of heterogeneous DNN layers. The accelerator also
uses dataflow instructions to retrieve and process data from memory.
The instruction dispatcher, shown in Fig. 4, features a controller
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Fig. 4: Venus accelerator architecture(an example of 4 × 4 architec-
ture).

which keeps track of instruction issues and completion. The controller
generates addresses for the instruction buffer, which forwards instruc-
tions to the decoder unit. The DRAM is connected to the proposed
accelerator through a DRAM interface. To increase the endpoint
bandwidth at the DRAM interface, a crossbar is implemented to
support all-to-all communication. The accelerator adopts a tiled-based
design, where 4×4 tiles are connected via the flexible interconnects,
shown in Fig. 4.

A. Proposed Tile and PE Architecture

Each tile consists of a distributed buffer, a router interface, a 4 ×
4 array of processing elements (PEs), and a reuse First-in-First-Out
(FIFO) buffer, shown in Fig. 5. The tile connects to the router via a
router interface. The 4 × 4 processing elements are connected by the
mesh topology. To support efficient data reuse, we allow inter-tile data
reuse on the tile interconnect, where each tile can send locally-stored
data to other tiles. The reuse FIFO acts as a double buffer [12], which
can support inter-PE communication. This is designed to enable the
data exchange between distributed buffers, reducing off-chip memory
accesses. Each PE consists of a local buffer, a data dispatcher, a MAC
array, and processing units (e.g., ReLu).
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Fig. 5: Proposed tile architecture.

B. Flexible NoC Design

The proposed NoC Design aims to support various communication
patterns by supporting various dataflows. Even though previous
work [13] has addressed the communication patterns between off-chip
memory and global buffers in various dataflows, the communication
support between tiles remains unexplored, in particular for distributed
buffers. To solve this, we explore and propose a flexible NoC design.

In general, the flexible NoC design enables data propagation
between adjacent tiles. This can reduce the complexity of data
exchange and avoid complicated communication protocols. Specif-
ically, the proposed NoC design can be partitioned into multiple ring
topologies with any size and location. Those rings will be formed
to propagate the weights and input activations. The proposed NoC
design also provides diagonal communication besides normal vertical
and horizontal communication. The proposed flexible NoC consists
of flexible routers, reconfigurable links, and diagonal links, which
will be further discussed.

Horizontal
Switch

Vertical
Switch

-x
+x

D-Link

Tile
+y

-y

Diagonal
Link

(D-link)

Router

V
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Re-Link

Switch
Reconfigurable
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Fig. 6: (a) Proposed router architecture, and (b) vertical and horizontal
switches.

Flexible Router : The major functionality required for ring topol-
ogy is forward and eject/inject in-flight packets. This significantly
simplifies the router design with much reduced radix. As shown
in Fig. 6, the flexible router consists of a vertical switch and a
horizontal switch. The vertical switch processes the column-wise
communication, and the horizontal switch processes the row-wise
communication. Vertical switches are connected to reconfigurable
links (Re-link), and horizontal switches are connected to Re-link
and diagonal links (D-link). The Re-link consists of multiple simple
transistors to turn on/off the bypassing link connection between two
routers, avoiding signal interference. The Re-link also connects the
vertical and horizontal switches in the same router together to fully
utilize the radix. D-link is used to connect a pair of routers sitting
across the diagonal, which can effectively reduce the communication
distance and hop count and bridge non-adjacent routers.

IV. DATAFLOW SELECTION

The primary goal of dataflow selection is to reduce the off-chip
memory accesses. The off-chip memory access is determined by
two factors: data volume of each invocation and the number of
invocations. To better illustrate the problem, we use an example
depicted in Fig. 2.

Recall that DNN layer is represented with multiple attributes (i, i ∈
{N,K,C, S,R,X, Y,X ′, Y ′} and X ′ = X−S+1, Y ′ = Y−R+1).
After the loop tiling, the tiled weight and input matrices have to be
distributed into multiple tiles. The number of partitioned matrices is
called parallel factors (Pi). And, the data volume in each partitioned
matrix is represented as i1.

To estimate the DRAM access volume (DA) for the dataflow, we
calculate the product of the data volume involved in each invocation
(Vd) and the total number of invocations (Rd) for all data types
(i.e., weight(wt), input activation(ifmap), psum(psum)) as shown
in Algorithm 1 (Line 7). The data volume involved in each invocation
for different data type can be calculated as Vwt, Vifmap, Vpsum as
depicted in Equation 1:

Vwt =
∏

i1 × Pi, i ∈ {K,C, S,R}

Vifmap =
∏

i1 × Pi, i ∈ {N,C,X, Y }

Vpsum =
∏

i1 × Pi, i ∈ {N,K,X
′
, Y

′}

(1)

The parallel factors determine the accessed array regions of each
partitioned matrix, thus different parallel factor configurations imply
different dataflows. We observed that different dataflows exhibit large
differences in DRAM access volume. The total number of invocations
can be calculated as Rwt, Rifmap, Rpsum. In this section, we use
weight stationary dataflow as an example to explain the equations
but it also can support output/input/row stationary dataflow. The total



Algorithm 1: Dataflow Parallelism Optimization
Input : Possible fully partitioned and multi-dimension parallel dataflow

candidates DF
Input : Dimensions of the DNN layer of each DNN layer

im, i ∈ {K,C,R, S,N,X, Y },m ∈ [0,M)
Input : Dimensions of the a sub-layer in distributed buffer

im1 , i ∈ {K,C,R, S,N,X, Y },m ∈ [0,M)
Input : Distributed buffer capacity CDB

Output: Parallelfactor : Pm
i , i ∈ {K,C,R, S,N,X, Y },m ∈

[0,M)
Output: OptimalDataflow

1 for m ∈ [0,M) do
2 for Pm

i ∈ DF do
3 // Data volume involved in each invocation
4 Calculate V m

d , d ∈ {wt, ifmap, psum},m ∈ [0,M);
5 // Number of invocations
6 Calculate Rm

d , d ∈ {wt, ifmap, psum},m ∈ [0,M);
7 // Number of invocations
8 DAm =

∑
d Vd × Rd, d ∈ {wt, ifmap, psum},m ∈

[0,M);
9 for datavolumem ∈ [0, CDB ] do

10 Find the Minimal DAm;
11 end
12 return Pm

i ;
13 end
14 return Optimal Dataflow
15 end

number of invocations (Rd) of weight stationary dataflow can be
calculated as depicted in Equation 2:

Rwt =
∏ i

i1 × Pi

, i ∈ {K,C, S,R}

Rifmap =
∏ i

i1 × Pi

, i ∈ {N,K,C, S,R,X
′
, Y

′}

Rpsum =

∏i∈{N,K,S,R,X′,Y ′} i × ( 2C
C1×PC

− 1)∏i∈{N,K,S,R,X′,Y ′} i1 × Pi

(2)

The data volume of the partitioned matrices (datavolume) can be
calculated as Equation 3:

datavolume =
∏

i1, i ∈ {K,C, S,R}+∏
i1, i ∈ {N,C,X, Y }+∏
i1, i ∈ {N,C,X

′
, Y

′}

(3)

The data volume of the partitioned matrices is limited by the
distributed buffer capacity(CDB) shown in Algorithm 1 (Line 8).
Then we can find the parallel factors that can minimize the DRAM
accesses with the distributed buffer capacity(CDB) limitation.

We compare the total DRAM accesses volume (DA) of all
candidate dataflows(DF ) and consider the dataflow with minimal
DRAM accesses volume as the optimal one for each DNN layer. The
dataflow selection algorithm is described in detail in Algorithm 1.

V. DYNAMIC HARDWARE AUTOMATION

This section will go through the hardware configuration required to
allow flexible dataflow for DNN operation. As previously stated, the
parallelization strategy and loop order are determined by the dataflow
selection algorithm. Following the choice, the proposed design will
be dynamically configured into several topologies that are suited for
optimal dataflow.

The NoC of accelerator will be configured to support the commu-
nication patterns of the selected dataflow. For example, as shown in
Fig. 7, multiple rings are configured to support various communica-
tion patterns of different dataflows. To better illustrate the proposed
design, we provide three examples to represent three representative
dataflows: weight-stationary, row-stationary, and output-stationary.
The difference among these dataflows is the data movement patterns
of input, weight, and partial sums. For example, in Fig. 7, a weight
stationary dataflow is deployed, where PC = 2, PN = 2, PK = 4, PS
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Fig. 7: Topology configuration of weight stationary dataflow with
parallelization strategies (PC = PN = PS = 2, PK = PX = 4).

= 2, and PX =4. As attribute C is divided into two parts, two rings
will be generated. In each ring, the input data is forwarded, while
partial sums are accumulated horizontally.

As the data reuse of weights and input activations only exist in
the same input channel C, all communications involving weights and
input activations should be restricted to the same input channel C and
other constraints should be determined according to different data
movement paths (communication patterns between tiles) of various
dataflows. As a result, we can summarize that each partition with the
same attribute C will be clustered into the same ring in weight/input
stationary dataflow to transfer input activations or weights. Each
partition with the same attributes C and Y will be clustered into
the same ring in row stationary dataflow to forward input activations.
In output stationary dataflow, each partition with the same attributes
C, X, and Y will be clustered into the same ring to transfer input
activations and each partition with the same attributes C, S, and
R will be clustered into the same ring to forward weights. Within
each ring, each tile will forward the data to its bottom tile given
a simpler routing algorithm. This will naturally avoid the deadlock
while maintaining the simplicity of the routing.

VI. EVALUATION

A. Simulation Setup

In this section, we discuss the methodologies to compare our
proposed accelerator with other state-of-the-art baselines [1]–[5] in
terms of performance, DRAM access, energy consumption, and area
consumption.

Simulator: We utilize a customized version of the open-source
Timeloop simulator [15]. We extend this simulator to support the
non-uniform distribution of latency and bandwidth between PEs
and tiles. In order to obtain execution time results, the simulator
monitors the number of arithmetic operations and the number of
accesses to each memory hierarchy, taking the dataflow and system
configuration parameters into account. The number of arithmetic
operations is used to calculate the computation time, while the
number of accesses to each on-package memory hierarchy is used
to calculate the on-package communication time. The off-package
communication time is obtained from the DRAMSim2 simulator [16].
The overall execution time is derived by adding up the computation
time, the on-package communication time, and the off-package
communication time, considering the overlap caused by the buffering
of the distributed buffer and other memory hierarchies.

Accelerator Modeling : We implement the proposed design
including 32 × 32 tiles interconnected by a flexible NoC. Each tile
consists of 4 × 4 processing elements (PEs), a distributed buffer,
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and a FIFO buffer. Each PE consists of local buffer, data dispatcher,
MAC array, and processing unit (e.g.,ReLu). The on-chip frequency
of the proposed accelerator is 700MHz. The on-chip distributed
buffer capacity of each tile is 100KB. For a fair comparison, we
keep the configurations consistent for all baseline designs (NVDLA
[1], ShiDianNao [2], Eyeriss [3], Planaria [4], Simba [5], and our
proposed accelerator): All designs use 16384 processing elements,
and each processing element contains 16 MAC units, the SRAM of
each processing element is 5KB and the total on-chip SRAM capacity
is 100MB.

Dataflow Modeling: For our evaluations, we use our proposed
dataflow for the proposed accelerator. The proposed dataflow has
optimal parallelization strategy and loop order created by Algorithm
1 according to different DNN layers’ requirements. We use conven-
tional weight stationary dataflow for NVDLA [1] and Simba [5],
row stationary dataflow for Eyeriss [3], output stationary dataflow
for ShiDianNao [2], all dataflows for Planaria [4].

B. Performance Analysis

Fig. 8 shows the normalized runtime for each convolutional layer of
DNN model VGG-16 [14] by using different acceleration platforms.
The computation time of all the designs is very close because the
amount of multiplication and accumulation computations (MACs) of
each DNN layer is the same despite being performed in different
architectures. The on-package communication of the proposed design
is larger than the baselines because the proposed design uses routers
to ensure the communication between tiles but Planaria, NVDLA,
ShiDianNao, and Eyeriss only use simple interconnects (buses and
mesh links) to enable the communication between PEs. The proposed
design has more communication between tiles than Simba but it
reduces the average hop latency by using simple routers. Simba and
the proposed accelerator have lower off-package memory bandwidth
requirements than other baselines because of the scalable architecture.
Planaria [4] can reduce the DRAM accesses by supporting multiple
dataflows with reconfigurable interconnects but it still suffers from
bandwidth limitation which will hurt the performance. The main rea-
son our design outperforms other accelerators is that our design has
reduced memory bandwidth requirement, reduced DRAM accesses
and fully utilized hardware resources which dominate the overall

runtime. The fixed parallelization strategy of the compared designs
limits their ability to exploit intra-layer data reuse and hardware
resources to minimize DRAM accesses. The DRAM access analyses
are shown in the following part. The proposed accelerator achieves
72%, 74%, 90%, 70%, and 48% runtime reduction on average for
convolutional layers of VGG-16 [14], when compared to baselines
respectively.

Fig. 9 shows the normalized runtime of different DNN mod-
els including AlexNet [17], VGG-16 [14], ResNext50 [18], and
GoogLeNet [6] by using different acceleration platforms. As can be
seen, our proposed design outperforms other accelerators model-wise.
The proposed accelerator achieves 81%, 79%, 90%, 75%, and 50%
runtime reduction on average for DNN models, when compared to
baselines respectively.

C. DRAM Access Analysis

Fig. 10 shows the normalized DRAM accesses of baselines and
proposed accelerator in each convolutional layer of DNN model
VGG-16 [14]. As can be seen, the proposed accelerator outperforms
the baselines layer-wise, because the conventional dataflow can’t
fully distribute data and can only use fixed parallel policy and
tiling factors. This limits their ability to minimize DRAM accesses
and fully utilize hardware resources including the buffer capacity,
computation resources. What’s more, the proposed dataflow can fully
distribute data to avoid data duplication and also can support multiple
parallelization strategies so that it is flexible enough to fully utilize
the hardware resources and minimize the DRAM accesses with
the Algorithm 1. For example, the first layer of VGG-16 has few
input channels so NVDLA and Simba that use weight stationary
dataflow to parallelize input channels will have low performance.
NVDLA is worse than Simba because NVDLA has higher memory
bandwidth requirements which lead to less parallelism. Planaria [4]
can reduce the DRAM accesses through the flexibility of dataflows
but it doesn’t have the dataflow selection algorithm to select the
optimal dataflow for different DNN layers. The proposed design
achieves 57%, 69%, 90%, 58% and 60% DRAM accesses reduction
on average for convolutional layers of VGG-16 [14] when compared
to baselines respectively. Fig. 11 shows the normalized DRAM
accesses of baselines and proposed designs in each DNN model. The
proposed design achieves 75%, 72%, 84%, 70%, and 57% DRAM
accesses reduction on average for DNN models, when compared to
baselines respectively.

D. Energy Consumption Analysis

For energy analysis, we use DSENT [19] to obtain power consump-
tion and Timeloop [20] to calculate runtime. It should be noted that
the evaluation includes the energy consumption of the entire system
including control units, computation units, DRAM, distributed buffer,
local buffers, and interconnects. Fig. 12 shows the normalized overall
energy consumption analysis of the proposed accelerator. As can be
seen, the proposed accelerator achieves 73%, 71%, 86%, 69% and
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Fig. 10: Normalized DRAM accesses for each convolutional layer of DNN model VGG-16 [14] by using baselines and our proposed
accelerator), normalized to the DRAM accesses of proposed accelerator.
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Fig. 11: Normalized DRAM accesses for each DNN model by
baselines and our proposed accelerator),normalized to the DRAM
accesses of proposed accelerator.

62% energy consumption reduction on average for DNN models,
when compared to baselines. The main reasons for the reduction are
reduced DRAM accesses (benefit from the proposed dataflow and
the dataflow selection algorithm 1), simple interconnects, reduced
long-distance communication(benefit from the multiple dimensions
parallelization strategy), and low configuration time (benefit from the
Hardware Automation).

E. Area Analysis

We evaluate the area consumption of the various architectures
under TSMC 40 nm technology, the MAC array consumes only
7.1% of the total PE area, while the memory hierarchy, SMB,
and IDMB/ODMB, consumes a majority of the total area, 82.9%.
The PE control unit consumes 3.7% of the total PE area. The
total area consumption takes PE, SRAM, flexible interconnects, and
control logic into account. For the entire proposed accelerator, the PE
array, which consists of 16384 PEs consumes 65.23% of the overall
chip area. The controller consumes 0.6% total chip area which is
negligible. The additional components for the flexible interconnects
including flexible routers, reconfigurable links, diagonal links, and
muxes consume 4.0% of the total chip area.

VII. CONCLUSION

In this paper, we propose Venus, a versatile accelerator architec-
ture with distributed buffers that accommodate the varied dataflows
required by heterogeneous DNNs based on the communication and
computing needs of multiple DNN applications. The proposed Venus
adopts tiled architecture, where each tile consists of an array of
processing elements (PEs) and a distributed buffer. The tiles are
interconnected by a flexible Network-on-Chip (NoC). Specifically, the
proposed design can be configured to support various communication
patterns that enable the flexible dataflow choices for heterogeneous
DNN applications execution, thus providing desired performance and
energy efficiency. Simulation shows that our proposed Venus design
achieves 81%, 79%, 90%, 75%, and 50% runtime reduction and 73%,
71%, 86%, 69%, and 62% energy consumption reduction on average
when compared to baseline designs respectively.
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