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Abstract—Machine learning (ML) architectures such as
Deep Neural Networks (DNNs) have achieved unprecedented
accuracy on modern applications such as image classification
and speech recognition. With power dissipation becoming a
major concern in ML architectures, computer architects have
focused on designing both energy-efficient hardware platforms
as well as optimizing ML algorithms. To dramatically reduce
power consumption and increase parallelism in neural network
accelerators, disruptive technology such as silicon photonics has
been proposed which can improve the performance-per-Watt
when compared to electrical implementation. In this paper,
we propose PIXEL - Photonic Neural Network Accelerator
that efficiently implements the fundamental operation in neu-
ral computation, namely the multiply and accumulate (MAC)
functionality using photonic components such as microring
resonators (MRRs) and Mach-Zehnder interferometer (MZI).
We design two versions of PIXEL - a hybrid version that
multiplies optically and accumulates electrically and a fully
optical version that multiplies and accumulates optically. We
perform a detailed power, area and timing analysis of the
different versions of photonic and electronic accelerators for
different convolution neural networks (AlexNet, VGG16, and
others). Our results indicate a significant improvement in the
energy-delay product for both PIXEL designs over traditional
electrical designs (48.4% for OE and 73.9% for OO) while
minimizing latency, at the cost of increased area over electrical
designs.

Keywords-deep neural network; machine learning; silicon
photonics; accelerator; microring resonator; Mach-Zehnder
interferometer;

I. INTRODUCTION

Power dissipation has become a fundamental barrier to

scaling computing system performance [1]. Modern comput-

ers based on Von Neumann architecture are power hungry

and less effective for a wide range of tasks including per-

ception, communication, learning and decision making than

the human brain [2]. In fact, the human brain can compute

1018 multiply-and-accumulate (MAC/sec) using only 20 W

of power [3]. Multicores have been proposed to alleviate the

power constraints. However, the breakdown of Dennard’s

scaling has further exacerbated the problem by limiting the

number of cores that can be simultaneously powered on

with a fixed power budget and heat extraction rate [4].

Therefore, specialization and parallelization by designing

application specific accelerators that exceed the efficiency

and functionality of general purpose processors with the

end goal of at least 10-100x improvement in power or

performance appear to be one approach to overcome the

power barrier [5], [6]. Examples of applications/functions in

which accelerators are used include floating point coproces-

sors, graphical processing units (GPUs), network offloading

functions, artificial neural networks (ANNs), Fast-Fourier

Transforms (FFT), crypto processors, image co-processors,

and many more.

In the accelerator domain, machine learning (ML) ar-

chitectures such as Deep Neural Networks (DNNs) have

achieved unprecedented accuracy on many modern appli-

cations such as image classification and speech recogni-

tion. ML algorithms take as input a set of training ex-

amples and discover patterns that enable them to make

predictions on previously unseen test examples. Artificial

neural networks (ANNs) have been designed to facilitate

this learning process, gaining their inspiration from the

neuron and synapse linked structure of biological brains.

ANNs can be further expanded upon to form deep neural

networks (DNNs) by placing numerous connected layers

between the input and output of the network. These multiple

hidden layers involve immense amounts of highly concurrent

matrix-vector-multiplications (MVMs) between a network

weight matrix and the input vector. In convolutional neural

networks (CNNs) several of the layers perform multiply-

and-accumulate (MAC) functions using the same kernel

repeatedly on small windows in the input layer [7]. Since the

MAC functionality is the fundamental and highly repeated

operation in CNNs, large emphasis must be placed on this

operation to exploit data parallelism in order to perform

CNN hardware acceleration.

A large body of work has recently been introduced

focusing on increasing ANN computing speed and power

efficiency by developing electronic architectures (such as

ASIC and FPGA chips) specifically tailored to improve the

data computation or storage ability of the accelerator [8],

[9], [7], [10], [11], [12], [13], [14]. Real life applications

require CNNs with millions of MAC operations in each

layer, composing several hidden layers, which poses a

serious challenge for future scaling of ANNs in general.

Moreover, electronic-based accelerators utilize broadcast and

multicast buses for achieving parallelism and are still limited

by electronic clock rates and ohmic losses [15], [7]. The

challenge in implementing neural networks on hardware

accelerators is two-fold: (i) accelerators cannot be easily
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scaled to maximally exploit the parallelism offered by neural

nets, and (ii) data movement needs to be optimized to

minimize energy consumption.

Emerging technology such as silicon photonics has the

potential to provide high communication and processing

bandwidths, minimal access latencies, and high power-

efficiency [16], [17], [18], [19], [20], [21]. Photonics does

not provide a convenient way to maintain or store logic

levels, however, it can deliver an abundance of parallelism,

high bandwidth, energy-efficiency and ease of implementing

broadcast/multicast functionality (one-to-many and one-to-

all), all of which can be harnessed to implement neural

network functionality in ML accelerators. Linear transfor-

mations can be performed at the speed of light, detected at

rates exceeding 100 GHz and some matrix operations can be

performed without consuming significant power [2]. Recent

Photonic Integrated Circuits (PIC) have altered the landscape

of manufacturing photonic chips that integrate both active

(lasers and detectors) and passive (waveguides, resonators

and modulators) devices on the same platform with hybrid

integration and paved way for developing photonic neural

nets [22], [23]. Prior work on programmable photonics and

neuromorphic photonic accelerators have focused on devel-

oping optical interconnect topologies (wavelength-division

multiplexed banks of modulators, interconnected tunable

couplers, etc) that show how to design optical compute

engines. However, none of the prior work have shown the

design of a photonic neural network accelerator with detailed

architectural parameters such as area, power and timing.

In this paper, we leverage the unique advantages of

photonic technology to design PIXEL: Photonic Neural
Network Accelerator for inference by designing the ba-

sic Optical Multiply and Accumulate (OMAC) units and

integrating the OMAC units with digital processing sys-

tems. The proposed work is based on the effective use

of microring resonators (MRRs), Mach-Zehnder Interferom-

eters (MZIs), optical waveguides and lasers for multiply

and accumulate functionality and integrating the photonic

components with electronic processing. Both MRRs and

MZIs are mature technologies that have the required form

factor (area-efficiency) as well as bandwidth-density for

optical processing and integration. We design two versions

of PIXEL - a hybrid version that multiples optically and

accumulates electrically and a fully optical version that

multiples and accumulates optically for various convolution

neural networks (CNNs). The hybrid architecture relies on

using only MRRs and is therefore area-efficient whereas all-

optical uses MRRs and MZIs and consumes more area for

implementing CNNs. We perform a detailed design space

exploration that evaluates power, area and timing of different

versions of photonic and electronic accelerators for different

layers of convolution neural networks (AlexNet, VGG16,

and others). Our results indicate a significant improvement

in the energy-delay product for both PIXEL designs over

traditional electrical designs (48.4% for OE and 73.9% for

OO) while minimizing latency, at the cost of increased

area over electrical designs. Our accelerator design improves

parallelism, latency, energy efficiency, and scalability for

various CNN applications using silicon photonics. The major

contributions of the paper are as follows:

• Optical MAC: We propose two accelerators that im-

plement efficient optical MAC functionality for DNNs

using MRRs and MZIs. We show an electrical-optical

hybrid version and an all-optical version of the pro-

posed accelerator.

• PIXEL: We propose to integrate the two versions of

MAC with electrical signal processing. We propose

x- and y-dimension optical interconnects that allow

energy-efficient data movement with proposed OMAC.

• Scalability: PIXEL provides a scalable platform to

implement CNN architectures of various sizes while

minimizing energy-delay product (EDP) for varying

number of wavelengths and bits/wavelength.

II. BACKGROUND: PHOTONICS AND ACCELERATOR

In this section, we provide a brief background on photonic

devices such as MRRs and MZIs that we use in our proposed

PIXEL design. We also provide a brief introduction to

accelerator functionality that we implement in our proposed

Optical-MAC architecture.

A. Photonic Devices

1) Microring Resonators: Recent microring resonator

(MRR) designs have been shown to be a very promising

technology for optical interconnects, and have been widely

used for modulation, demodulation, and switching functions.

MRRs have a small footprint (7.5 μm radius) [18], low

energy consumption (<100 fJ/bit) and have been demon-

strated to modulate at 40Gb/s and beyond [19], [20]. Due

to thermal sensitivity, ring heaters are used to ensure that

the wavelength drift is avoided and signals can be accu-

rately detected; however other solutions including athermal

design [24], runtime thermal optimization [25] and backend

switching [21] have been proposed.

Figure 1(a) show cascaded double MRR that couples light

from Input Port, I0 to Output Port, O0 when no voltage is

applied to MRRs (Voff ). Similarly, light from Input Port,

I1 is coupled to Output Port, O1 which forms the bar
configuration as shown in Figure 1(d). Figure 1(b) shows that

when a voltage (Von) is applied to the MRRs, the resonant

wavelength arriving from I0 is in resonance with the MRR

and the signal will couple through the cascaded MRRs to

Output Port O1. If the light is in resonance with MRRs

from I1, that signal will appear at O0 forming the cross
configuration. Consider that light is injected into input port

I0 only. This allows for the implementation of the logical

bitwise AND operation or multiply. The implementation

(Y=A AND B) is controlled by the incoming optical signal
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Figure 1: (a) shows cascaded MRRs with Voff where light couples from Input Port, I0 to Output Port, O0. (b) shows
cascaded MRRs with Von where light couples from Input Port, I0 to Output Port, O1. (c) shows a MZI that combines
signals from the two inputs ports I0 and I1 to output port O0.

(A) and the applied voltage to the MRRs (B). In order for

the signal to appear at Output Port O1 (Y=1), there must

be an incoming optical signal (A=1) at Input Port I0 and an

applied high voltage to the MRRs (B=1). In all other input

permutations (A=0,B=0; A=0,B=1; A=1,B=0), there will be

no signal appearing at Output Port O1 (Y=0). Therefore, we

will use MRRs for multiply operation.

2) Mach-Zehnder Interferometer: The Mach-Zehnder In-

terferometer (MZI) allows for the splitting and coupling

of two collimated beams of light. This device is highly

configurable, and gives the ability to act as a tunable coupler.

Figure 1(c) shows the layout of a MZI device. The device has

two input ports connected to a splitter, which separates the

two beams into the two phase-shifting arms. The two arms

of the MZI have phase shifters 0 and 1 (φupper and φlower)

that connect to a coupler. The coupler then diverts the beams

to the two output ports. The MZI performs coupling with

independent amplitude and phase shifting capabilities, and

its ideal transfer matrix is given by:

h = jejΔ
(
sinθ cosθ
cosθ −sinθ

)
(1)

where:

θ =
φupper − φlower

2
(2)

Δ =
φupper − φlower

2
(3)

Each MZI can be configured to provide an independent

power splitting ratio and overall phase shift by use of

external electronic control signals applied to the two arms.

This enables the MZI to operate as a directional coupler or

more simply as an optical switch. When used as an optical

switch, the MZI can operate in a bar state (φupper = [0, π];
φlower = [π, 0]) or in a cross state (φupper = π/2;
φlower = π/2) as shown in Figures 1(d,e). This provides

amplitude and phased controlled optical routing. Further,

by adjusting φupper and φlower appropriately, and when

0 < θ < π/2, the MZI behaves as a tunable coupler

combining the signals from both input ports to a single

output port in an additive operation as shown in Figure

1(c,f). D.A.B. Miller recently showed on how to cascade

and self-configure multiple MZIs to combine multiple input

signals by adjusting the phase shifts on different arms

of the individual MZI. Using this principle, MZI can be

reconfigured to support different connection paths between

its input and output ports and, hence, any kind of linear

transformation (addition) can be implemented. Therefore, we

will use MZIs for additive operation.

3) Photonic Link: In this work, we propose on-chip InP-

based Fabry Perot lasers with short turn-on delay. On-

chip lasers with dimensions 50 μm × 300 μm × 5 μm with

each channel operating 128 wavelengths have been shown.

Silicon waveguides, which have a smaller pitch of 5.5 μm,

a lower propagation time of 10.45 ps/mm and a signal

attenuation of 1.3 dB/cm are chosen due to ease of integra-

tion with other on-chip photonic components. Germanium-

doped photodetectors along with back-end signal processing

(transimpedance amplifiers (TIA), voltage amplifiers, clock

and data recovery) to recover the transmitted bit. Two dif-

ferent optical-to-electrical (o/e) converters were used in our

designs. The first o/e converter is a simple design utilizing a

photodiode and shift registers to convert the serial optical

pulses into parallel electrical signals. The second design

must handle varying light-pulse amplitudes, and requires

more complex logic for the o/e conversion than the first

design. To determine the value of light pulses, a photodiode

is used, which will output current proportional to the amount

of light absorbed through electron-hole recombination. This

current is then sent through an array of current comparators

to determine the amplitude value of the signal, where back-

end logic will then convert it into the bit-level data to be

sent onward to the activation function circuitry.

B. Electrical MAC

MAC filters are designed to compute several inner prod-

ucts (IP) between input neuron lanes (I) and synapse

lanes (S) before feeding it into a nonlinear function f(x).
Figure 2(a) displays the typical MAC implementation in the
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electrical domain. As shown, the number of input neuron

lanes, filters, synapse lanes per filter, output neuron lanes

(O), and processing elements (PE) are all equal. The result

for a single output neuron lane can be described as:

Ok = f(
∑
j

∑
i

Ii,jSi,j,k) (4)

where i represents the input neuron lane and synapse lane

number, j represents the index of the input neuron lane and

synapse lane, and k represents the output neuron lane index,

which also correlates to the filter number in the PE. This

process is repeated from (k = 0 to n) to get all indices for

a single output neuron lane. This makes up a single PE and

is done in all subsequent PEs in the MAC unit.

As an example, consider input neuron lane 0, INL0

with 4 elements INL0(einl0, einl1,einl2,einl3) each with

4 bits, <00102, 01002, 01102, 10012>represented as

INL0(2,4,6,9). Similarly assume that the other input neuron

lanes are INL1(0,1,3,4), INL2(3,5,1,2) and INL3 (8,2,8,6).

For brevity sake, we consider only filter 0, with 4 synapse

lanes, each with 4 elements of width 4 bits. Synapse Lane 0

in filter 0 is represented as F0[SL0(esl0, esl1, esl2, esl3)]. As-

sume that the synapses in filter 0 have the following values:

SL0(6,9,13,11), SL1(1,2,1,2), SL2(2,3,4,5) and SL3(3,1,3,1).

In cycle 1, the following multiplications will occur in filter

0: Pm0 = INL0(einl0) × SL0(esl0, Pm1 = INL1(einl0)) ×
SL1(esl0), Pm2 = INL2(einl0) × SL2(esl0), and Pm3 =

INL3(einl0) × SL3(esl0). All the partial multiplications will

be summed with the output neuron lane ONL0 (initialized

to 0) to determine the first partial sum (Pm0 + Pm1 + Pm2

+ Pm3 + ONL0) which is written to ONL0. In the above

example, the first partial sum = (2×6 + 0×1 + 3×2 + 8×3
+ 0) = 42. Once the entire window is computed, the final

sum of 368 will be fed to the activation function (f) shown

in Figure 3.

There are multiple ways of implementing an activation

function in hardware. Approximation techniques are used

to overcome the hard-to-realize implementations of these

functions. The most common approaches include bit-level

mapping schemes, lookup tables (LUT), piecewise linear

(PL) approximation, piecewise nonlinear (PNL) approxima-

tion, and designs that are a hybrid of multiple approaches

[26]. A modern hybrid hyperbolic tangent design based

on PL approximation conjoined with bit-level mapping has

been demonstrated to use minimal area with ultra-low gate-

counts, while still rivaling common design latencies [27].

This hybrid approach has been used in the design of MAC

units in this paper, and has allowed for high energy savings

compared to traditional designs.

AND Shift-Accumulate: Through the modification of the

MAC unit, Stripes (STR) takes advantage of parallelism that

is innately present in DNNs by recognizing these properties

on the bit level [28]. By breaking down each MAC operation

into its bitwise elements, STR has accelerated the MAC

functionality by using bitwise AND followed by a logical

left-shift and accumulate. So, given a synapse S represented

in p bits, and an input neuron I, STR will process S bit-

serially over p cycles. Each cycle, one bit of S and all of I
go through an AND multiplication, accumulating the result

into a running sum. The STR methodology is used in all

accelerator designs represented in this paper.

III. OMAC: OPTICAL MAC

A. Optical-Electrical MAC (OE)

The optical-electrical MAC hybrid accelerator shown in

Figure 2(b) uses a combination of photonic devices and

electrical circuitry to implement the AND shift-accumulate

functionality. Our proposed hybrid design has optical AND
with electrical shift-accumulate (OE). The optical AND
utilizes an array of tuned MRRs to perform wavelength-

division multiplexing (WDM), where each wavelength will

either couple to the MRR when activated by the synapse

lane and continue on into the multiplexed signal, or will

not be allowed to pass through. The synapse lane controls

the MRR, and represents an AND 1 when the MRR is

activated, or an AND 0 when the MRR is deactivated.

The number of wavelengths that each synapse lane filters is

directly correlated to the number of input neuron lanes, as

in the STR implementation value n. That is, for the optical

designs in this paper, the number of wavelengths will be

equated to the number of lanes, and will be referred to

as lanes to provide consistency with the STR methodology

across designs shown in Figure 2. Once the optical AND
has completed, the signal will continue on to the electrical

processing unit (EP). After undergoing an o/e conversion, the

the AND values begin the shift-accumulation process with a

CLA and left bit-shifter. Once all pulses in the neuron lanes

have been transmitted against the synapse lanes, the resulted

accumulation will go to the hyperbolic tangent activation

function circuitry before entering the output neuron lane.

Consider the 4-OMAC configuration in Figure 2(b) such

that OMAC 0 receives the multiplexed signal Λ = (λ0 +
λ1 + λ2 + λ3) with each tile tile transmitting the signal

on a distinct wavelength to OMAC 0 in a multiple-write-

single-read (MWSR) configuration. In this configuration,

OMAC 0 will transmit (λ0 − λ3), OMAC 1 will transmit

(λ4−λ7), OMAC 2 will transmit (λ8−λ11), and OMAC 3

will transmit (λ12 − λ15). Therefore, the multiplexed signal

received on each of the home channels will be (λ0 − λ15).

Each OMAC will be outfitted with a single filter. OMAC

0 will implement filter 0, OMAC 1 will implement filter

1, and so on. The input neuron will also be distributed in

a similar fashion. That is, OMAC 0 will fire (or transmit)

input neuron lane 0 I0, OMAC 1 will fire I1, and so on.

As shown in Figure 2(b), in cycle 1, OMAC 0 fires 4 bits

per wavelength (00102, 01002, 01102, 10012) on 4 different

home channels or waveguides such that the same information

will be received by all of the tiles on the same wavelengths
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Figure 2: (a) Basic STR configuration where bitwise multiplication and addition is performed. (b) Proposed OMAC
unit that performs multiply optically whereas addition and shifting is performed electrically. (c) Extended OMAC
with accumulation performed optically.

(λ0 − λ3). Similarly, OMAC 3 fires (10002, 00102, 10002,
01102) on wavelengths (λ12−λ15), which is recieved by all

OMACs.
In each OMAC, different sunapse weights are associated

with the MRRs to create synapse lanes S0−S3. The bitwise
AND operation between the incoming neuron and synapse

will occur on the appropriate wavelength. On wavelength λ0,

00102 is the incoming neuron data, and the MRR is turned

off (0), therefore 00002 will appear on the lower waveguide

and will be sent to the EP. This bitwise AND operation will

occur such that the entire neuron datum is checked against a

single synapse bit. As mentioned above, the next step for the

signal is to enter the EP and undergo an o/e conversion and

added to the partial sum. Once all 4 cycles of the running

sum are computed across the 4 synapse lanes, the result

is sent to the activation function where it will then appear

at the output neuron lane. This technique reduces the OE

MAC down to bitwise AND followed by shift-accumulate

modeled after the STR design. So, for a synapse with p bits,

the OE MAC requires p cycles to determine the partial sum

for each synapse lane.

B. All-Optical MAC (OO)
The all-optical MAC utilizes optical devices for both the

AND and shift-accumulate operations of the STR modified

MAC methodology. The OO design uses WDM through

the use of MRR for the AND operations as in the OE

design. The main allure to this design is it’s use of MZIs

for low-latency, low-power shift-accumulate functionality.

By cascading these MZIs together, the outputs of each

sequential AND operation can undergo pure optical shift-

accumulation. Synchronization of the signals output from

the AND operation with the propagation delay of the MZI

arms allows an optical pulse train to be delayed by one cycle

in the MZI arms, which can then be added to the input of

the next MZI.

Consider Figure 2(c), where element 0 in input neuron

lanes I0 − I3 are fired by OMAC 0 in cycle 1. With the

same four wavelengths (λ0, λ1, λ2, λ3) carrying the signals

(01102, 01002, 01102, 10012) are simultaneously transmitted

to Filter 0, which consists of the four synapse lanes (S0−S3).
After the bitwise AND operation in the MRRs, the output

appears for all four synapses. By selective filtering through

WDM using the MRRs, we can guide each wavelength (λ0−
λ3) emerging from the synapse lanes to a seperate MZI as

shown in Figure 2(c).

For example, consider λ0, where the output from synapse

lanes (S0, S2, S3) is (01102). There is not output from

synapse lane S1 since the MRRs are switched off. Each
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output from the synapse lanes are fed to a different MZI,

take output λ0 as an example. λ0 (01102) feeds from synapse

lane S0 to i0 of MZI0. Similarly, (00002, 01102, 01102) are
fed to i0 of MZI1−3. By appropriately phase shifting φlower

of MZI0−3, it can be ensured that no optical signal emerges

from the lower output o1 of the MZI. Therefore, starting

with the LSB (bit position 0) of (01102) as the input of

MZI3, bit 0 emerges from o0 of MZI3 at time t0. For time

t1, consider bit position 1 of (01102) originating from MZI3,

and LSB of (01102) originating from MZI2.

By ensuring that the path length connecting one MZI’s o0
to the next MZI’s i1 is equal to the bit transmission period,

we can combine the two bits (0 + 1) at the output, giving

the resulting signal different amplitudes of light. The output

signal will be then sent to the o/e converter where the final

accumulated value will continue on to the activation function

circuit.

C. PIXEL Architecture

Figure 3 shows the proposed PIXEL architecture where

each OMAC consists of RF for filter weight storage,

MAC unit that implements multiply and accumulate as

described above. We consider neurons fired with photonic

interconnects using both x- and y-dimensions. Front-end

pre-processing of the data will fire the neurons repeatedly

if needed and back-end processing of data will recover

the information from the accumulation. The synapses are

pre-loaded into the OMAC and the proposed design as-

sumes timed firing of the neurons to implement the MAC

functionality. The advantage of the proposed PNNA are as

follows: (i) All neuron firing, and partial sums accumulation

are in optical domain which significantly reduces energy

consumption. While filter weights need to be pre-loaded to

drive the MRRs, photonics could also be utilized to send

the weight information on a specific channel to OMACs.

(ii) PNNA architecture is scalable since the photonic drivers

and receivers are located at x- and y-dimension E/O and O/E

conversion. Except for active MRRs, all other components

are passive and therefore, one can scale up by driving the op-

tical signal with higher intensity. (iii) With two-dimensional

connectivity, each row or column can be individually uti-

lized/driven to solve a neural network problem. In what

follows, we will evaluate the architectural parameters of

implementing PIXEL architecture (power, delay, area).

IV. PERFORMANCE EVALUATION

A. Hardware Evaluation

To begin to evaluate the energy, area, latency of each

design, an accurate understanding and description of every

component is needed. Through simulation of each hardware

component, the MAC can then be constructed to see how

these parameters change with respect to the number of lanes

in the design, as well as the number of bits per lane.

Figure 3: PIXEL architecture consisting of OMAC where
each OMAC contains photonic components to perform
MAC operations. OCE are connected in x- and y-
dimension with photonic interconnects.

1) Electrical Devices: To evaluate the electrical device

hardware parameters, it was necessary to obtain the gate-

counts (GCs) of each component. Once the GCs for all of

the devices is known, energy, area, and latency numbers can

be calculate using technology parameters in the DSENT

simulator [29]. Using the Bulk22LVT model in DSENT,

single gates up to full devices and interconnects can be

simulated. The Bulk22LVT model was used for electrical

component simulation in the EE, OE, and OO desings.

For example, a CLA’s GC for a given number of bits, and

the gate level depth (LD) is determined by equations below

[30].

GC(n) =
n3 + 6n2 + 47n

6
(5)

LD(n) = 4 + 2�log2(n− 1)� (6)

Let us take n = 8 bits; this yields GC(8) = 212 and

LD(8) = 10. Using DSENT’s 22nm model, it can be cal-

culated that 212 gates will occupy approximately 0.07 nm2,

consuming 0.17 μW of power. The latency of the CLA can

be estimated using the propagation delay of the Bulk22LVT

model in conjunction with the LD of the design. With a

LD = 10, it can be approximated that the 8-bit CLA will

have a propagation delay of 2.95 ns.
2) Photonic Devices: Recent works in silicon photonics

have lead to ever-shrinking and increasingly-efficient de-

vices. MRRs has been demonstrated with small footprints,

(radius r = 7.5 μm) [18] and have been shown in WDM

arrays to be highly efficient, consuming as little as 100 fJ/bit
at 10Gb/s [19]. Building off of these recent works, we have
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(a) 1 bit/lane (b) 2 bits/lane (c) 4 bits/lane

(d) 8 bits/lane (e) 16 bits/lane (f) 32 bits/lane

Figure 4: Energy/bit comparisons for a single MAC unit for a baseline electrical (EE), hybrid optical-electrical (OE)
and all-optical (OO) designs for different number of lanes (wavelengths) and bits/lane.

been able to use these results to give approximations for the

WDM array used in the optical AND in the OE and OO

implementations.

Given the radius of the MRR, we can determine the

path length that the optical signal will travel. In the optical

AND configuration, when a given wavelength λ is coupled

to the appropriately tuned MRRs for that wavelength, the

signal must pass around both MRRs to preserve the path

direction shown in Figure 1(b). The path length travelled

by a signal through both MRRs can be approximated using

the S-shaped curved shown, which turns out to be two

half-circumferences, or one circumference in length. Not

including the path length to bring the signal in or out

of the MRR array, the optical signal will need to travel

2π(7.5 μm) ≈ 47.1 μm.

With the path length now determined, it is quite easy

to calculate the delay a signal will experience passing

through the double MRR filter. Silicon has a refractive index

nSi = 3.48 at 1550 nm, and along with the path length

d = 47.1 μm, the delay is found through:

tMRR = d

(
nSi

c

)
= 0.547 ps (7)

MZIs have been shown to be highly energy efficient

optical solutions to modulation, with some designs demon-

strating as low as 32.4 fJ/bit [31]. In this device, the phase-

shifting arms of the MZI are 2mm in length, so in order

to sync cascaded MZIs to the optical pulse frequency a

precisely measured path must be placed from the output o0
of the preceding MZI to the input port i0 of the following

MZI. This distance can be calculated in general through:

dpath =
c(To − tMZI)

nSi
(8)

or

dpath =
c

nSifo
− dMZI (9)

Where To is the optical period ( 1
fo
), tMZI is the prop-

agation delay of the MZI, and dMZI is the path length

of the MZI. Knowing the arm length of the MZI to be

2mm, it can be calculated that d = 6.77mm between MZIs

at 10GHz. The number of MZIs for a given wavelength

is the same as the number of bits that the wavelength

carries. So, to accumulate n optical pulses on a single

wavelength, the total accumulation length would be dtot =
(n)dMZI + (n − 1)dpath. The total propagation delay for

the accumulation of 4 bit optical pulses would be:

ttot =

(
8(2mm)+7(6.77mm)

)(
nSi

c

)
= 0.736 ns (10)

B. CNN Evaluation

Several different CNN architectures (VGG16, AlexNet,

ZFNet, ResNet-34, LeNet, GoogLeNet) were simulated in

MATLAB to perform per-layer analysis of the number of

computations (MVMs, multiplications, additions, activation

functions) required for the inference phase of the network.

It is necessary to compute the output shape (height, width,
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(a) (b) (c)

Figure 5: Energy consumption per component for (a) AlexNet, (b) LeNet, (c) VGG16 for all-electrical (EE), hybrid
optical-electrical (OE) and all-optical (OO) architectures by considering the laser, communication, O/E, activation,
addition and multiplication energy for 4, 8 and 16 bits/lane.

Table I: VGG16 computations [millions].

Layer MVM Mul Add Act Input Shape

Conv1 9.63 86.7 89.9 3.21 [224,224,3]
Conv2 206 1850 1853 3.21 [226,226,64]
Conv3 103 925 926 1.61 [114,114,64]
Conv4 206 1850 1850 1.61 [114,114,128]
Conv5 103 926 926 0.803 [58,58,128]
Conv6 206 1850 1850 0.803 [58,58,256]
Conv7 103 925 925 0.401 [30,30,256]
Conv8 206 1850 1850 0.401 [30,30,512]
Conv9 51.4 462 463 0.100 [16,16,512]
Conv10 51.4 462 463 0.100 [16,16,512]

FC1 10−6 629 1259 629 [25088]

FC2 10−6 16.8 33.6 16.8 [4096]

FC3 10−6 16.8 33.6 16.8 [4096]

channels) of each convolutional layer. The output feature

size can be calculated as

E =
H −R+ U

U
(11)

where H is the input feature size, R is the filter kernel size,

and U is the stride size. Depending on the CNN architecture,

padding may be added in accordance with the specifications

of the architecture.

The number of matrix multiplications can now be de-

termined using the output feature size. NMVM = E2MC
where M is the number of filters used in the convolutional

layer, and C is the number of input channels. Next, the

number of individual multiplications can be determined by

Nmul = R2(NMVM ), the number of additions can be

determined by Nadd = Nmul + E2M , and the number of

activation functions is Nact = E2M .

Let us take the first convolutional layer (Conv1) of

VGG16 for example. Conv1 has 64 filters with a ker-

nel shape of (3,3), and the input shape fed to Conv1 is

(224,224,3), so

NMVM = 2242(64)(3) = 9633792

Nmul = 32(NMVM ) = 86704128

and so on. Table I shows the per-layer analysis of VGG16

utilizing the calculations listed above.

C. Accelerator Evaluation

With all components of the MACs simulated to get their

energy/bit, area, and propagation delays, plus the CNN

architecture operations, an overall evaluation of the CNN

accelerator designs can be performed.

Take the OE design in Figure 2(b) as an example for the

AND shift-accumulate of two 4-bit words in all lanes as

shown. The number of lanes is 4, and the number of bit per

wavelength (bits/lane) is also 4. So, for a given wavelength,

a synapse lane of p = 4 bits will require 4 cycles to compute

the partial sum. This happens for all 16 wavelengths. The

number of MRRs in the entire design is found to be 128, or

64 double MRR filters. It will take only 4 cycles to compute

16 4-bit ANDs, and (excluding laser power for now) the

MRRs will consume only 128× 500 fJ× 4 bits ×4 cycles=
1.024 nJ. After the o/e conversion in the EP, the bits must

now be accumulated. A 4-bit CLA will have 58 gates, and at

1GHz using the Bulk22LVT model it can be determined that

all CLAs in the design will consume a total of 5.06 pJ. This
type of analysis was done for every component in the design,

including the laser sources, o/e converters, bit-shifters, and

activation functions.

Once the energy consumption for each device is added up

with interconnect overhead, the overall energy consumption

for the OE design can be computed. Then pulling from the

CNN computations performed earlier, the number of repeti-

tions needed can be determined from the number of MVMs,

as well as the energy consumption for every multiply, add,

and activation function of the CNN architecure. Combining

all of these gives the comprehensive performance of the

accelerator for each CNN architecture on a per-layer basis.
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Figure 6: Area comparison for 4 bits/lane for all-electrical
(EE), hybrid (OE) and all-optical (OO) architectures.

V. RESULTS

A. Single MAC Unit

The energy/bit for the three designs (EE, OE, OO) was

computed from the device level up. It was necessary to vary

both the number of lanes and the number of bits/lane to see

how each design responded to the respective scaling. As it

can be seen in Figure 4, the EE design grows quite large

when scaling up both the number of lanes, and the number

of bits per lane. As the number of bits/lane is increased, it

can be seen how both optical designs’ (OE, OO) energy/bit

rises ever so slightly. This is because the number of optical

devices like the MRR do not increase with the bits/lane,

rather, they increase with respect to the number of lanes

(wavelengths). The optical designs favor when the number

of bits/lane is larger than the number of lanes, and the OO

design drops drastically through the increase of the bits/lane

due to the MZI’s efficient accumulation ability.

An area analysis, shown in Figure 6, demonstrates how

each design scales to changes in the number of lanes. It

can be seen that the EE design occupies the least amount

of area. This is expected as the 22nm model used allows

complex logic to remain in a small amount of space. On the

other hand, when compared to the logic gate size of 22nm

technology, optical components are large. For logical AND,

MRRs occupy a consideribly larger amount of area than the

electrical implementation. MZIs are the largest device used

in these designs, and as seen in the OO curve, their cascaded

configuration contributes to a much larger area than both of

the other designs. For 4 lanes at 4 bits/lane, it was found

that the OE design occupied 2.78 nm2 more area than EE,

and the OO design occupied 7.98 μm2 more area than EE.

B. Neural Network Inference Acceleration

1) Energy Efficiency: The simulation energy results

across all 6 simulated CNN architectures for an inference

show very promising numbers for both the OE and OO

designs. Figure 7 shows the normalized energy consumption

Figure 7: Normalized energy for VGG16, AlexNet, ZFNet,
ResNet-34, LeNet and GoogLeNet applications with 4,
8, 16 and 32 bits/wavelength for all-electrical (EE),
hybrid optical-electrical (OE) and all-optical (OO) neural
networks.

for the CNN architectures, and demonstrates each design’s

scaling response to changes in the number of bits/lane.

Both OE and OO designs begin to outperform EE when

the number of bits/lane is greater than the number of lanes.

This offset allows the optical designs to utilize more optical

pulses through their existing structures. This is opposed to

increasing the number of wavelengths which would increase

the number of optical devices. It can be seen that when

the number of bits/lane is much greater than the number

of lanes (32 bits/lane in 8 lanes), EE occupies a majority

of the relative energy, while OO has a very small energy

consumption.

Figure 5 shows the breakdown of each functional unit for

4 lanes in the AlexNet, LeNet, and VGG16 architectures.

The analysis of each step in the acceleration design can be

seen in these plots, and importantly, this shows how the

laser source and o/e conversion in OE and OO contribute

to the total energy consumption. Reference the 16 bit/lane

group in the 5(a) AlexNet plot (EE-16, OE-16, OO-16).

For multiplication, OE and OO’s MRRs provide a high

efficiency, consuming a mere 5.1% of the energy that EE

does. For addition, both the EE and OE designs have similar

of energies since they have electrical shift-accumulate, while

OO’s MRRs reduce the cost for addition by 53.8% over OE.

The activation function circuitry remains the same across

the designs, so there will be no variation there. There is a

cost for the communication data as well; that is, the energy

required to bring the data to the MACs and the energy

required to send out the result. For the EE design, this is

an electrical link to both bring the data in, and send it out.

The OE and OO designs have a photonic link to bring the

data in from laser sources, and an electrical link to carry

the result out. The photonic link in the OE and OO designs

consume slightly less energy than the electrical link over the
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Figure 8: Average latency for 8 lanes (wavelengths) for
all-electrical (EE), hybrid (OE) and all-optical (OO) for
8 lanes (wavelengths) for different bits/lane (1-32).

short distance.

The OE design does quite well when compared to EE,

and the effect of its electrical processing (EP) unit for the

shift-accumulate functionality becomes apparent for larger

bits/lane. In the case of the OO design, the highly efficient

MZIs respond quite well to changes in the bits/lane, keeping

OO as the lowest energy consumption design for high

numbers of bits/lane.

2) Latency: Latency is an important consideration for

real-time CNN inferences, and our photonic designs keep

latency to a minimum. Figure 8 shows the geometric mean

for latency across the six CNN architectures for 8 Lanes

with varying bits/lane. It can be seen that as the number

of bits/lane is increased, the latency begins to fall. The

EE design’s latency consistently declines with an increasing

bits/lane, but it can be seen that both optical designs have

a U-shaped response. The latency for OE and OO designs

begins to rise again since the larger bit count pushes the

propagation delays over a cycle threshold. That is, only a

certain amount of pulses can be clumped into a single cycle

at the optical 10GHz before extra cycles are required to

process this data.

It is also desirable to see the latency response on a per-

layer basis for the CNN architectures. As an example, Figure

9 shows the latency at every layer for ZFNet operating

with 8 lanes at 8 bits/lane. The latency relative difference

between the three accelerator designs is consistent, and

reinforces that the STR methodology scales very well to

varing input sizes. The OE and OO designs do quite well in

latency for this configuration, with the OO design having the

least delay. For large convolutional layers like Conv 2, the

absolute difference between OO and the other two designs is

significant, while in less computationally demanding layers

like the fully-connected layers, the absolute difference is not

as great. In the Conv 2 later, OO is 31.9% faster than EE,

and 18.6% faster than OE.

Table II: Energy breakdown by component for 4 lanes,
16 bits/lane [mJ] for all-electrical (EE), hybrid (OE) and
all-optical (OO) for various CNN applications.

CNN Des Mul Add Act o/e Comm Laser

ResNet EE 3634 847 1.09 0 139 0
-34 OE 187 910 1.09 227 118 59.8

OO 187 420 1.09 227 118 91.0

Goog- EE 1578 368 1.22 0 60.4 0
LeNet OE 81.0 396 1.22 98.8 51.4 26.0

OO 81.0 183 1.22 98.8 51.4 35.1

EE 1225 313 34.2 0 46.9 0
ZFNet OE 62.9 336 34.2 76.6 39.9 20.1

OO 62.9 155 34.2 76.6 39.9 30.4

Figure 9: ZFNet latency for 8 lanes with 8 bits/lane at
different layers for all-electrical (EE), hybrid (OE) and
all-optical (OO) architectures.

3) Energy-Delay Product: The energy-delay product

(EDP) will be a useful parameter in understanding the

performance of the proposed designs across both the energy

consumption and latency performance. Figure 10 shows the

normalized EDP for the six CNN architectures. It can be

seen that, again, the OO design offers the best performance

when the number of bits/lane is high. This is promising

considering the U-shape of the latency curve for OO, but

it is still able to outperform the other two designs with it’s

high energy efficiency. The EDP for EE scales quickly with

increasing bits/lane, as does the OE design. However, the

OO design remains very low as the bits/lane is scaled up,

staying resilient to changes in the input data size. For 4 lanes

at 8 bits/lane, For 4 lanes at 16 bits/lane, OO’s geometric

mean of EDP is improved by 73.9% over EE and OE’s by

48.4% over EE. This shows how the energy-efficient MRRs

combined with the low-latency MZIs produce a worthy

photonic acceleration platform for CNNs.

VI. RELATED WORK

A. Photonic NoCs

Photonic NoC architectures have been proposed to over-

come the bandwidth and throughput limitations of electrical
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Figure 10: Normalized EDP with 4 lanes for VGG16, AlexNet, ZFNet, ResNet-34, LeNet and GoogLeNet applications
with 4, 8, 16 and 32 bits/wavelength for all-electrical (EE), hybrid optical-electrical (OE) and all-optical (OO) neural
networks.

interconnects for manycore architectures [32], [33], [34].

These include a wide variety of architectures ranging from

rings, crossbars, decomposed crossbars and 3D stacked

architectures [35], [36], [37], [38], [39]. Most photonic

NoC architectures employ either Multiple-Write-Single-

Read (MWSR) or Single-Write-Multiple- Read (SWMR)

communication paradigms that trades off between energy

consumption and performance. WDM has been used for in-

creasing the bandwidth-density in manycore heterogeneous

architectures and bandwidth and power scaling techniques

have been proposed to further improve the on-chip com-

munication [40], [41]. Photonic NoCs research has focused

exclusively on improving the energy-efficiency of inter-core

communication.

B. Programmable Photonics

Since photonics is advantageous for communication, op-

tical devices and architectures have been investigated for

optical computing. Optical logic gates have been proposed

and implemented using myriad of techniques including self

modulation of microring resonators, directed logic array and

several recent programmable photonics initiatives. In [42],

the authors demonstrate the design of optical AND and

NAND logic using MRRs, whereas in [43], [44], [45], au-

thors show the implementation of several logical operations

using MRRs such as XNOR, XOR and design of priority

encoders and basic adder units.

D.A.B. Miller recently showed on how to cascade multiple

MZI to combine or add the amplitude of multiple input

signals by adjusting the phase shifts on different arms of the

individual MZI [46], [47], [48] and this was experimentally

proven [49]. Using the principles of the universal beam

coupler from Miller [46], a Field Programmable Photonic

Array where a complete architectural solution of photonics

device that could be programmed for the implementation

of arbitrary simple, complex or even simultaneous circuits

[50], [51]. This is analogous to Field Programmable Gate

Array (FPGA) where arbitrary circuits can be designed for

a programmable nanophotonic processor built with hundreds

of MZIs. While prior work on programmable photonics is

focused on designing flexible circuits with interconnected

MZIs, in PIXEL we focus on combining MRRs and MZIs

together to create optical MAC units to solve specific

accelerator applications.

Interest in spiking neuromorphic networks (SNNs) using

conventional CMOS circuits gained steam through several

work such as True North from IBM [52], SpiNNaker [53],

and others. However, limitation of neuromorphic processors

that requires a large number of interconnects (∼ 100s of

many-to-one fan-in) and significant amount of multicasting

has naturally created a tremendous interest in using photon-

ics for such computation. Large-scale integrated photonic

platforms have further helped in paving the way for devel-

oping neuromorphic photonic architectures.

Recent work by Pruncal et.al. have shown on the basic

implementation of spiking photonic neural network (PNN)

using the leaky integrate and fire (LIF) model [54], [55],

[56]. PNN interacts with two tunable filter banks using

MRRs - one filter bank represents excitatory connections

whereas the other filter bank represents inhibitory con-

nections and the two weighted subsets of the broadcast
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channels are dropped to a balanced photodiode where the

output current represents the total power, thus computing the

weighted sum of WDM inputs. This in turn will transduce

an electronic signal which is capable of modulating a laser

device, thereby achieving PNN functionality. In PIXEL, we

incorporate a bank of MRRs for implementing bitwise AND
operation, however backend processing either electrically or

optically ensures the additive functionality.

C. Adaptive NoCs Using ML

Dynamic and adaptive NoCs have been proposed to in-

crease network throughput, while reducing latency, optimiz-

ing power consumption, and increasing reliability for many-

core systems. Dynamic-voltage frequency-scaling (DVFS)

and power-gating (PG) have been used with deep reinforce-

ment learning (Deep-RL) [57], [58] and ridge regression

[59] techniques to increase energy efficiency of NoCs. ML

has also been used to increase reliability in fault-tolerant

NoC systems, through the utilization of Q-learning [60] and

decision trees [61]. The work proposed in [62] uses a holistic

approach with Q-learning that increases energy efficiency

through multifunction adaptive channels, while increasing

reliability with adaptive error detection and correction.

VII. CONCLUSION

In this paper, we have proposed two PIXEL photonic

neural network accelerators based around MAC units: a

hybrid optical and electrical design (OE) and an all optical

design (OO). Our proposed designs have increased perfor-

mance over traditional electrical accelerators through the

minimization of energy consumption and latency. We have

demonstrated the design-space exploration in determination

of efficient lanes (wavelengths) and bits/lane values for

our PIXEL accelerators, as well as an evaluation of the

accelerators across several CNN architectures. We found

that the optical bitwise multiplication utilizing MRRs gave

a 94.9% increase in energy improvement for both OE and

OO designs, while the OO design had a further 53.8%

improvement for accumulation using MZIs over the elec-

trical addition in the hybrid OE design. The all-optical OO

design gave the best performance, having a minimal EDP

for high bits/lane with an improvement of 73.9% over the

all-electrical EE and 48.4% over the hybrid OE. Our OE

and OO PIXEL designs exhibited efficient energies with

minimal latency that leveraged the high parallelism of CNN

architectures through the innate properties of optics, at the

cost of increased areas for the designs.
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