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Approximate Network-on-Chips with Application to 
Image Classification

Abstract— Approximation is an emerging design methodology for 
reducing power consumption and latency of on-chip 
communication in many computing applications. However, 
existing approximation techniques either achieve modest 
improvements in these metrics or require retraining after 
approximation. Since classifying many images introduces 
intensive on-chip communication, reductions in both network 
latency and power consumption are highly desired. In this paper, 
we propose an approximate communication technique (ACT) to 
improve the efficiency of on-chip communications for image 
classification applications. The proposed technique exploits the 
error-tolerance of the image classification process to reduce power 
consumption and latency of on-chip communications, resulting in 
better overall performance for image classification. This is 
achieved by incorporating novel quality control and data 
approximation mechanisms that reduce the packet size. In 
particular, the proposed quality control mechanisms identify the 
error-resilient variables and automatically adjust the error 
thresholds of the variables based on the image classification 
accuracy. The proposed data approximation mechanisms 
significantly reduce packet size when the variables are 
transmitted. The proposed technique reduces the number of flits 
in each data packet as well as the on-chip communication while 
maintaining an excellent image classification accuracy. Cycle-
accurate simulation results show that ACT achieves 27% in 
network latency reduction and 28% in dynamic power reduction 
as compared to existing approximate communication techniques 
with less than 0.85% classification accuracy loss. 

Keywords— Image Classification, Network-on-Chips (NoCs), 
Approximation. 

I. INTRODUCTION  
Image classification applications widely use deep 

convolutional neural networks (CNNs) and are deployed from 
cloud to edge computational frameworks for a variety of 
scenarios, such as search engines and self-driving cars [1], [2]. 
As the complexity of these applications and the resolution of 
images continue to increase, conventional homogeneous 
architectures (such as multicore CPU/GPU) are constrained due 
to excessive communication latencies and significant power 
dissipation [3]–[5]. To efficiently process these applications, 
heterogeneous architectures have been proposed with pre-
processing and inference cores [3]–[8]. Pre-processing cores 
are designed to prepare data by resizing the raw image and then 
normalizing the value for each pixel into a specific range. 
Inference cores are designed to fetch the processed data and 
parameters of the CNN model to perform inference.  

Network-on-chips (NoCs) have been widely used to 
efficiently connect cores, memory interfaces, and caches in 
these architectures [9]. Recent research [3], [10] has shown that 

with a heterogeneous architecture, data transfer can account for 
up to 34% of the execution time and up to 40% of the overall 
chip power consumption. Since image classification 
applications can tolerate errors in the parameters and the inputs, 
approximation techniques have been proposed for reducing 
data transfer, thus reducing network latency and power 
consumption [11], [12]. Existing approximation techniques can 
be categorized as follows: 
• Existing approximate communication techniques [13]–[17] 

reduce communication latency and power consumption by 
utilizing packet approximation in NoCs. However, existing 
techniques only rely on the relative error for data 
approximation. Since relative error tolerance is limited for 
image classification applications, only few packets can be 
approximated using existing approximate communication 
techniques.  

• Existing CNN approximation techniques [18]–[22] reduce 
the size of the model using quantization or pruning. 
However, these techniques do not specifically target image 
classification. Moreover, as quantizing and pruning the 
parameters can significantly reduce the classification 
accuracy, existing techniques require the model to be 
retrained prior to inference. The retraining process requires 
substantial time to complete while incurring considerable 
power consumption. 
To address the above issues, an approximate 

communication technique (ACT) that enhances communication 
efficiency for image classification is proposed for 
heterogeneous systems; it leverages the error-tolerance of the 
image classification application to reduce the transmitted 
packet size, thus reducing power consumption and network 
latency. ACT utilizes two approximate communication 
schemes: an approximate communication for the pre-
processing cores (ACT-P) and an approximate communication 
for the inference cores (ACT-I). Each scheme includes quality 
control and data approximation mechanisms to leverage the 
error tolerance in multiple steps of the image classification 
process. Specifically, the contributions of this paper are as 
follows. 
• The proposed approximate communication technique (ACT) 

is utilized in the pre-processing cores (ACT-P) and the 
inference cores (ACT-I) to reduce network latency and 
dynamic power consumption for image classification 
applications by leveraging the error tolerance of the 
application. 

• The ACT is implemented with software-hardware co-design. 
• Performance evaluation results show that compared to the 

existing approximate communication techniques, ACT 
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reduces network latency and dynamic power consumption 
by 27% and 28%, respectively, with less than 0.85% 
classification accuracy loss. 
This paper is organized as follows. Section II presents a 

background for the proposed technique; Section III outlines the 
basic operational principles of the ACT. The implementation is 
presented in detail in Section IV, while Section V deals with its 
evaluation. Section VI concludes this manuscript. 

II. BACKGROUND 
Approximation techniques are widely used to enhance the 

efficiency of image classification applications and CNNs [18]–
[22]. Existing approximation techniques can be categorized into 
two types based on on-chip communication:  
• Approximate communication techniques to reduce power 

and latency of communication during the execution of an 
application; 

• Approximation techniques for the CNN model to reduce the 
model size prior to the execution. 
These techniques will be reviewed next as relevant to the 

proposed scheme. 

A. Approximate Communication Techniques 
Approximate communication is considered to be an 

effective approach to improve network performance when an 
application can tolerate errors [13]-[17]. With a reduced 
accuracy during communication, approximation techniques 
significantly reduce network latency and the power 
consumption for on-chip communication.  

Fig. 1 shows an approximate communication NoC [13]-[17] 
implemented in a heterogeneous multicore system  [3]-[8] with 
an L2 shared cache for CNN inference. Consider a cache miss 
during a memory load or store operation by a CPU for image 
pre-processing. When a cache miss occurs during a memory 
load operation, a read request packet is sent to the memory or 
the shared cache through the NoC. Then, the memory or shared 
cache uses a read reply packet to send the required data back to 
the core. When a cache miss occurs during a memory store 
operation, the data are incorporated into a write request packet 
and sent to the memory or shared cache through the NoC. After 
the memory or shared cache receives the data, a write reply is 
sent back to the core to confirm a successful memory write. The 
data approximation module in the network interface reduces the 
packet size by truncation or lossy compression according to the 
approximation information, which includes variable error 
tolerance and type (e.g., integer or floating-point). Various data 
approximation methods [14], [16], [17], [23] have been 
proposed to reduce the packet size according to the 
approximation information. However, existing techniques 
achieve a limited improvement when CNNs are utilized for 
image classification applications because the parameters of the 
model and the inputs cannot be approximated using methods 
based on the relative error.  

B. CNN Approximation Techniques 
Quantization and pruning methods are widely used for deep 

CNNs in image classification applications to reduce 
communication traffic and computation [20]. For example, in 
[22], the size of the deep neuron network is significantly 
reduced using quantization, pruning, and compression. Existing 
image classification applications [24]–[31] are implemented 
using Pytorch [32] and TensorFlow[33] frameworks, which 

support CNN quantization and pruning on generic inference 
cores (e.g., CPUs, GPUs, CNN Accelerators).  However, 
existing model approximation techniques have two major 
limitations.  
1. They are developed for generic CNN inference. The 

performance improvement methods are not designed 
specifically for image classification. Thus, system 
performance can be further improved with dedicated 
optimization techniques. 

2. They require the model to be retrained or fine-tuned before 
classifying images, because these techniques incur a 
significant reduction in classification accuracy.  
This paper aims to approximate the image classification 

application during the execution process for communication 
efficiency enhancement by incurring only a very limited impact 
on accuracy. 
III. PROPOSED APPROXIMATE COMMUNICATION TECHNIQUE 

The proposed approximate communication technique 
(ACT) reduces network latency and power consumption of on-
chip communication in NoCs. This is mainly accomplished by 
reducing the size of each packet and exploiting the error-
tolerant features of image classification applications. The image 
classification applications tolerate two types of errors [18], 
[19], [34]: the first type is image contrast reduction during 
image pre-processing; the second type is quantization errors in 
the fully connected layer during model inference. Thus, ACT 
includes two sets of approximate communication techniques to 
leverage two types of error tolerance.  
1. The approximate communication for image pre-processing 

(ACT-P) includes quality control and data approximation 
mechanisms. 

• The quality control mechanism dynamically adjusts the 
image contrast and monitors the accuracy of the 
application to balance it with the communication efficiency.  

• The data approximation mechanism for image pre-
processing reduces the data size by reducing the image 
contrast.  

2. The approximate communication for model inference 
(ACT-I) includes quality control and data approximation 
mechanisms. 

• The quality control mechanism monitors the values of the 
variables when a fully connected layer is processed.  

• After recording the maximum/minimum values of the 
variables by the quality control mechanism, the data 

 
Fig. 1: Heterogeneous multicore architecture with an approximate 
communication NoC 
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approximation mechanism utilizes data quantization to 
reduce data size. 

A. Approximate Communication for Image Pre-processing 
(ACT-P) 
Recent research has shown that image classification 

applications are resilient to contrast reduction on the raw image 
prior to inference [18], [34]. In this paper, it is assumed that the 
level of contrast 𝐶 ranges from −255 to infinity. When 𝐶 = 0, 
there is no adjustment to the image, but when 𝐶 ∈ (−255,0), 
the image contrast is reduced. When 𝐶 = −255, all values of 
the pixels (R, G, B) in an image are 128, making the image of 
a solid grey color. Hence, Eq. (1) describes the relationship 
between the contrast correction factor 𝐹  and the level of 
contrast 𝐶. 

𝐹 = !"#(%&!"")
!""(!"#(%)

                                        (1) 

As per 𝐹  above, the contrast reduction for each pixel is 
performed by Eq. (2), in which the variable 𝑃 is the value of a 
color of a pixel (in a range from 0 to 255), and 𝑃′ represents 
the corresponding value with contrast reduction. 

P′ = round(F(P − 128) + 128)                   (2) 

Fig. 2 shows the classification accuracy for a few widely-
used image classification applications [2] versus the level of 
contrast reduction; image classification applications can 
tolerate 23 levels of contrast reduction (i.e., 𝐶 = −23) with 
negligible accuracy reduction (0.07% accuracy reduction on 
average). Fig. 2 also shows that different image classification 
applications have different accuracy tolerance for image 
contrast reduction; for example, for a classification accuracy 
loss of up to 1%, AlexNet [25] can tolerate 23 levels of contrast 
reduction, while VGG19 can tolerate -90 levels. Thus, a quality 
control mechanism is needed to select the appropriate contrast 
reduction level for the different image classification 
applications to avoid a significant loss in classification 
accuracy. 

1) Quality Control 
A quality control mechanism for image pre-processing is 

utilized to maintain the accuracy of image classification. Fig. 3 

shows the proposed design of the quality control for image 
classification. This mechanism adjusts the contrast level during 
the testing process. This is the last step prior to the classification 
of the images by the application. Testing includes three phases. 
1. The raw images in the test data set are processed by the core. 

Different from the images that the application processes, the 
data set contains the query data (raw image) and the true 
value for each image (label).  

2. The model inference is then accomplished by fetching the 
processed data and the classification model. 

3. Finally, the generated result is processed by the core to 
compare it with the true value. The model accuracy is 
calculated by comparing the predictions generated by the 
model with the true value.  
The quality control mechanism utilizes the accuracy 

calculated by the core to adjust the image contrast. When 
considering the potential accuracy reduction caused by 
applying approximate communication for model inference, the 
accuracy reduction due to the image contrast reduction is 
limited to less than 1%. The proposed quality control 
mechanism supports eight contrast reduction levels that are 
shown in the left column of Table I. Thus, the following novel 
procedure is proposed to determine the image contrast 
reduction level:  
1. During the first phase of the test process, the classification 

accuracy of the image application is calculated with no 
image contrast reduction. The classification accuracy is 
calculated as in Eq. (3). 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =	!"#$%&	()	*(&&%+,	*-.//0)0+.,0(1/
2(,.-	1"#$%&	()	*-.//0)0+.0,(1/

     (3) 

The correct classification is defined as the image category 
(e.g., cat, dog, car) with the highest probability (as predicted 
by the model); this must be exactly the same as the expected 
answer (label).  

2. The quality control mechanism gradually reduces the image 
contrast levels by choosing a contrast reduction level 
according to the left column of Table I until there is more 
than 1% loss (as threshold) in the classification accuracy 
compared to the estimated base accuracy in the next testing 
process.  

 
 

 
 

 
Fig. 2: Classification accuracy versus contrast reduction level (C). 

 
Fig. 3: Proposed quality control mechanism for image pre-processing.  

 
 

 
Fig. 4: Design of data approximation for image pre-processing.  
TABLE I: RELATIONSHIPS BETWEEN QUALITY CONTROL SUPPORTED 
CONTRAST REDUCTION LEVEL (C) AND CONTRAST CORRECTION FACTOR (F).  

Supported Contrast Reduction Level (C) Contrast Correction Factor (F) 
0 1 
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3. The value prior to the last contrast reduction level is chosen 
for image classification. For example, if the classification 
error exceeds 1% at level -68, the lower consecutive level (-
45 according to Table I) is selected for image classification. 
During image classification, the contrast reduction level is 
fixed and registered in the network interface. 
2) Data Approximation 
The data approximation mechanism reduces the amount of 

transmitted data for image contrast reduction. The so-called 
base-delta approximation mechanism is proposed to take 
advantage of the reduced image contrast for data reduction. 
Since the difference in values between pixels in an image is 
small, the base-delta compression mechanism can significantly 
reduce the number of bits needed to represent each pixel. 
Moreover, the proposed image contrast reduction process 
further reduces the difference between pixels, so the data size 
can be substantially reduced by only transmitting the difference 
between pixels. Fig. 4 shows the design of the proposed base-
delta approximation mechanism for image pre-processing. The 
data approximation process consists of two steps.  

Step 1: The image contrast reduction operation is activated 
with a contrast reduction level.  

Step 2: The multipliers and adders then adjust the value for 
each pixel based on Eq. (1) and Eq. (2).  

To reduce its complexity, ACT-P supports eight levels of 
image contrast reduction. Table I shows the mapping of the 
conversion of the supported contrast reduction level (C) into the 
contrast correction factor (F). The first 8-bit data in a write 
request or read reply is chosen as the base; the remaining data 
is represented as the distance to the base. Fig. 4 (a) shows the 
approximation process when the image contrast reduction is 
deactivated (Contrast Reduction Level = 0). The data bypass 
the contrast reduction operation and is compressed with full 
accuracy. Fig. 4 (b) shows the approximation process when the 
image contrast reduction is activated. 
B. Approximate Communication for Model Inference (ACT-I) 

Existing work [21] has shown that the classification 
accuracy reduction in image classification applications is 
negligible after quantizing the parameters and activation of the 
fully connected layers (IEEE standard 32-bit floating-point) 
into 8-bit integers. As floating-point data type is widely used in 
image classification applications [24]-[31] to represent 
parameters and activation, the quantization process consists of 
mapping a floating-point value 𝑥 ∈ [𝛼, 𝛽]  to a b-bit integer 
𝑥) ∈ [𝛼) , 𝛽)]; this is computed as per Eq. (4) (where 𝑐 and 𝑑 
are variables). 

𝑥) = 𝑓𝑙𝑜𝑜𝑟(*
+
𝑥 − 𝑑)                                    (4) 

Note that when performing quantization, the floating-point 
0 must be mapped to a 𝑏-bit integer 0. Thus, the relationship 
between 𝑐, 𝑑 and the ranges of 𝑥 and 𝑥) are given as follows. 

E
𝛽 = 𝑐(𝛽) + 𝑑)
𝛼 = 𝑐(𝛼) + 𝑑)

                                    (5) 

In Eq. (5), 𝛼 and 𝛽 are the minimum and maximum of the 
floating-point value, respectively. 𝛼) and 𝛽) are the minimum 
and maximum of the integer value (i.e., quantized floating-
point value), respectively. 𝑐  and 𝑑  are the two variables that 

must be solved for the quantization process. Eq. (6) illustrates 
the solution for Eq. (5). 

F
𝑐 = ,(-

,!(-!

𝑑 = -,!(,-!
,(-

                                    (6) 

However, as per Eq. (6), the range of 𝑥 (i.e., 𝛼 and 𝛽) must 
be considered when performing data quantization. Since data 
(i.e., 𝑥) exceeding the range is basically clipped (by truncation) 
during the quantization process, the range must be dynamically 
determined for different data items. Therefore, a novel quality 
control mechanism is developed to estimate the range of inputs 
and parameters in the proposed scheme. 

1) Quality Control 
Fig. 5 shows the proposed process of quality control for 

model inference. The proposed quality control mechanism 
constantly monitors the parameters and inputs of the fully 
connected layer. To reduce the complexity of data quantization, 
a new variable 𝑖  is introduced based on the following 
observations.  

Observation 1: Quantization maps data from the original 
range to another range with different granularity, thus causing 
quantization errors. For example, when quantizing 32-bit 
floating-point data into 8-bit integers, the granularity of the data 
range increases from 1/16777216 to 1/255; in this case, the 
error originates from the decimal part. 

Observation 2: For an integer, a deviation within (0, 1) (i.e., 
adding the integer with a decimal value) is only reflected on a 
few lower mantissa bits in its floating-point representation, and 
it has an almost negligible impact on all upper bits. Moreover, 
the changed mantissa bits are separated from the upper bits 
related to the sign and the integer part of the data. 

Observation 3: The expansion of a floating-point value by 
2. times only changes its exponent bits (where 𝑖 is a positive 
integer). Consider Eqs. (7) and  (8) that calculate the value of a 
32-bit floating-point data 𝐷  [36]  and the corresponding 
enlarged value with 2.  times respectively; only the exponent 
value increases by 𝑖, while the sign and mantissa remain the 
same. 

𝐷 = (−1)/.01 ⋅ 223451216(*!7 ⋅ (1 +𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎)      (7) 

𝐷 ⋅ 2. = (−1)/.01 ⋅ 2(23451216&.)(*!7 ⋅ (1 +𝑚𝑎𝑛𝑡𝑖𝑠𝑠𝑎)  (8) 

Therefore, as per the above observations, a conventional 
data quantization approach can be replaced by expanding the 
original data by 2.  times and then rounding it down (i.e., 
mapping the floating-point data to an integer). 

Thus, when the quality control mechanism receives the 
minimum (𝛼) and the maximum (𝛽) values of the weights and 
biases, 𝑖 is calculated based on 𝛼 and the 𝛽 using Eq. (9). 

𝑖 = 𝑙𝑜𝑔2(𝑚𝑎𝑥(|𝛼|, |𝛽|))                           (9) 

However, the dynamic range of the inputs is not fixed 
because the query image is changed after each image 
classification. Thus, the inputs of the fully connected layer are 
constantly monitored during the image classification to 
establish the dynamic range of the input to calculate 𝑖 . To 
reduce the hardware overhead, 𝑖 is limited to 8 bits, and the 
initial 𝑖  values for the inputs and parameters are calculated 
during the image classification application testing and 
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registered in the network interface before processing images. 
Since the increase of the value range leads to a decrease of 𝑖, 
the quality control mechanism automatically reduces 𝑖  by 1 
when an input value exceeds the dynamic range during the 
classification.  

2)   Data Approximation 
The proposed data approximation mechanism quantizes 

data by enlarging the original data by 2.  times and then 
rounding it down. Thus, the quantization error is bounded 
within a few lower mantissa bits. Only the sign bit, the exponent 
bits, and a few upper mantissa bits need to be transmitted 
because they are separated from the lower bits. Moreover, to 
perform the multiplication with 2., a binary sequence of 𝑖 needs 
to be added to the exponent part, i.e., only a binary addition 
operation is required, rather than floating-point arithmetic 
operations. As the ranges of inputs and parameters of the fully 
connected layers can be determined by utilizing the quality 
control mechanism proposed in the previous section, then the 
value of 𝑖  is adjusted to guarantee that the quantized data 
belong to an integer range with an acceptable granularity. 

To further reduce the size of the transmitted data, the 
exponent part is compressed by mapping the data patterns into 
symbols with a shorter length. Since all integers within the 
range of [28, 28&*) share the same exponent pattern as per Eq. 
(7) (where 𝑗 = 1, 2, ..., 127), then only a few patterns are used 
for representing the quantized data that belongs to a range 
significantly smaller than the entire floating-point field. For 
example, when quantizing data into the 8-bit integer range, only 
eight exponent patterns may appear (i.e., 00000000 for value 0, 
01111111 for value 29, 10000000 for values within [2*, 2!), 
10000001 for values within [2!, 2:), etc.). In this case, 3-bit 
symbols that provide eight different combinations can be used 
for mapping all possible exponent patterns (and so transmitted), 
thus reducing the size for each exponent from 8 to 3 bits. 

The hardware design for the proposed data approximation 
mechanism for data quantization is illustrated in Fig. 6. Once 
data approximation is enabled, an 8-bit adder is utilized to 
perform the binary addition between the original exponent and 
the binary sequence of 𝑖 obtained by the quality control logic 
for quantization (i.e., enlarge the data by 2.  times); then the 
mapping hardware compresses the quantized exponent (Table 
II) to further reduce the data size. Finally, the approximated 
data is sent to the packet encoder for transmission.  

IV. IMPLEMENTATION OF THE APPROXIMATE COMMUNICATION 
TECHNIQUE (ACT) 

An architecture based on hardware-software co-design is 
proposed in this section to implement ACT for image 
classification applications. The proposed implementation 
includes a software interface and an architectural design. The 
software interface is designed to identify the variables that need 

to be monitored or approximated during image classification. 
The network interfaces in the heterogeneous architecture are 
augmented with data approximation and quality control. 
A. Software Interface for Approximate Communication 

ACT approximates pixels in the images when the pre-
processing cores convert the raw image. Also, ACT quantizes 
the inputs and parameters when the inference cores process the 
fully connected layers. Hence, ACT monitors and approximates 
the pixels, inputs, and parameters when the image classification 
application is executed on the heterogeneous architecture. 
Specialized instructions are developed to identify these 
variables in the source code and the on-chip communication. 
During the execution of an application, these new instructions 
allow the network interface to identify these variables in the 
requests or replies. 
B. Architecture Design of ACT 

The ACT arguments the network interfaces (NIs) for the 
pre-processing cores, model inference cores, shared cache, and 
memory controller with specific hardware for approximation 
and recovery (Fig. 1). Since the approximation logic needs to 
handle different data at different nodes, the approximation and 
recovery logics are specifically designed according to the 
functionality of the node, such as pre-processing or model 
inference.  

1) Approximate Network Interface (Pre-processing Cores) 
To support the ACT-P, the data approximation logic 

approximates image pixels according to the contrast reduction 
level. Since images must be processed by the pre-processing 
core, the write requests and read replies carry image pixels and 
data in these packets can be approximated. 

Fig. 7 shows the proposed approximation logic for the pre-
processing core. The approximation logic includes the data 
approximation logic and the quality control logic to adjust the 
image contrast. The design of the data approximation logic for 
a pre-processing core is described in Section III.A.2. For 
clarity, only the control signal for the quality control logic is 
shown in Fig. 7. The quality control logic monitors the write 
requests. If the write requests contain raw images, then the 
quality control logic instructs the data approximation logic to 
approximate the requests according to the current contrast 
reduction level. If the write request cannot be approximated, the 

 
 
TABLE II. MAPPING BETWEEN 8-BIT EXPONENT PATTERNS AND 3-BIT 
SYMBOLS. 

Integer Exponent Patten Symbol 
0 00000000 000 
20 01111111 001 

[21,22) 10000000 010 
[22,23) 10000001 011 
[23,24) 10000010 100 
[24,25) 10000011 101 
[25,26) 10000100 110 
[26,27) 10000101 111 

 

 
 

 
Fig. 5: Quality control mechanism for image classification model inference.  

 
Fig. 6: Hardware design of data approximation for model inference. 
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data approximation logic applies base-delta compression 
without contrast reduction (level 0). Then, the quality control 
logic checks the length of the write requests. If the length is 
larger than the original write request (Approx. Size > Org. 
Size), the original request is sent to the packet encoder.  

During the image load, the quality control logic attaches the 
information of contrast reduction mode (3 bits) to the read 
requests. Once the read reply packet arrives at the core, the data 
recovery logic recovers the data into its original form if the 
packet is compressed. Otherwise, the data recovery logic 
directly sends the read reply to the core. 

2) Approximate Network Interface (Model Inference 
Cores) 

Since the core directly loads and stores data from/to memory 
or shared cache, the read and write requests are generated by 
the node and sent to the memory controller or shared cache. To 
support ACT-I, the data approximation logic monitors the write 
requests and read replies to update the dynamic range of the 
parameters and the inputs for the fully connected layer. 

Fig. 8 shows the proposed approximation logic for the 
model inference. The quality control logic monitors all requests 
and replies to update 𝑖  for the inputs; it also controls two 
demultiplexers and the data approximation logic. Since the 
destination of the write request could be another node for model 
inference or a memory controller or a shared cache,  𝑖 
(monitored at a specific node) can be the dynamic range of a 
section of the inputs for the fully connected layer. To find the 
dynamic range of the inputs for the entire layer, the following 
procedure is proposed. (1) The quality control logic attaches 𝑖 
of the inputs to the read request packet if the destination of the 
packet is the memory controller or shared cache. (2) The quality 
control logic constantly monitors the 𝑖  of the write reply 
packets from the memory controller or shared cache. If the 
received 𝑖 is smaller than the current 𝑖, the value of 𝑖 for the 
inputs in the current node is updated.  

As a model inference core needs to fetch images, 
parameters, and inputs, the data recovery logic contains two 
decompression functions to recover approximated data. 

3) Approximate Network Interface (Memory Controller 
and Shared Cache) 

Since the memory controller and shared cache handles 
requests from both pre-processing and model inference cores, 
this interface performs data approximation and recovery 
functions for both tasks.  

Fig. 9 shows the approximation logic for the memory 
controller and shared cache. The approximation logic consists 
of the data approximation and quality control logic. The quality 
control logic monitors the read request packets for the 𝑖 value 
from the node for inputs. If the 𝑖 value is smaller than the value 
stored in the quality control logic, the stored 𝑖 is updated. The 
updated 𝑖 is attached to the write replies to update 𝑖 stored in 
the network interface at the node for model inference. The 

quality control logic also monitors the read request packets for 
receiving the contrast level for the read reply packet 
approximation. When the read reply has the data for image pre-
processing or model inference, the corresponding data 
approximation logic is activated to approximate the data based 
on the contrast level or 𝑖. Similar to the quality control logic in 
the pre-processing core, the quality control logic checks the 
length of the read reply to the pre-processing core; if the length 
is greater than the original read reply after base-delta 
compression, the original reply is sent to the packet encoder. 

Since the traffic contains the pixels, model parameters, and 
inputs, the data recovery logic has the recovery functions for 
both model inference and pre-processing. 

V. EVALUATION 
 In this section, the performance of the approximate 

communication technique (ACT) is evaluated by using the 
SMAUG [3] simulator. The SMAUG simulation model is 
modified to support the ACT for image classification. Table III 
shows the settings for the SMAUG simulator. The hardware for 
data approximation, data recovery, and quality control is 
implemented in the network interface. The CPU/NDLA is 
based on Simba [4], and all the cores in the system are 
connected using 6×6 2D mesh NoC. Table IV shows the 
executed image classification applications [24]-[31] with their 
original classification accuracy (Acc.) and the corresponding 
contrast reduction levels (C). 

We evaluate the proposed technique by comparing it with 
approximate communication framework (ACF) [17], Approx-
NoC [14], AxBA [16], and the baseline (i.e., NoC with no 

 
 
 

   
Fig. 7: Approximation logic for pre-processing 
cores. 

Fig. 8: Approximation logic for model inference 
cores. 

Fig. 9: Approximation logic for memory 
controllers and shared caches. 

 
 

TABLE III: SIMULATION ENVIRONMENT. 

Heterogeneous 
Architecture 

CPU/NDLA 

Pre-Processing 
Cores 

X86 CPU * 8 

Model-
Inference Cores 

NVIDIA Deep Learning Accelerator(NDLA) * 28 [37]  

NoC Parameter Network type: Garnet; Topology: 6 × 6 2D mesh; Data 
packet size: 5 Flits; Link width: 128 bits; Routing 
algorithm: X-Y routing; Flow Control: Wormhole 
Switching; Number of Router Pipeline Stage: 6 

System 
Parameter 

32 kB L1 instruction cache; 32 kB L1 data cache; 8-bank 
fully shared 16 MB L2 cache 

Data Set ImageNet Large Scale Visual Recognition Challenge [2] 
Approximation  
Techniques 

Approximate Communication Framework(ACF) [17];  
Approx-NoC [14]; AxBA [16]; Proposed Technique 

TABLE IV: IMAGE CLASSIFICATION APPLICATIONS 

Name Acc. C Name Acc. C 
AlexNet [25] 56.55% -45 DensNet169 [24] 77.20% -158 
VGG11 [26] 69.02% -68 DensNet201 [24] 77.65% -135 
VGG13 [26] 69.93% -68 ResNet101 [29] 77.37% -45 
VGG16 [26] 71.59% -68 ResNet152 [29] 78.31% -45 
VGG19 [26] 72.38% -90 NASNet-4A [30] 74.00% -135 

ShuffleNet X1.0 [27] 67.60% -45 EfficientNet B0 [31] 76.30% -68 
GoogleNet [28] 69.78% -113 EfficientNet B7 [31] 84.40% -23 
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approximation) from the communication efficiency perspective 
including network latency and dynamic power consumption. 
A.  Network Latency 

  The network latency is defined as the number of clock 
cycles elapsed between sending a packet at the source node and 
the successful delivery of the packet to the destination. Thus, 
the network latency includes the time of three procedures: 
packet generation at the source node, packet transmission in the 
network, and data extraction at the destination node.  

Fig. 10 shows the results for the network latency normalized 
with respect to the baseline. ACT achieves an average network 
latency reduction of 29% and 27% compared to the baseline and 
ACF, respectively. This occurs because image classification 
applications have limited tolerance to the relative error for a 
smaller reduction in data size compared to ACT. The largest 
network latency reduction achieved by ACT in the experiment 
is VGG11 (45% reduction), while the smallest network latency 
improvement is obtained for EffcientNet B7 (14% reduction). 

Compared to the baseline, existing approximate 
communication techniques achieve marginal improvement in 
network latency (less than 5% on average), as these techniques 
only rely on the relative error to approximate data. As a result, 
existing techniques miss the opportunity of data approximation 
for image classification applications; however, ACT can 
achieve a significant latency reduction due to the dual 
approximate communication scheme. Moreover, the proposed 
technique significantly reduces the network latency when the 
model frequently uses the fully connected layer and can tolerate 
a significant image contrast loss. For example, Fig. 11 shows 
the size of the fully connected layer in the image classification 
models. VGG11 uses 86% of the data, which includes inputs 
and parameters for the fully connected layers. As Table IV 
shows that VGGs can tolerate -68 levels of contrast reduction 
(𝐶 = −68) with minimal accuracy loss, then the combined 
effect of two packet approximation mechanisms leads to a high 
reduction in packet size when VGG11 is executed on the 
heterogeneous system with ACT. 
B. Dynamic Power Consumption 

Dynamic power includes the power consumed by the 
switching activity for all transistors in the NIs and routers. For 
all on-chip communication, the results are normalized with 
respect to the baseline. Fig. 12 shows the dynamic power 
consumption for the CPU/NDLA heterogeneous system. ACT 
achieves an average dynamic power reduction of 32% and 28% 

compared with the baseline and ACF, respectively. The power 
reduction for the rest of the applications is between 48% and 
17% compared to the baseline. Therefore, ACT achieves a 
significant improvement in dynamic power consumption due to 
the effective packet approximation. The technique can 
significantly reduce packet size using the proposed data 
approximation mechanisms. 
C. Accuracy Loss 

Fig. 13 shows the accuracy loss (i.e., loss of classification 
accuracy) for different image classification applications when 
ACT and ACF are applied to different heterogeneous systems. 
The classification accuracy is measured using the testing data 
set of ImageNet [2]. 512 randomly selected images from the 
testing data set are used for testing and setting the contrast 
reduction level. The rest of the images are used to measure the 
accuracy loss of the application. The accuracy loss for all 
applications is less than 0.99% for the ACT. However, ACF has 
a significantly higher quality loss compared to ACT. The 
highest accuracy loss (2.2%) is observed when NASNet-4A is 
executed on heterogeneous systems with ACF. This is mainly 
due to the low relative error tolerance of the image 
classification application. The highest accuracy loss (0.85%) is 
observed when NASNet-4A is executed with ACT. Moreover, 
the incurred accuracy loss is consistent across all systems, thus 
indicating that the proposed quality control mechanisms are 
effective in maintaining a low accuracy loss. 
D. Overheads 

The ACT is implemented using Verilog to evaluate the area, 
static power, and latency. The entire system is synthesized with 
32 𝑛𝑚  technology using Synopsys Design Vision software. 
The synthesis results show that for each NI, the proposed 
hardware implementation incurs in an area of 4.79 𝜇𝑚!. When 
the supply voltage is 1.0 Volt, the proposed technique incurs a 
static power overhead of 1.7 mW for each NI. For a 6×6 2D 
mesh NoC, the ACT modules occupy 1.7% of the total NoC 
area and consume 4.7% of the total static power consumption. 
As for the latency, the approximation process and data recovery 
for pre-processing cores require one cycle each. Also, the 
approximation process and data recovery for the mode-
inference cores require one cycle each. As for the overhead of 
this process, 5 iterations of testing are needed on average for 
the quality control mechanism to choose the appropriate 
contrast reduction level. Compared to the overhead of several 
epochs of retraining required by CNN approximation 

 
 
 

 
Fig. 10: Network latency for CPU/NDLA heterogeneous system (normalized to 
the baseline). 

Fig. 11: The size of a fully connected layer in the image classification models. 

 
Fig. 12: Dynamic power consumption for CPU/NDLA heterogeneous system 
(normalized to the baseline). 

 
Fig. 13: Accuracy loss for image classification applications.  
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techniques [18]-[22], testing is very efficient. Moreover, testing 
overhead can be further reduced for the proposed technique by 
using a small test data set or a predetermined contrast reduction 
level. 

VI.   CONCLUSION  
In this work, we have proposed an approximate 

communication technique (ACT) to enhance on-chip 
communication efficiency for image classification applications. 
The proposed technique leverages the error tolerance of image 
classification applications to enhance communication 
efficiency during the execution of an application. Two 
approximate communication techniques are developed for pre-
processing (ACT-P) and inference (ACT-I), respectively, thus 
reducing the transmitted data while maintaining the image 
classification accuracy. Novel approximate network interfaces 
for the pre-processing core, inference core, memory controller, 
and shared cache have been proposed to implement ACT in 
network-on-chips (NoCs). Compared to existing convolutional 
neural network (CNN) approximation techniques, ACT 
eliminates the retraining process, which is time and energy 
consuming. Compared to existing approximate communication 
techniques, ACT significantly reduces the transmitted data by 
efficiently approximating image classification applications. 
The detailed evaluation shows that compared to the state-of-
the-art approximate communication techniques, the proposed 
approximate communication technique reduces dynamic power 
consumption and network latency by 28% and 27%, 
respectively, with less than 0.85% accuracy loss. 
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