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Abstract—While current Graph Convolutional Networks (GCNs) accelerators have achieved notable success in a wide range of
application domains, these GCN accelerators can not support various intra- and inter- GCN dataflows or adapt to diverse GCN
applications. In this paper, we propose Morph-GCNX, a flexible GCN accelerator architecture for high-performance and energy-efficient
GCN execution. The proposed design consists of a flexible Processing Element (PE) array that can be partitioned at runtime and adapt
to the computational needs of different layers within a GCN or multiple concurrent GCNs. The proposed Morph-GCNX also consists of
a morphable interconnection design to support a wide range of GCN dataflows with various parallelization and data reuse strategies for
GCN execution. We also propose a hardware-application co-exploration technique that explores the GCN and hardware design spaces
to identify the best PE partition, workload allocation, dataflow, and interconnection configurations, with the goal of improving overall
performance and energy. Simulation results show that the proposed Morph-GCNX architecture achieves 18.8×, 2.9×, 1.9×, 1.8×, and
2.5× better performance, reduces DRAM accesses by a factor of 10.8×, 3.7×, 2.2×, 2.5×, and 1.3×, and improves energy
consumption by 13.2×, 5.6×, 2.1×, 2.5×, and 1.3×, as compared to prior designs including HyGCN, AWB-GCN, LW-GCN, GCoD,
and GCNAX, respectively.

Index Terms—Computer Architecture, Graph Convolutional Network (GCN), GCN Accelerator Design, Interconnection Network.
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1 INTRODUCTION

G RAPH Neural Networks (GCNs) have achieved unpar-
alleled success in a wide range of application domains,

such as classification [1], [2], [3], prediction [4], [5], detec-
tion [6], [7], [8], and many others. Due to the data explosion
in graph processing tasks, training and inference of GCNs
involve substantial compute-and memory-intensive opera-
tions. As a result, domain-specific GCN accelerators [9], [10],
[11], [12], [13], [14], [15] are developed to achieve significant
performance and power improvements.

Existing GCN accelerators are optimized to accelerate
two performance-dominating phases, namely aggregation
and combination, by deploying uniquely designed comput-
ing units [9] or specifically tailored dataflows [10]. However,
these rigid solutions neglect the fact that the computational
characteristics of GCNs can vary significantly, where graph
size and structure are different. Depending on the unique
computational characteristics of GCNs, different GCN tasks
(e.g., layers within a GCN, subgraphs of a distributed
GCN application, or the size of GCN inputs) will benefit
from diverse selections of dataflows (e.g., parallelism and
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data reuse strategies), which are not supported by current
designs. Specifically, these dataflows require the communi-
cation fabrics capable of handling various data movement
patterns (e.g. unicast and broadcast). The problem is further
compounded by the concurrent execution of multiple GCN
applications, all of which share the same computing units,
on-chip buffers, and communication fabrics. This requires
the accelerator to support dynamic partitioning to mitigate
the interactions of multiple concurrent GCNs.In addition,
an appropriate resource management policy is needed to
allocate the appropriate amount of shared hardware com-
ponents to each GCN application without inducing perfor-
mance degradation.

In this paper, we explore the design of efficient accelera-
tor architectures specifically tailored for GCNs. We propose
Morph-GCNX, a universal architecture that can support the
diverse computation and communication demands required
by concurrently executing diverse GCN tasks, including
GCN layers, subgraphs, inputs, and sparsity. In addition, we
propose a hardware-application co-exploration algorithm
to dynamically partition the morphable architectures to
multiple sub-accelerators for multiple GCN task execution
with the aim of finding the best dataflows and suitable
sub-accelerator architecture for each GCN task. The major
contributions of this paper are as follows:

• Morphable Accelerator Design: We propose a
universal accelerator architecture to support high-
performance and energy-efficient GCN execution. The
proposed accelerator can be partitioned into mul-
tiple sub-accelerators with different sized PE-array,
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global buffers, and interconnects. These components
can be configured to support any desired inter-/intra-
dataflows needed by the GCN tasks.

• Dynamic Optimization Algorithm Design: We pro-
pose a hardware-application co-exploration algorithm
for optimized GCN execution. The proposed algorithm
models the performance and energy metrics for con-
current GCN tasks. According to the modeled metrics,
the proposed algorithm searches the design space and
dynamically selects the most suitable partitioning strat-
egy, dataflow parameters (e.g., tile sizes, inter-phase
dataflows, and intra-phase dataflows), and interconnec-
tion configurations.

We implement the Morph-GCNX microarchitecture in
RTL. We also evaluate the proposed Morph-GCNX with
a cycle-accurate simulator that can accurately capture the
behavior of each hardware component of the GCN accel-
erator. Simulation shows that the proposed Morph-GCNX
architecture achieves 18.8×, 2.9×, 1.9×, 1.8×, and 2.5×
better performance, reduces DRAM accesses by a factor of
10.8×, 3.7×, 2.2×, 2.5×, and 1.3×, and improves energy con-
sumption by 13.2×, 5.6×, 2.1×, 2.5×, and 1.3×, as compared
to prior designs including HyGCN, AWB-GCN, LW-GCN,
GCoD, and GCNAX, respectively.

2 BACKGROUND AND MOTIVATION

2.1 GCN Basics
A Graph Convolutional Network (GCN) takes graph-
structured data as input and learns a representation vector
for each vertex in the graph. As shown in Fig 1, each GCN
layer gathers the activations of the neighbor vertices from
the previous GCN layer, and then updates the activation of
the vertex, using convolution and matrix multiplication. The
computation in a GCN layer can be formulated as:

a(k)v = Aggregate(k)(h(k)
u |u ∈ N (v)),

h(k)
v = Combine(k)(a(k)v , h(k−1)

v )
(1)

where h
(k)
v is the representation feature vector of vertex v

at the k-th layer. The Aggregate function aggregates multiple
feature vectors from source neighbors to one single feature
vector, and the Combine function transforms the feature
vector of each vertex to another feature vector using a multi-
layer perceptron neural network. For the entire GCN, the
prevalent computation pattern is modeled as a chain matrix-
multiplication (ChainMM) operation:

X(k+1) = σ(ÂX(k)W (k)) (2)

Where X(k) and W (k) are the input feature and weight
matrices of layer k. σ(·) is the non-linear activation function,
and a typical activation function is ReLU. A is a normalized
transformed matrix from the graph adjacency matrix.Table 1
summarizes all the notations to describe a GCN in this
paper. The tile size (T<Dimension>) is the number of elements
that are mapped across PEs in parallel in a given dimension.

For GCN accelerators, the performance of GCN execu-
tion is correlated to the compute ordering of the ChainMM.
For instance, the execution order of the ChainMM can be
altered: (A × X) × W or A × (X × W ). And these two
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Fig. 1. GCN basics. The computation in a GCN layer consists of two
phases, namely Aggregation and Combination. The figure shows an ex-
ample graph with six nodes. The figure shows A: adjacency matrix,X(l):
feature vectors of layer l, W (l): weight matrix of layer l, and X(l+1):
feature vectors of layer l + 1. Basic computation can be generalized as
X(l+1) = A(l)(X(l)W (l)). AX is aggregation, XW is combination.

TABLE 1
GCN Notations.

Terminology Description
G graph G = (V,E)
V vertices of G
E edges of G
Dv degree of vertex v
e(i,j) edge between vertex i and j
A(Aij) adjacency matrix (elements)
av aggregation feature vector
hv feature vector
X feature matrix
F number of input features
O number of output features
Nv(Sv) number of neighbors in the sampling set Sv

T<Dimension> tile size

execution orders are different in the following aspects. First,
in GCN, the computation with A is closely related to the Ag-
gregation phase, which can be generalized as sparse-sparse
matrix multiplication (SpGEMM) or sparse-dense matrix
multiplication (SpMM) operations, while computations with
W are parts of the Combination phase, which are general
matrix multiplication (GEMM) or dense matrix multiplica-
tion (DenseMM) operations. The difference in the sparsity
of SpMM and GEMM operations can significantly affect the
efficiency of the accelerator, in terms of memory accesses
and PE utilization. Second, the order in which the product
is parenthesized is closely correlated with the number of
simple arithmetic operations needed to compute the final
product, which leads to different computational latencies.

Additionally, the dataflows for Aggregation and Combi-
nation phases also impact the data reuse and the intensity
of memory accesses, which can lead to diverse system-
level performance and power metrics. For aggregation, the
computation can be characterized using three layers of
nested loops, namely the vertex dimension V , the input
feature dimension F , and the neighbor dimension N . These
three dimensions can be either in the inner loop or in
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Fig. 2. Time distribution of each tile’s memory access (DRAM) and on-
chip computations for both the aggregation and combination phases.
The time of computations is normalized to that of DRAM access.

the outer loop, and the vectors of each dimension can be
either spatial or temporal. Different combinations of tem-
poral and spatial loop orderings can play a critical role in
aggregation performance. Moreover, the inter-phase execu-
tion order (aggregation to combination or combination to
aggregation) also affects the data movement, data reuse, and
buffer utilization of the accelerator, which are related to data
transmission latency, DRAM accesses, and on-chip resource
allocation efficiency. Therefore, as the selection of dataflows
affects the performance of GCN inference, it is critical for an
accelerator to support a wide range of dataflows and select
the most suitable one for a given GCN task. Additionally,
as different dataflows can lead to erratic workload mapping
and diverse on-chip data transmission, it is also beneficial
for an accelerator to be reconfigurable and adapt to the
dynamically changing PE partitions, workload mapping,
and PE communication patterns.

2.2 GCN Accelerators

In GCN, the aggregation phase is dependent on the input
graph structure, which is commonly sparse, resulting in
irregular memory access and computation patterns. The
combination phase operates similarly to that of conventional
deep neural networks, leading to regular memory access
and computation patterns. Different communication and
computation patterns of two distinct GCN phases impose
new requirements for the underlying hardware architecture.
Existing GCN accelerators implement hardware designs to
accelerate the GCN aggregation and combination phases
and improve overall performance and energy efficiency.
For instance, HyGCN [9] exploits two dedicated compute
engines to respectively accelerate aggregation and combina-
tion phases. GCoD [14] integrates two engines for SpMM
and GEMM. AWB-GCN [10] and LW-GCN [15] address the
workload imbalance issue in SpMM kernels. GCNAX [16]
proposes a new GCN architecture that supports flexible
dataflow to improve resource utilization. All these designs
share a typical architecture that is comprised of a GCN
accelerator chip and off-chip memory. Specifically, the GCN
accelerator chip consists of a Processing Engine to sup-
port compute parallelism in matrix multiplications, a global
buffer (GLB) that is constructed with SRAM scratchpad
memory for data reuse, and a controller to map the GCNs
onto the PUs and GLB. As compared to the communication
across the memory hierarchy is intense within the acceler-
ator chip, the off-chip memory (DRAM) accesses consumes
the majority of the overall power and time [17].

Although these GCN accelerators have delivered con-
siderable performance improvements to some GCN applica-
tions, few of them have considered supporting a wide range
of intra- and inter- GCN dataflows or adapting to diverse
characteristics of GCN tasks. These designs with monolithic
computation and communication patterns are limited in
their flexibility to perform the two distinct GCN phases
efficiently (due to restricted partitioning, fixed dataflow
that limits data reuse, etc). Furthermore, as the GCN tasks
have different data sizes and graph structures: some ver-
tices display a larger number of neighbors than others.
the vertices of the input graph can be divided into two
categories: high-degree (HD) and low-degree (LD) vertices.
While both types of vertices follow the same computational
pattern during the combination phase, their computations
differ during the aggregation phase due to variations in
the number of neighbors they process. This can result in
diverse global buffer requirements, memory access, and
computation patterns, due to different intermediate result
sizes. For instance, as shown in Fig. 2, with a number
of data chunks (tile) in the Cora [18], [19], [20], [21] (a
real-world graph dataset), either memory data access or
on-chip computations dominate the performance during
the aggregation and combination phases, respectively. As
a result, a monolithic can be inefficient, and it is crucial to
design a GCN hardware accelerator that can effectively han-
dle diverse workload patterns and hardware requirements
to achieve high performance and energy efficiency during
GCN inference. Moreover, these existing GCN accelerators
do not integrate an efficient strategy for executing multiple
GCNs concurrently. To address these issues, we propose a
morphable GCN accelerator design.

3 MORPHABLE GCN ACCELERATOR DESIGN

The proposed design has three major objectives: (1) to opti-
mize the concurrent mapping of several GCN tasks (layers,
sub-GCNs, or applications) at runtime with dynamic PE
partitioning, (2) to select the most suitable intra- and inter-
phase dataflows for each GCN task, and (3) to morph the
interconnection of PEs adapting to the selected dataflow
with the purpose of improving performance and energy
efficiency. As such, each GCN task will be allocated with dif-
ferent numbers of PEs and buffers. Within each partitioned
PE array, dataflow, together with the interconnect, would be
optimized according to the needs of the running application.
The details of the proposed design are described as follows.
In this section, we present the flexible architecture design of
the proposed accelerator. The algorithm used for selecting
the accelerator’s configuration parameters is described in
Sec. 4.

3.1 Overview of the Proposed Morph-GCNX Accelera-
tor

We propose an accelerator architecture for efficient GCN
execution, which is depicted in Fig. 3 (a). The proposed
accelerator consists of an accelerator chip and an off-chip
DRAM. The accelerator chip is comprised of distributed
global buffers (SRAMs), a processing element (PE) array,
and a morphable interconnect design. The global buffers
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Fig. 3. The proposed Morph-GCNX accelerator design. (a) The overall architecture of the proposed accelerator. (b) An example showing that the
universal accelerator is partitioned into five disjoint sub-accelerators to execute multiple GCN tasks concurrently. Each sub-accelerator consists
of a sub-PE-array, GLB banks, and a disjoint portion of morphable interconnects. The sub-accelerator is further partitioned into aggregation and
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(GLBs) are implemented as a multi-bank scratchpad mem-
ory, where each bank can be shared by different PEs.
The proposed accelerator also integrates an optimizer and
a controller. The optimizer models the computation and
communication requirements of the GCN tasks and decides
the optimized GCN configurations (e.g., tile size, loop or-
der, etc.) for different GCN tasks. The optimizer generates
corresponding commands to the Control Unit. Within the
proposed accelerator, GLBs and PE array can be partitioned
into multiple sub-accelerators as shown in Fig. 3 (b). For
each partitioned sub-accelerator, the PEs can be further
partitioned to aggregation and combination engines of any
size, and the interconnect can also be morphed to support
any connectivity required by the dataflows.

3.2 PE Architecture Design

Fig. 4 depicts the proposed PE architecture, which is a uni-
formed engine that can efficiently process sparse operations
(SpMM and SpGEMM) and dense operations (DenseMM
and GEMM). To support uniformed operations, the PE
architecture is featured with a SparseMat Buffer (SMB),

Input/Output DenseMat Buffers (IDMB/ODMB), a Look-
Ahead FIFO, a DenseRow Prefetcher (DRP), a multiply-and-
accumulate (MAC) Array, and a PE Control Unit.

Specifically, to process SpMM and SpGEMM, the tiled
sparse matrix is delivered from GLB banks into SMB in CSC
format via a morphable interconnect. Concurrently, part of
the input/output matrix is fetched into IDMB and ODMB
with a dense format. To perform SpMM, an element from
SMB is pre-fetched to the FIFO, and its row index is sent to
DRP. Afterward, the DRP fetches the corresponding input
DenseMat row from IDMB using the coordinate information
of the PartialMat row. Given the latency for matching the
SparseMat element and the input DenseMat, a look-ahead
FIFO is developed to hide this latency. The FIFO handles
and forwards the SparseMat element to MAC Array. Upon
receiving the operands, the MAC array will perform the
outer product between the SparseMat and DenseMat ele-
ments, and its output will be accumulated. The computation
results are stored in the output DenseMat Buffer and written
back to the global buffer using the corresponding router.
To process DenseMM and GEMM, the router directly loads
data to the input DenseMat Buffer instead of using the input
SparseMat Buffer.

3.3 Morphable Interconnection Network Design
In GCN, most of the existing dataflows rely on broadcast
communication to pursue spatial data reuse or on unicast
communication for partialMat accumulation. Existing archi-
tectures deploy rigid interconnect designs that only support
either broadcast or unicast. Thus the performance is limited.
This motivates us to design a morphable interconnect to
support both broadcast and unicast functions at each row
or column of the partitioned PE array. The morphable in-
terconnect consists of two key designs, namely morphable
router and morphable links. As shown in Fig. 5 (a), in a
4 × 4 morphable interconnect design, sixteen morphable
routers are connected in a mesh-like topology. Bi-directional
morphable links are connected to morphable routers at each
row and column.
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3.3.1 Morphable Router

While the PEs are connected in a mesh-like topology, the
proposed morphable router can only support row/column-
wise communications. This is because the latency overhead
of conventional mesh routers would be prohibitive for GCN
accelerators. Specifically, the proposed morphable architec-
ture consists of a vertical switch and a horizontal switch as
shown in Figure5 (c) and (d). The vertical switch processes
column-wise communication, and the horizontal switch
processes row-wise communication. Vertical and horizontal
switches are further connected to the morphable links which
will be discussed in the next section.

3.3.2 Morphable Link

The unicast and broadcast communications should be en-
abled for every row and column of the PE array, but neither
bus nor mesh can provide both functions. To solve this
issue, we propose a morphable link design to facilitate
broadcast communication in the mesh-like topology. The
morphable link is equipped with quad-state repeaters [22]
as shown in Fig. 6. The quad-state repeaters can disable
signal propagation (link segmentation) and switch the signal
propagation directions (link reversal). For example, when
the ‘Dir’ signal turns on, the link will be used for forward
signal propagation, whereas the direction reverses when the
‘Dir’ turns off. When the ‘store’ is enabled, the link will be
segmented into two parts. Therefore, each bi-directional link
can be utilized as two uni-directional links with improved
injection bandwidth, thereby supporting broadcast commu-
nication. The disabled quad-state repeaters can segment a
morphable link into several short links, each supporting one
partitioned sub-PE array.

4 HARDWARE-APPLICATION CO-EXPLORATION
ALGORITHM FOR MULTI-GCN OPTIMIZATION

In this section, we present a hardware-application co-
exploration algorithm for optimized GCN execution using
the optimizer. Specifically, the GCN optimizer samples and
models the performance and energy metrics for concur-
rent GCNs. The proposed GCN optimizer searches the
design space and dynamically selects the most suitable PE
partitions and dataflow parameters (e.g., tile sizes, inter-
phase dataflows, and intra-phase dataflows). The algorithm
follows three steps. First, the PE array is partitioned into
disjoint sub-PE arrays, and each sub-PE array is responsible
for executing one GCN task. Second, the sub-PE-arrays each
are further partitioned into dynamically sized aggregation
and combination engines. Third, the dataflow parameters
for the aggregation and combination engines are decided.
Details of each step are discussed as follows.

4.1 PE Array Partition for Concurrent GCNs
In the proposed accelerator design, we iteratively assign a
number of PEs and a portion of GLBs to independent GCN
tasks that are running concurrently. For concurrent GCNs,
the optimizer uses the neighbor sampling technique [23]
to sample the GCNs and calculates the number of ver-
tices, edges, the sizes of matrices, and MAC operations for
each GCN task. The hardware resource requirements are
estimated using the sampling results, and the PE array,
interconnects, and GLB banks are partitioned into sub-
accelerators accordingly. At runtime, when a new GCN task
joins, it will be first sampled by the optimizer, and the
hardware resources are reallocated to all concurrent GCN
tasks. Similarly, after the execution of any GCN task, the
corresponding hardware resources are released to be allo-
cated to other GCN tasks. Note that in this paper, we assume
concurrent GCN tasks have the same priority, meaning that
we treat each GCN task only relying on their sampled sizes.
The PE partition is fair as long as the average waiting time
for each GCN task is minimized.

4.2 Sub-accelerator Partition for Aggregation and
Combination Engines
After the sub-accelerators are formed, the proposed opti-
mizer decides the size of the aggregation and combination
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engines, respectively. The major challenge faced by this
phase is to allocate hardware resources without inducing
workload imbalance. We propose a loop-unrolling-based
technique to decide the partitions for aggregation and com-
bination engines. We also propose a runtime group-and-
shuffle mechanism to handle the issue of inter-PE workload
imbalance.

4.2.1 Sub-accelerator Partitioning using Loop-unrolling

As the aggregation phase can be generalized as SpGEMM
or SpMM operations while combination operations are
DenseGEMM, it would result in imbalanced intra-PE work-
load since the MAC units are underutilized if they use
zeros for the calculation. In this paper, we use outer-product
loop unrolling to avoid intra-PE workload imbalance and
determine the PE array organization and scale, loop paral-
lelization strategy, and the required sizes of on-chip buffers.
Fig. 7 shows an example of an outer-product loop unrolling
for the combination phase. At each cycle, every row element
of W is multiplied by an element of X . The accumulation of
these elements will ultimately formulate matrix B. (2×P+1)
SRAM reads and P SRAM writes will be required at each
cycle, If data reuse is not enabled at local registers. The
unrolling factorP determines the total number of paral-
lel MAC operations as well as the number of required
multipliers. With the information of the number of MAC
operations of aggregation and combination, the PEs within
a subarray are proportionally allocated to the aggregation
and combination engines, respectively. The selection of the
unrolling parameter P is presented in Sec. 4.3.2.

4.2.2 Inter-PE Workload Balancing

The workload imbalance in GCN could be a major issue
affecting overall system performance, due to the unbalanced
distribution of the non-zeros in the adjacency and feature
matrices. Therefore, we attempt to adopt a group-and-
shuffle method to tackle such workload imbalance issues.
Our approach groups the rows (or columns) in a sparse
matrix with a similar density. As such, the grouped rows
will be distributed to PEs with a close completion time.

Fig. 8. An example of the proposed row grouping mechanism.

Specifically, using row-grouping as an example, the densi-
ties of each row are captured. Different from no workload
balancing designs that distributes the rows to the PEs by
the row index, we distribute each row by the density-sorted
rank order. In our design, the dense rows and sparse rows
are grouped together, so that groups with similar densities
are created. Afterward, individual row groups are mapped
to the processing elements in a way that the tasks allocated
to each PE are completed simultaneously. An example of
the row-grouping method is shown in Fig. 8. The size of
the sparse matrix is 8 ×8. We assume there are four PEs in
total so each PE will be allocated a 2 ×8 tile. The densities
of each row, the density-sorted rank order of each row,
and the utilization of the four PEs are also shown in the
figure. When there is no workload balancing, the rows are
distributed to the PEs by the row index (e.g., R1 and R2
to PE0, R3 and R4 to PE1). Since the row density varies,
PEs with denser rows such as PE2 will take more cycles
to complete the computation task, while the others have
to idle because of PE synchronization. As shown in Fig. 8,
to address this problem, we first group the rows by the
density-sorted rank order, e.g., the densest row (R5) and the
sparsest row (R4) will be in the same group, so that these
row groups are similar in density (from 8/16 to 9/16). The
grouping information is sent to the PE control unit. When
the PEs complete their workloads, the control unit uses the
grouping information to recover the outputs so that they are
stored in the correct positions in the on-chip output buffer.

4.3 Dataflow Parameter Selection

4.3.1 Search Space of Dataflow Parameters
The dataflow of the chain Matrix Multiplications (Chain-
MMs) [10] in GCNs can be generalized as six nested loops,
as shown in Fig. 9. This significantly expands the GCN
accelerators’ design space in terms of parallelism, compu-
tation partitioning, and scheduling. In the proposed design,
we select the suitable GEMM/SpMM dataflows within an
individual aggregation or combination phase (Intra-phase
dataflows) and the overall dataflow with both phases (Inter-
phase dataflows).
Aggregation Dataflow: For aggregation dataflow, we decide
loop order of three dimensions, namely vertex V , neighbors
N , and input features F . The aggregation dataflow decides
the data movement and data reuse [24]. As discussed in
Sec. 2.1, one of the V , N , and F can be spatially mapped,
while the other two can be temporally mapped. Assuming
an aggregation dataflow of which V is the outermost loop
and temporal, the innermost loop selection can lead to
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Fig. 9. Six nested loops when the inter-phase dataflow is A(XW ).

different inter-PE traffic: if N is the innermost temporal loop,
the aggregation can be done in a systolic manner, yet if F
is the innermost temporal loop, the inter-PE traffic would
be many-to-one [25]. Therefore, with different hardware
constraints (number of PEs,inter-PE link bandwidth, etc.),
different aggregation dataflows should be selected for op-
timized performance. Moreover, the aggregation dataflow
can also be determined according to the hardware limi-
tation. For example, if the GLB size is insufficient for a
dimension, it must be temporal. In the proposed design,
the data flow is dynamically selected by considering per-
formance, energy, and hardware limitations simultaneously.
The selection of dimensions for the outer loop, medium
loop, and inner loop is performed using the greedy search
algorithm as described in 4.3.2.
Combination Dataflow: For the combination phase, the
three nested loops are vertex V , output features O, and
input features F . For the combination phase, both the V
× F and F × O matrices are streaming into the PEs. F is
temporally mapped, while O and V are spatially mapped.
Note that this dataflow is identical to an output stationary
systolic array. However, the data can be transmitted through
a systolic array or multicast, according to the available hard-
ware resources. The selection of combination loop orders is
performed using the greedy search algorithm as described
in 4.3.2.
Inter-phase Dataflow: The inter-phase dataflow (the execu-
tion order of aggregation and combination) is defined as
the dataflow that merges the data between aggregation and
combination. This is important because it determines the
number of memory accesses, data reuse, and the amount of
intermediate on-chip buffers required to move data from
one phase to the next. In our design, for the best GCN
performance, we use a parallel inter-phase dataflow with
a fixed ratio of PEs, which are decided in the previous step,
and are allocated to different phases. An intermediate buffer
(constructed with GLB banks) that connects the aggrega-
tion and combination engines with bi-directional links is
required. However, because sub-accelerators have limited
hardware resources, the intermediate buffer (GLB) size may
not be always sufficient for parallel inter-phase dataflow.
In this case, the PEs that computes both aggregation and
combination will work sequentially. As discussed in Sec. 2,
the ChainMM A×X×W can execute aggregation or combi-

nation in the first phase and compute the rest in the second
phase. For a sequential inter-phase dataflow, the output of
the first phase is stored in the global buffer, and the PEs
load necessary data back from the global buffer for the next
phase.

4.3.2 Optimizing Design Variables with Hardware-
Application Co-exploration

We propose a heuristic greedy search method [26] to decide
the optimal combination of design variables, namely tile
sizes, intra-phase loop order, inter-phase execution order,
and loop unrolling, for concurrent GCNs, with the goal
of maximizing overall performance and power efficiency
under design constraints (e.g., PE numbers and buffer size).

The primary objectives of the greedy search method are
threefold. First, it targets reducing the computation latency
that is correlated with data sparsity and loop unrolling.
Second, it tries to reduce the number of off-chip DRAM
accesses that is related to GLB size and data reuse that rely
on tile size and inter-phase execution order. Third, it also
aims at reducing on-chip SRAM accesses that are related
to loop unrolling and intra-phase dataflow. Therefore, to
simultaneously achieve all design objectives, we define a
GCN accelerator cost factor O by calculating the weighed log
function of all three objectives. And the optimization algo-
rithm searches the design space for the parameter values
that can minimize O. Assuming A ∈ R(M×N), X ∈ R(N×K),
and W ∈ R(K×C), we define the intermediate matrix I as
A×X or X ×W , and the output matrix is O ∈ R(M×C). The
GCN accelerator cost factor for the i-th sub-accelerator Oi is:

Min
X

Oi = log[Latency(X u)] + log[ω1 ·Vd(X t,X inter)]

+ log[ω2 ·Vs(X u,X intra)]|NPE i, GLB sizei

s.t. 0 < Tm ≤ M, 0 < Tk ≤ K

0 < Tn0 ≤ N, 0 < Tn1 ≤ N

0 < Tc0 ≤ C, 0 < Tc1 ≤ C

SX + SW + SI ≤ GLB sizei

SA + SO + SI ≤ GLB sizei
(3)

We model the entire search space as X = X u ∪ X t ∪
X inter ∪ X intra. We define X u, X t, X inter, and X intra as
the parameter search spaces of loop unrolling factors, tile
tuple, inter-phase dataflow (aggregation and combination
order), and intra-phase dataflow (loop orders), respectively.
Note that the interconnection of the proposed architecture
dynamically morphs and adapts to the traffic. Therefore,
it is not required to specially search the design space to
decide the form of the interconnection network. The log
functions of computation latency Latency, the DRAM access
number Vd, and the SRAM access number Vs are accumu-
lated. SX , SW , SI , SA, So are the size of on-chip buffer for
the corresponding matrices. ω1 is the adjustment parameter
that estimates the energy consumption difference between
DRAM access and the basic arithmetic operation, and ω2

reflects the energy consumption difference between the
arithmetic operation and SRAM access. Based on the energy
model in [17], we select ω1 = 206.5 and ω2 = 1.6 to indicate
that a single DRAM access and SRAM access induce 206.5×
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TABLE 2
The proposed heuristic greedy search algorithm

Cases Inter-phase
Dataflow

Loop Order Tile Size
Setting
Priority

N ·C ≥GLB sizei Sequential 1⃝ n0 →c0 →k,
m →c1 →n1;
2⃝ m →n0 →k,
m →k →c0

1⃝Tn0, Tm
2⃝Tc0, Tc1

3⃝Tn1, Tk

N ·C <GLB sizei Parallel n0 →c0 →k →
m

1⃝Tn0, Tn1

2⃝Tc0, Tc1

3⃝Tm, Tk

and 1.6× higher energy consumption, as compared to a
basic arithmetic operation, respectively.

Optimizing the proposed accelerator design by explor-
ing the entire design space is costly, as the search space
X t ∈ [1, Dimension]. Therefore, we propose to reduce the
search space by pruning X t. In this paper, we deploy a
heuristic greedy-search algorithm that leverages the empir-
ical rules that are modeled by many simulation results [26]
and can significantly reduce the search time of X t, thus
achieving a total search time within tens of seconds. Specif-
ically, we first compare the size of the on-chip buffer for the
i-th sub-accelerator with N ·C to determine the inter-phase
dataflow, and then determine the tile size setting priority.
The algorithm is listed in Table 2.

We use the priority parameter (priority levels 1, 2, and 3)
for the setting of each tile size. The tile with higher priority
can be set to a larger number than the tiles with lower
priorities. Specifically, we first guarantee the tiles with the
highest priority have the maximum sizes that are allowed
by the design constraints. Then the tile sizes that have the
second-highest priority will be set as large as possible. The
rest will be utilized by the tiles with the lowest priority. To
shrink the tile size search space X t, we only explore the
tile size that can be divided by the dimension size with
minimized padding of the data block [27]. This will also
improve the GLB utilization, therefore reducing off-chip
DRAM accesses. By doing so, the size of the search space
is reduced from O(N) to O(2

√
N).

5 EXPERIMENTAL METHODOLOGY

We built a cycle-accurate simulator with reconfigurable de-
sign variables in C++ that captures the microarchitectural
behavior of the hardware design of the proposed accelerator
to evaluate the performance. For the accelerator chip, the
simulator models the behaviors of all the accelerator logic,
namely the MAC array, SMB/IDMB/ODMB, FIFO buffers,
DRP. The access latency of the buffers is estimated using
Cacti [28]. To estimate the timing and power consumption
of the off-chip DRAM accesses, the simulator deploys a
DRAM counter to monitor the read/write counts of SRAMs
and FIFOs. The simulator is able to estimate the latency
of the GCN tasks measured by the number of cycles. The
energy consumption of these DRAM read/write operations
is modeled by [17]. The area consumption is estimated using
the Synopsys Design Compiler with 40nm library, and the
power consumption is captured using Synopsys PrimeTime
PX.

TABLE 3
Hardware Configurations of the Proposed Design.

PE Value Overall Value
Multiplier 64 bits Num. of PEs 256 (16 × 16)

MAC Array 1*16 Num. of Routers 256 (16 × 16)
FIFO 16 entries Global Buffer 32MB
SMB 320 KB DRAM HBM, 126GB/s

IDMB 4 KB
ODMB 256 KB

Interconnection
Network Morphable

Table 3 lists the configurations of the proposed design
that we used in the simulation. The proposed accelerator
consists of 256 PEs. Each PE is comprised of a 1 × 16
MAC Array using double-precision floating-point multipli-
ers, so that the accelerator could potentially be extended
for broader applications like general-purpose sparse matrix-
matrix applications, which requires high-precision compu-
tations. The sizes of SMB, IDMB, ODMB are 320 KB, 4
KB, and 256 KB, respectively. We manually selected the
sizes for these local buffers to ensure a fit for the matrix
tiles. The global buffer (GLB) size is 32 MB. We implement
a morphable interconnection network with 256 morphable
routers.

We compare the proposed design with a PyTorch Geo-
metric [29] baseline run on Intel Xeon 8168 CPU (denoted
as PyG/CPU) and several state-of-the-art GCN accelera-
tors, namely HyGCN, AWB-GCN, LW-GCN, GCoD, and
GCNAX. Table 4 summarizes the characteristics of these
baselines. The PyG/CPU has 24 cores operating at 2.7GHz
with a memory bandwidth of 128.1 GB/s. The above SOTA
accelerators operate at 1GHz and have 126GB/s off-chip
memory.For a fair comparison, the baseline accelerators are
scaled so that they integrate the same number of multipliers
and DRAM bandwidth as the proposed design.

We conduct five tests using a mix of the benchmark
datasets that are frequently used in the literature [30], [31],
[32], [33], namely Cora, Citeseer, Pubmed, Nell, and Reddit.
Each dataset has diverse vertex numbers, edge numbers,
feature lengths, and data density. Each test consists of
several datasets, and each dataset can be executed multi-
ple times so that the workload of each dataset is roughly
balanced. By doing so, the performance of one dataset will
not dominate the entire test. The five tests are conducted as
follows:

1) Test-1 (Two Datasets): Cora(×1), Citeseer(×1).
2) Test-2 (Two Datasets): Nell(×5), Reddit(×1).
3) Test-3 (Three Datasets): Cora(×5), Citeseer(×5), and

Pubmed(×1).
4) Test-4 (Four Datasets): Cora(×25), Citeseer(×25),

Pubmed(×5), and Nell(×1).
5) Test-5 (Five Datasets): Cora(×25), Citeseer(×25),

Pubmed(×5), Nell(×1), and Reddit(×1).

6 EVALUATION AND ANALYSIS

6.1 Performance

Fig. 10 compares the performance of the proposed design
and the baselines measured by the total number of execu-
tion cycles and speedup. On average, the proposed design
is 18.8×, 2.9×, 1.9×, 1.8×, and 2.5× faster than HyGCN,
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TABLE 4
Summary of different GCN accelerators.

Design Processing Engine Inter-phase Dataflow Intra-phase Dataflow Tile size Interconnection
PyG/CPU Tandem (AX)W Static Static Fixed
HyGCN Tandem (AX)W Static Static Fixed

AWB-GCN Uniform A(XW ) Static Static Fixed
LW-GCN Uniform Adaptive Static Adaptive Fixed

GCoD Tandem A(XW ) Static Static Fixed
GCNAX Uniform A(XW ) Adaptive Adaptive Fixed

Morph-GCNX Uniform Adaptive Adaptive Adaptive Flexible
† As HyGCN, AWB-GCN, and GCNAX do not support concurrent execution of multiple GCN tasks, the GCN applications

are executed sequentially.
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Fig. 10. Performance analysis of the proposed design and the baseline accelerators.

AWB-GCN, LW-GCN, GCoD, and GCNAX, respectively.
The proposed design outperforms the other designs on all
five tests. HyGCN has the worse performance due to the
use of tandem compute engines for aggregation and com-
bination, respectively. This inevitably incurs performance
loss when accommodating different datasets with different
computational requirements for the aggregation and com-
bination engines, as HyGCN can only achieve its optimal
performance by carefully orchestrating the computational
capacity of the combination and aggregation engines for a
given dataset. AWB-GCN addresses this problem by using
uniformed compute engines and achieves 2.3× speedup.
LW-GCN further improves the performance with adaptive
inter-phase dataflow. GCoD achieves similar speedup to
LW-GCN because it enables more balanced workloads and
PE utilization. GCNAX achieves an additional 14% execu-
tion time reduction over AWB-GCN thanks to the dynamic
intra-phase dataflow design that increases data reuse. The
proposed design achieves the highest speedup thanks to
the flexible designs. Specifically, the flexible inter-phase and

intra-phase dataflow design rearranges the execution order
of the chainMM and reduces the total number of com-
putational operations. Moreover, the flexible dataflow also
allows the PEs to fully leverage the on-chip SRAMs without
frequently accessing the offline DRAM. Finally, the mor-
phable interconnection design adapts to the dynamically
changing communication patterns thus reducing latency.

6.2 DRAM Accesses
Fig. 11 shows the number of DRAM accesses of the SIX
accelerators. Overall, on average, the proposed design
achieves 10.8×, 3.7×, 2.2×, 2.5×, and 1.3× reduction on
DRAM accesses, as compared to HyGCN, AWB-GCN, LW-
GCN, GCoD, and GCNAX, respectively. This is because our
proposed design deploys the dynamic partitioning strategy,
fine-tuned tile size tuple, optimized dataflow selection, and
tailored interconnection network. Specifically, the flexible
dataflow design and adaptive-tile size selection enable the
GCN tasks to be executed in an efficient order. The mor-
phable interconnection network can provide efficient inter-
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Fig. 11. DRAM access comparison, normalized to HyGCN (lower is better).

PE communication and involve more data reuse, which
leads to fewer computations and DRAM accesses.

6.3 Energy Consumption
Fig. 12 shows the energy consumption of different accel-
erators, normalized to the energy consumption of the pro-
posed Morph-GCNX design. Overall, the proposed design
achieves 13.2×, 5.6×, 2.1×, 2.5×, and 1.3× energy savings
over HyGCN, AWB-GCN, LW-GCN, GCoD, and GCNAX,
respectively, thanks to the reduced DRAM accesses and im-
proved computing resource utilization. Moreover, it should
be noted that although the morphable interconnection de-
sign in the proposed accelerator does not reduce DRAM
access numbers in the proposed Morph-GCNX design, it
provides improved data transmission and data reuse be-
tween PEs, thus SRAM access number is reduced. We also
compares the proposed Morph-GCNX design to PyG/CPU
in terms of energy consumption( for readability, we do not
show these results in Fig. 12). The proposed design achieves
942.3×, 2037.9×, 983.2×, 2740.5×, and 4340.5× energy sav-
ings in tests 1 to 5, respectively.

6.4 Energy-delay Product (EDP)
We use EDP to show if the energy improvement is achieved
by sacrificing execution time, as shown in Fig. 13. Results
are normalized to the EDP of the proposed Morph-GCNX
design. As shown in Fig. 13, on average, the proposed
design achieves 235.4×, 16.4×, 4.2×, 3.9×, and 3.3× energy
savings over HyGCN, AWB-GCN, LW-GCN, GCoD, and
GCNAX, respectively.

6.5 Area Consumption
We evaluate the area consumption of the proposed architec-
ture under TSMC 40 nm technology, as shown in Table 5.
As shown in Table 5, the MAC array consumes only 7.1%
of the total PE area, while the memory hierarchy, SMB and
IDMB/ODMB, consumes a majority fraction, 82.9%, of the
total area. The PE control unit consumes 3.7% of the total
PE area. For the entire proposed accelerator, the PE array,
which consists of 256 PEs consumes a major fraction of the
overall chip area. The controller consumes negligible area
overhead. The optimizer consumes 11.3 mm2 area, which
implies 0.5% area overhead. The additional components for
the morphable interconnection consume 233.4 mm2 area,
which implies 10.0% total chip area.

TABLE 5
Area Consumption of the Proposed Design

PE Components Area (mm2)
MAC array 0.46 (7.1%)

SMB 2.60 (39.9%)
IDMB 0.10 (1.5%)
ODMB 2.70 (41.5%)

DRP 0.41 (6.3%)
PE Control Unit 0.24 (3.7%)

Total 6.51 (100%)
Overall Area (mm2)

PEs 1666.6
GLB 269.4

Controller 2.24
Optimizer 11.3

Morphable Interconnection 233.4

7 RELATED WORK

There has been considerable work devoted to accelerating
matrix multiplication, which is the key computation pattern
in GCNs. In what follows we briefly highlight some of the
directly relevant work.

Sparse Matrix Multiplication Accelerators. Existing de-
signs exploit CPU-based [34], [35], [36], GPU-based [37],
[38], [39], [40], FPGA-based [41], [42], and ASIC-based [43],
[44], [45] solutions for accelerating sparse matrix multi-
plication (SpGEMM and SpMM). CPU- and GPU-based
solutions [34], [35], [36], [37] are mostly based on a multiply-
insert basis to increase computational parallelism. However,
these techniques utilize general-purpose computing units
thus result in exceeding power and latency. FPGA-based so-
lutions [41], [42] introduce tailored PE and interconnection
architectures to improve data locality and energy efficiency.
OuterSpace [43] proposes an outer-product-based SpGEMM
with enhanced input reuse. SpArch [44] introduces a spe-
cialized ASIC accelerator design to improve data reuse of
both the input matrix and the output matrix. However,
these solutions provide limited insight in how to efficiently
support chain matrix multiplication in GCNs.

Neural Network Accelerators. General Neural Network
Accelerators [46], [47], [48], [49], [50], [51], [52] can be used
for accelerating matrix multiplication in GCNs. For instance,
accelerators that leverage massive parallelism [46], [47] can
be beneficial to the GEMM and DenseMM operations that
exist in the combination phase of GCNs, while other ac-
celerators [48], [49], [50], [51] that aim to reduce computa-
tion operations for sparse matrices can deliver performance
improvements to SpMM and SpGEMM in the aggregation
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Fig. 12. Energy consumption comparison, normalized to the proposed Morph-GCNX design (lower is better).
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Fig. 13. Energy delay product (EDP) comparison, normalized to the proposed Morph-GCNX design (lower is better).

phase. Unfortunately, few of the existing general neural net-
work accelerators have exploited both directions simultane-
ously to accelerate the chain matrix multiplication in GCNs
that consists of both sparse and dense matrix multiplication
operations.

Graph Convolutional Network Accelerators. GCN ac-
celerators are tailored for accelerating chain matrix multipli-
cations. HyGCN [9] exploits two dedicated compute engines
for aggregation and combination. However, the rigid design
of the two engines can lead to workload imbalance. AWB-
GCN [10] therefore addresses this problem by leveraging
a unified engine. Auten et al. [11] accelerates GCN exe-
cutions using an accelerator design that handles irregular
data movement efficiently. GCoD [14] develop a dedicated
two-pronged accelerator with a separated engine to process
each of the aforementioned denser and sparser workloads.
LW-GCN [15] decomposes the main GCN operations into
Sparse Matrix-Matrix Multiplication (SpMM) and Matrix-
Matrix Multiplication (MM). LW-GCN proposes a work-
load balancing algorithm and applies data quantization and
workload tiling to map both SpMM and MM of GCN infer-
ence onto a uniform architecture. EnGN [53] abstracts the
typical computing patterns for some GCN applications and
accelerates the key stages of GCN propagation GRIP [54]
splits the GCN inference into two phases (vertex-centric and
edge-centric execution) and designed specialized hardware
units for each phase. GraphACT [55] is dedicated to the ac-
celeration of GCN training on heterogeneous systems using
CPU and FPGA, which incorporates multiple architecture-
algorithm co-optimizations. GCNAX [16] and SGCNAX [26]
propose a flexible GCN architecture that supports flexible
dataflow to improve resource utilization. Although existing

GCN accelerators achieve considerable performance and
energy efficiency improvements, these designs are opti-
mized for specific GCN models, and thus have restricted
flexibility. As different GCNs prefer different data reuse
and parallelization strategies to achieve optimal efficiency,
these architectures would degrade the performance when
accommodating multiple GCNs.

8 CONCLUSIONS

As Graph Convolutional Networks (GCNs) are both
memory-intensive and compute-intensive, customized ac-
celerators for GCNs have been proposed to deliver sub-
stantial performance speedups. However, as different GCNs
prefer different data reuse and parallelization strategies to
achieve optimal efficiency, existing architectures that are tai-
lored for specific GCNs can degrade the performance when
accommodating multiple GCN applications. To address this
limitation, we propose a morphable GCN accelerator design
framework that adapts to diverse GCNs for improved per-
formance and energy. The proposed accelerator consists of a
flexible PE array design and a morphable interconnection
design to support a wide range of GCN dataflows with
various parallelization and data reuse strategies for multi-
GCN execution. Specifically, the proposed accelerator can
be partitioned into multiple sub-accelerators with differ-
ent sized PE-array, global buffers, and interconnects. These
components can be configured to support any desired inter-
/intra-dataflows needed by the GCN tasks. As compared to
existing monolithic designs that have fixed control policies
for PE partition, dataflow parameters (i.e., tile sizes, inter-
and intra- phase dataflows, and buffering strategies), the
proposed Morth-GCNX can be dynamically reconfigured
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to meet the diverse computation and communication re-
quirements of different GCNs. We also propose a hardware-
application co-exploration technique that explores the GCN
and hardware design spaces to identify the best PE partition,
workload allocation, dataflow, and interconnection configu-
rations, with the goal of improving overall performance and
energy. Simulation results show that the proposed design
achieves better performance, reduced DRAM accesses, and
lower energy consumption as compared to state-of-the-art
accelerator designs. In this paper, we demonstrate the am-
plifying and synergistic effects of integrating architectural
innovations with optimization algorithm designs in a mor-
phable GCN accelerator design. The proposed architecture
can be automatically tailored and adapt to diverse GCN ap-
plications’ communication and computation requirements
for improved general matrix multiplications (SpMM and
GEMM) in the aggregation and combination phases. In the
future, we will expand our hardware design to support a
wide range of evolving GNN models that integrates other
operations such as edge embedding, attention, mixed neigh-
borhood aggregation, and many others. We will further
explore the use of more efficient optimization algorithms, in-
cluding machine learning, to further improve performance
and reduce overheads.
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