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Artificial neural networks 
(ANNs) are usually implemented in 
accelerators to achieve efficient process-
ing of inference; the hardware implemen-
tation of an ANN accelerator requires 
careful consideration on overhead met-
rics (such as delay, energy and area) 
and performance (usually measured by 
the accuracy). This paper considers the 
ASIC-based accelerator from arithmetic 
design considerations. The feasibility of 
using different schemes (parallel, serial 
and hybrid arrangements) and different 
types of arithmetic computing (f loat-
ing-point, f ixed-point and stochastic 
computing) when implementing multi-
layer perceptrons (MLPs) are considered.  
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The evaluation results of MLPs for two 
popular datasets show that the floating-
point/fixed-point-based parallel (hybrid) 
design achieves the smallest latency (area) 
and the SC-based design offers the low-
est energy dissipation.

ARTIFICIAL NEURAL NETWORK 
ACCELERATORS
The study of the human brain and its 
operation has helped scientists to find 
better and more effective ways to cure 
many diseases; it has also inspired the 
subject of neuromorphic computing to 
deal with the ever increasing need for 
artificial intelligence (AI) based machine 
designs to mimic the function of the 
human brain for solving complex prob-
lems. These designs usually fall into the 
category of Artificial Neural Networks 
(ANNs) [1]. ANNs are more efficient in 
comparison with conventional regres-
sion and statistical models for solving 
complex non-linear problems. A signifi-
cant advantage of ANNs is the higher 
processing speed, as allowed for paral-
lel implementation [2], [3]. Specifically, 
an ANN consists of several layers, and 
each layer has multiple circuits (hereaf-
ter referred to as neurons) that are con-
nected to the same/next layer through 
synaptic weights [2]. ANNs have been 
utilized in a wide range of applications, 

such as pattern recognition, business and 
f inance, tracking renewable energy to 
achieve sustainability, and language pro-
cessing [4], [5], [6], [7].

Despite the large variety of applicat
ions and superior performance for extr
acting high-level features from raw data 
(and thus, reaching a higher accuracy),  
the hardware complexity of an ANN 
must be addressed by designing a suitable 
platform to accelerate the entire computa-
tional process; this has been investigated 
over may years [8], [9]. The most efficient 
and popular platforms can be categorized 
in three different groups: GPUs, FPGAs, 
and ASICs. There are also other platforms 
(like CPUs), but due to the lack of accura-
cy, they are out of interest as accelerators.

GPUs perform complex computa-
tions by parallelization. Although a GPU 
increases accuracy, the higher power dis-
sipation makes them unsuitable for low 
power systems. To address this issue, 
FPGA-based designs have been proposed 
[10]. FPGAs offer flexibility and parallel-
ization albeit less than GPUs. Moreover, 
they have better power characteristics, 
and unlike GPUs, FPGAs are reconfigu-
rable and programmed using hardware/
software codesign. Their lower speed and 
the demand for platforms with even lower 
power dissipation make ASIC designs a 
competitor. ASICs have less flexibility in 

comparison with FPGAs, so for example, 
the design cannot be changed after being 
implemented [11]. Nevertheless, their 
higher speed and lower power dissipation 
make them a good choice to implement 
ANN accelerators in power-limited appli-
cations [9].

The main arithmetic operation in a 
fully connected ANN for each neuron is 
the sum of weighted products; this can be 
performed by multiply-and-accumulation 
(MAC) units [12], [13]. An example of 
these networks is the multilayer perceptron 
(MLP) that is a fully connected feedfor-
ward network; MLP has been extensively 
used in deep learning applications [14]. 
Since the neurons in each layer are con-
nected to all neurons of the next layer 
through synapses, a significant increase 
in the number of neurons/layers requires 
an increase in MAC units; this makes the 
accelerator design challenging for systems 
requiring a higher performance in addition 
to power limitation, such as for Internet of 
Thing applications [2], [15].

To pursue a tradeoff between power/
energy dissipation and clock rate, different 
arithmetic methods have been utilized 
[9]. Floating-point (FLP) arithmetic 
units based on the IEEE-754 standard 
[16] achieve a higher accuracy, but they 
also incur in a higher overhead due to 
the complex hardware [9], [17]. Fixed-
point (FIP) numbers are simpler than 
FLP numbers when computing; so they 
incur in a lower overhead but lose accu-
racy due to a loss in precision [2], [12], 
[13]. Additionally, another method is to 
use stochastic computing (SC) that can 
be implemented with simple logics; it 
leads to a significant drop in overhead 
and allows the higher parallelization in 
computation in comparison with the 
other two formats [18], [19].

In this paper, we focus on imple-
menting an ASIC-based MLP design 
using three arithmetic formats (i.e., FLP, 
FIP and SC) and introduce a tradeoff 
between complexity and accuracy to 
present the advantages and disadvantages 
of each method with simulation results 
for their implementations. The rest of 
this paper is organized as follows. The 
Multilayer Perceptron section reviews 
the MLP and discusses the challenges 
of its implementation using ASICs. The FIGURE 1  An MLP. (a) Network. (b) Neuron computation.

The study of the human brain and its operation  
has helped scientists to find better and more 

effective ways to cure many diseases.
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Arithmetic Computing Schemes section 
presents different arithmetic computing 
methods. The MLP Implementation and 
Comparison section initially implements 
the proposed MLP designs for two pop-
ular datasets using different arithmetic 
computing methods; then, it compares 
the performance of the MLPs and the 
hardware overhead required for the dif-
ferent schemes. Finally, the last section 
concludes this article.

MULTILAYER PERCEPTRON
Multilayer Perceptron
The multilayer perceptron (MLP) is a 
simple feedforward neural network 
(NN) with no recurrent connection. It 
consists of multiple layers including an 
input layer, at least a single hidden layer, 
and an output layer. Generally, the fea-
tures dimension determines the number 
of neurons at the input layer, and the 
value of each neuron is given by the 
sum of weighted products. Therefore, 
the value of neuron nk

i+1 in layer (i+1) 
is calculated by the sum of the prod-
uct of each neuron ni  at layer i with 
its mapping weight wi  to neuron nk

i+1. 
Finally, a bias value bi  is added to this 
sum and the so-called activation function 
(e.g., ReLU, which is considered in the 
remaining of this paper) is applied to it 
[2], [14]. Figure  1 shows the structure 
of an MLP and its neuron computa-
tion. As amenable to an MLP, different 
levels of parallelization in an ASIC-based 
MLP implementation are illustrated in  
subsequent subsections.

Fully Parallel Implementation
In this scheme, the NN (with all lay-
ers and neurons) is implemented on the 
platform (i.e., ASIC); as the implemented 
design is specific to the MLP, each neu-
ron receives all possible pairs of inputs 
(the weight and neuron value) from the 
previous layer at the same time and cal-
culates the products and sums simultane-
ously. To perform all multiplications and 
sums, many multiplier and adder trees 
are required. Assume that there are m 
neurons in layer i; then m multipliers 
and a related adder tree to sum them up 
is required for each neuron at layer (i+1) 
[9]. The fully parallel scheme permits a 
low computation latency; however, the 

implementation depends on the restric-
tions of the platform, or application. For 
example, when implementing larger net-
works, the hardware incurs in a large 
power dissipation and signif icant area 
overhead. In many cases, it is not feasi-
ble for applications with a limited power 
budget [20]. SC arithmetic units may be 
used in a fully parallel design for infer-
ence, because they use simpler hardware 
for multiplication and addition [21].

Serial Implementation
A serial implementation utilizes only a 
single neuron as process engine (PE); it 
can be realized in two ways using multi-
plier and adder trees.

1) Fully Parallel PE : This type of PE 
receives all possible input pairs of each  
neuron per clock cycle and then multiplies 
and accumulates them during the next 
cycles in a fully pipelined mode. In this 
case, the output of a neuron at the end 
of each cycle is obtained. This procedure 
continues for all neurons in the network 
sequentially. For example, assume a MLP 
as A-B-C-D (i.e., it has four layers and the 
number of neurons in each layer is A, B, C, 
D), with C > A > B > D. The neuron imple-
mentation must have at least C + 1 entries 
to support the calculation of all possible 
neurons in each layer; this occurs because 
C is the maximum number of neurons 

in a layer and then, in the output layer, 
a neuron with at least C + 1 entries is 
required to receive all neurons values 
from the second last hidden layer in 
addition to the bias value [9], [22]. This 
method of PE implementation incurs in 
a low delay; however, the efficiency sig-
nificantly decreases with an increase of 
the size of the network. When there are 
hundreds of neurons in each layer; then, 
hundreds of multipliers and adders 
are also required for a PE design; this 
requires a massive area and incurs in a 
significant power dissipation. Moreover, 
it increases the static power dissipation 
when the number of input pairs in a 
layer is less than the number of entries 
in a PE, because the unnecessary entries 
must be connected to zero logic [9].

2) Semi Parallel PE : This PE design 
is simpler by eliminating some of the 
arithmetic units. Instead of choosing 
the number of entries for the PE based 
on the maximum number of neurons in 
a layer, a smaller number is selected as a 
tradeoff between area, power, and latency. 
For example, if a PE is designed with A 
entries and there are B neurons in layer i 
(B > A), then for implementing each neu-
ron in layer i + 1, the PE must receive 
inputs during B A/�� �� consequent iter-
ations (i.e., more cycles than fully pipe-
lined serial designs) [9], [22]. Although 

FIGURE 2  Serial implementation of an MLP.

To perform all multiplications and sums,  
many multiplier and adder trees are required.
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it addresses the area/power issue of a fully 
parallel PE discussed previously, the semi 
parallel PE still significantly increases the 
latency for NNs of a large size.

Figure  2 shows a serial network; an 
SRAM is utilized for saving the weight 
values and the neuron values after a PE 
completes its operations for each neu-
ron. The bus size r denotes the number 
of inputs the PE can receive simultane-
ously multiplied by the data width. The 
control unit generates two signals; one is 
for activating a PE, and the other is for 
determining the read/write, address, and 
the bank of the memory. The PE unit 
may have an accumulator (ACC) regis-
ter based on the use of either a fully or 
semi parallel PE. For fully parallel PEs, 
the result of a neuron is ready at the last 
stage of the adder tree; thus, there is no 
need for the ACC. However, for the semi 
parallel PE, the process is completed in 
several iterations, and therefore, an ACC 
is required to accumulate the results of 
each iteration.

Hybrid Implementation
A hybrid MLP implementation employs 
a combination of parallelization and 
serialization in implementing the NN 
for a tradeoff between area, power, and 
latency. In this implementation, differ-
ent strategies are illustrated next.

1) Full layer with fully parallel PEs: 
This scheme uses fully parallel PEs (con-
sisting of multiplier and adder trees) as 

discussed in paragraph 3) of this section 
for implementing a layer with the maxi-
mum number of neurons in the NN [22]. 
This is a fast scheme, but it is not feasible 
for NNs of a large size; if the network has 
hundreds of neurons in each layer, then 
even a single PE occupies a large area 
and dissipates significant power. This 
further deteriorates the performance for 
the entire network, because the PE must 
be replicated hundreds of times for a full 
layer (as the layer with the largest num-
ber of neurons). Additionally, for layers 
with a smaller number of neurons, some 
neurons may be idle, so imposing unnec-
essary static power.

2) Full layer with MAC-based PEs: 
In this case, a fully parallel layer is also 
required based on the largest number 
of neurons among all layers in the NN. 
However, instead of using multiplier and 
adder trees in a PE as in the previous 
schemes, a simple multiply-and-accumu-
lation (MAC) unit [23] is introduced in 
a PE to receive a pair of inputs per cycle. 
Each MAC-based PE can be considered 
as a neuron and receives all input pairs 
serially (one pair per cycle), rather than 
in parallel. This type of PE combines 
the serialization with parallelization to 
make an efficient accelerator for ANNs. 
Although it is more efficient for power 
and area, the latency deteriorates. By 
using a fully pipelined implementation 
of MAC units, the latency can be sig-
nificantly improved, albeit larger than 

the scheme employing fully parallel PEs.  
A significant reduction in power and area 
is also achieved; however, for larger NNs 
and with a limited power budget, this 
implementation is still not efficient for a 
full layer with hundreds of MAC units; 
an improvement in design is discussed 
next to address this issue.

3) Array of MAC-based PEs: Differ-
ent from the full layer with MAC-based 
PEs, this scheme does not implement a 
layer with the largest number of neurons; 
instead, it utilizes an arbitrary number of 
PEs based on the arithmetic computing 
units to achieve a good tradeoff. In this 
case, all neurons in a layer are not nec-
essarily computed in a single iteration; 
as per the number of MAC units and 
number of neurons in a layer, the com-
putation process can continue for several  
iterations [9]. Hence, this is a hybrid 
scheme. Figure  3 denotes the overview 
of a MAC-based hybrid design. A con-
trol unit is responsible for distributing 
the data from the SRAM banks to the 
different MAC units through the design. 
Each PE consists of a multiplier, an adder 
and an ACC to calculate the product of 
each pair of inputs and accumulate the 
results; when all input pairs are received 
and accumulated, the result is sent to 
the activation function. An additional 
control unit may be needed to deal with 
flushing [24]; this is described in more 
detail in The MLP Implementation and  
Comparison section.

FIGURE 3  Hybrid implementation of an MLP.
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ARITHMETIC COMPUTING 
SCHEMES
In this section different types of arithme-
tic computing units including FLP, FI, 
and SC are described.

Floating-Point (FLP) Arithmetic
When utilizing FLP to implement a NN, 
the IEEE 754 single precision format 
(Figure 4) [16] is typically used for cal-
culation. EQN. (1) gives its mathematical 
form, where S, E, M and H denote the 
sign, exponent, mantissa, and hidden bit 
respectively. The hidden bit is obtained by 
performing the OR on all exponent bits; a 
result of (1) refers to a normal FLP num-
ber, otherwise it is a sub-normal number.

flP number

1 s 2 e 127� � �� � � �� �- - .H.M 	 (1)

The FLP arithmetic units often have 
a high complexity in hardware and thus, 
they incur in a significant area overhead 
in addition encountering large power 
dissipation in computation.

Fixed-Point (FIP) Arithmetic
Compared to FLP numbers with a con-
stant bit width, FIP numbers requires a 
longer bit width to provide a large range 
of values. FIP numbers have a simpler 
representation; a binary point separates 
the integer and fractional parts within a 
data representation. Therefore, its data 
resolution is not as good as for FLP 
numbers. However, unlike FLP arith-
metic computing, only simple integer 
arithmetic units are utilized for imple-
menting FIP computation. Moreover, 
the pre and post normalization stages 
in FLP arithmetic (specially for addi-
tion due to its complicated computa-
tion) require combinational encoders 
and shifters that may deteriorate latency, 
area, and power; thus, it makes FLP 
more complex than FIP ar ithme-
tic. Overall, the use of FIP arithmetic 
decreases area and power dissipation, 
while improving latency, because they 
do not have the exponent part (so 
related complicated computations are 
not required). Therefore, the tradeoff 
between hardware overhead and accura-
cy must be considered when using these 
arithmetic units.

Stochastic Computing (SC)
In conventional FLP/FIP computing, 
processing a large amount of data in a 
fully parallel network implementation 
makes the design often complicated and 
infeasible due to the complex computa-
tional units. Therefore, emerging com-
puting paradigms have been investigated 
for reducing the hardware complexity 
[18]; for example, a promising solution is 
to use stochastic computing (SC). SC was 
introduced in 1960s for the first time, 
but it has attracted more attention in 
recent years for nano-scaled designs [26].

An important characteristic of SC is 
that real numbers are converted into bit-
stream, and thus, very simple designs can 
be used for performing arithmetic opera-
tions [26]. Specifically, an SC bit-stream 
is generated using a stochastic number 
generator (SNG); the occurrence prob-
ability of 1 in the sequence is used to 
represent the real number. Therefore, its 
possible range of values is [0, 1] (for uni-
polar computation) and [-1, 1] (for bipolar 

computation). A simple AND (XNOR) 
gate can perform the multiplication on 
unipolar (bipolar) SC bit-streams; more-
over, since SC operates with probabilities, 
the computation is capable of tolerating 
transient or soft errors caused by process 
variations or cosmic interference [26].

Even though SC has unique advan-
tages in terms of low hardware complex-
ity and error tolerance against bit f lips 
in the sequence, its use may cause an 
accuracy loss. This issue is generated due 
to two causes: i) the low data resolution 
determined by the probabilities; ii) the 
limited range of values. To address these 
issues, a longer sequence can be used to 
improve the data resolution; moreover, 
designs based on extended stochastic 
logic (ESL) have been investigated to 
extend the computation range by uti-
lizing the quotient of two stochastic 
sequences [18]. However, these solutions 
may incur in hardware penalties, so that 
a careful design is required for a tradeoff 
between computation accuracy and 

FIGURE 5  The pipelined FLP MAC Unit.

Different configurations (including the fully  
parallel design, serial design and hybrid design)  
are utilized for implementing a FL P-based MLP.

FIGURE 4  Single precision format with IEEE 754 standard.
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hardware. For more details, the reader 
should refer to [18], [21], [26].

MLP IMPLEMENTATION  
AND COMPARISON
In this section, MLPs for two popu-
lar datasets are implemented by using 
different arithmetic units; the network 
structure is given by 784-100-200-10 
for MNIST and 1024-100-200-10 for 
the SVHN. The classification accuracy 
and hardware overhead for the different 
schemes are evaluated and compared.

Implementation Using  
FLP Arithmetic
Different configurations (including the 
fully parallel design, serial design and 
hybrid design) are utilized for imple-
menting a FLP-based MLP. The fully 
parallel and serial (using fully paral-
lel PEs as an example) implementations 
are performed as discussed in 2) and 
3) of the second section. In the hybrid 
scheme, an array of MAC-based PEs is 
selected because it incurs in a low hard-
ware overhead as discussed previously.

For designing the MAC unit, an FLP 
multiplier and an FLP adder (more details 
of their designs and algorithms can be 
found in [25]) are needed (Figure  5). 
A pipelined strategy has been proposed 
in [9] to improve the clock rate; so, the 
adder and multiplier complete the com-
putation in four and five cycles, respec-
tively. As these units require different 
number of cycles, a control unit is used 
to manage the data and flush the MAC 
unit at the end. The pipelined MAC unit 
is shown in Figure 5. To perform com-
putation as a PE, the multiplier initially 
receives an input pair per cycle; once the 
multiplication result is generated after 
four cycles, the multiplexer transfers 
them to the input of the adder. Since 
the adder requires five cycles to generate 
the result, the other input of the adder 
must be 0, and it is handled by the sec-
ond multiplexer. At the end of cycle 9, 
both the adder and multiplier outputs 
are valid, then the second multiplexer 
switches from 0 to the adder outcome to 
accumulate the results. When all input 
pairs are received, the pipeline stages are 

flushed. Therefore, DFF saves the output 
of the adder at cycle i and adds it with 
its output at cycle i+1; [9] presents this 
process in more details.

Therefore, the hybrid implementation 
of an MLP using FLP MAC units is like 
in Figure 3. For the datasets considered 
in this paper, we use 64 PEs (MAC units) 
and a control unit for distributing data on 
the PEs; for example, for a layer with 100 
neurons, the MAC array completes the 
calculation of 64 neurons in first itera-
tion and then the remaining 36 neurons 
in the second iteration.

Implementation Using  
FIP Arithmetic
As the FIP arithmetic units are simpler 
than FLP (they are like integer arith-
metic units) and due to the lower over-
head, a full layer using MAC-based PEs 
is selected for the hybrid implementa-
tion. The lower complexity of the units 
allows us to use fewer pipelining stages; 
so, the only pipelining stages are the 
ones between the multiplier and adder. 
Then the design consists of a simple 
integer multiplier and an adder on top 
of an accumulator such that each design 
works in one cycle. A 16-bit format [2] 
(including one bit for the sign, eight 
bits for the integer and seven bits for the 
fraction) is used for calculations as wide-
ly utilized. By increasing the number of 
bits, the accuracy can be improved but 
at a higher hardware overhead. Hence, 
a tradeoff between latency, area, and 
power dissipation must be considered. 
In this paper, the goal is to decrease 
the latency, and accordingly, shorter 
sequences are selected to decrease the 
overhead which allows to increase the 
parallelization.

Implementation Using  
SC Arithmetic
Due to less complex arithmetic designs 
in SC, the fully parallel implementation 
of the NN is usually selected (unlike 
FLP and FIP in which more complex 
hardware is needed). Sequences with 
a length of 256 bits are utilized to 
assess the trade-off between computa-
tional accuracy and hardware overhead. 
Figure 6 shows the SC-based implemen-
tation for a neuron (i.e., a PE) of the 

FIGURE 6  SC-based PE implementation for a neuron (the detailed circuit of a multiplier/adder is 
shown below the tree block).

Due to less complex arithmetic designs in SC,  
the fully parallel implementation of the  

NN is usually selected.
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MLPs. As shown in this figure, an SNG 
consists of a linear feedback shift register 
(LFSR) and a comparator to convert the 
probability of a real number (i.e., the 
input data or weight) to its stochastic 
sequence. For neurons in the first hid-
den layer, the SNG is required for each 
input of the multiplier; for the other 
layers, it is only required for converting 
the weight. The SC multiplier and adder 
are also given in Figure 6; the activation 
function ReLU is implemented using an 
FSM [21]. As this scheme is fully paral-
lel, then the latency is decreased signifi-
cantly; however, the power dissipation 
increases as well. Also, there is no need 
for memory to save the neuron values for 
the next uses. Consider the energy as a 
further metric, this design may be better 
suited than the FLP/FIP-based hybrid 
design, because the lower latency com-
pensates the increase in power. A hybrid 
design of SC design is also possible, 
but it needs to store the long stochastic 
sequences in a large SRAM for next use; 
hence, it may be counterproductive if 
its purpose is to reduce area and power  
dissipation of a parallel design.

Evaluation and Comparison
Table  1 shows the synthesis results of 
different schemes for the two datas-
ets considered in this paper. The same 
clock frequency (800MHz) is utilized to 
ensure a fair comparison.

Consider the conventional FLP and 
FIP implementations first. As shown in 
Table 1, the parallel scheme requires the 
largest area and energy, but the small-
est latency to complete the entire MLP 
inference process; this is expected due 
to its fully parallelization. Compared 
to the parallel design, the serial scheme 
achieves a reduction in area and energy, 
but these results are still considerable. 
The hybrid design offers the smallest 
area and energy, but a significant latency 
is incurred; this occurs because a single 
MAC unit is required for calculating each 
neuron, so requiring many cycles. As the 
designs are fully pipelined, then a neuron 
per cycle (all neurons per cycle) for each 
layer is processed for serial (fully parallel) 
implementations. This causes a signifi-
cant decrease in the number of cycles by 
imposing a significant increase in over-
head. Moreover, an SRAM for storing 
the temporary computation results for 
next uses is also required in the serial 

and hybrid schemes; the overhead for the 
SRAM is the same in these implementa-
tions for the same MLP structure.

The SC scheme is shown to be more 
efficient in area and energy compared to 
the FLP/FIP-based parallel and serial 
schemes due to the low complexity of the 
arithmetic units. However, its area is larger 
than the FLP/FIP-based hybrid design; 
this occurs because a fully parallel imple-
mentation is employed in the SC scheme. 
The latency for an SC implementation 
is larger than the FLP/FIP-based paral-
lel design, but it is smaller than the other 
schemes. Also, no SRAM is required in the 
SC scheme.

Overall, for the two datasets consid-
ered in this paper, the FLP/FIP-based 
parallel design achieves the smallest laten-
cy, the hybrid design achieves the small-
est area, and the SC design requires the 
smallest energy. The classification accu-
racy of the MLP in different schemes is 
also evaluated and compared in Table 1.  

DATASET IMPLEMENTATION ARITHMETIC UNITS SRAM # OF CYCLES ACCURACY

Area 
(mm2)

Latencya 
(μ s)

Energy 
(μ J)

Size 
(Bytes)

Power 
(mW)

Area 
(mm2)

MNIST [27]

FLP Parallel 1465.39 0.14 104.48 - - - 115 98.36%
Serial 11.44 0.53 3.01 310*32 54.61 0.15 425 98.36%
Hybrid 0.93 2.94 1.36 310*32 54.61 0.15 2352 98.36%

FIP Parallel 334.55 0.03 7.91 - - - 30 93.31%
Serial 2.61 0.42 0.7 310*16 31.63 0.08 340 93.31%
Hybrid 0.67 1.37 0.57 310*16 31.63 0.08 1096 93.31%
SC 1.72 0.32 0.39 - - - 260 97.49%

SVHN [28]

FLP Parallel 1815.69 0.14 129.48 - - - 115 89.91%
Serial 14.94 0.53 3.93 310*32 54.61 0.15 425 89.91%
Hybrid 0.93 3.54 1.64 310*32 54.61 0.15 2832 89.91%

FIP Parallel 414.52 0.03 9.80 - - - 30 82.81%
Serial 3.41 0.42 0.91 310*16 31.63 0.08 340 82.81%
Hybrid 0.67 1.65 0.69 310*16 31.63 0.08 1324 82.81%
SC 2.11 0.32 0.48 - - - 260 88.61%

aThe latency result is for the entire computation of an MLP inference, i.e., including the number of cycles.

T A B L E  1 Synthesis results for MLPs using different implementation methods.

Overall, for the two datasets considered in this  
paper, the FLP/FIP-based parallel design  
achieves the smallest latency, the hybrid  

design achieves the smallest area, and  
the SC design requires the smallest energy.
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The FLP scheme offers the highest accura-
cy, followed by the SC scheme and then the 
FIP scheme. Therefore, different imple-
mentation schemes can be selected as per 
the requirement of different applications.

CONCLUSION
This paper has presented the ASIC-based 
design of various MLP accelerators. The 
hardware for performing network compu-
tation using conventional floating-point 
and fixed-point based computing and 
stochastic computing, as well as different 
schemes (parallel, serial and hybrid arrange-
ments), has been analyzed and implement-
ed. The evaluation shows that each type of 
implementation has a unique advantage in 
hardware metric. All findings and designs 
presented in this paper provide a compre-
hensive assessment for designing nanoscale 
accelerators when the ANN application has 
different requirements of learning perfor-
mance and hardware overhead.
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