
SGCNAX: A Scalable Graph Convolutional
Neural Network Accelerator With

Workload Balancing
Jiajun Li ,Member, IEEE, Hao Zheng ,Member, IEEE,

Ke Wang ,Member, IEEE, and Ahmed Louri, Fellow, IEEE

Abstract—Convolutional Neural Networks (GCNs) have emerged as promising tools for graph-basedmachine learning applications.

Given that GCNs are both compute- andmemory-intensive, this constitutes amajor challenge for the underlying hardware to efficiently

process large-scale GCNs. In this article, we introduce SGCNAX, a scalable GCNaccelerator architecture for the high-performance and

energy-efficient acceleration ofGCNs. Unlike prior GCNaccelerators that either employ limited loop optimization techniques, or determine

the design variables based on random sampling, we systematically explore the loop optimization techniques for GCNacceleration and

propose a flexibleGCNdataflow that adapts to different GCN configurations to achieve optimal efficiency.We further propose two

hardware-based techniques to address theworkload imbalance problem caused by the unbalanced distribution of zeros inGCNs.

Specifically, SGCNAX exploits an outer-product-based computation architecture that mitigates the intra-PE (Processing Elements)

workload imbalance, and employs a group-and-shuffle approach tomitigate the inter-PEworkload imbalance. Simulation results show that

SGCNAXperforms 9.2�, 1.6� and 1.2� better, and reduces DRAMaccesses by a factor of 9.7�, 2.9� and 1.2� compared to HyGCN,

AWB-GCN, andGCNAX, respectively.

Index Terms—Graph convolutional neural networks, dataflow accelerators, domain-specific accelerators, memory access optimization

Ç

1 INTRODUCTION

RECENTLY, deep learning over graph data has achieved
great success in a broad range of applications, such as

traffic prediction [1], [2], object detection [3], [4], [5], [6], dis-
ease classification [7], [8], [9], and many others. One of the
most successful models is Graph Convolutional Neural Net-
work (GCN) [10], [11], [12], [13] that re-defines the notion of
convolution for graph data. This model has been widely
used in a variety of data centers including Google, Ali-
baba [14], and Facebook [15].

Much like traditional neural networks, training and infer-
ence of GCNs are both compute- and memory-intensive but
impose new requirements on designing the underlying hard-
ware architecture. Specifically, the execution time for graph
convolutional layers is mainly dominated [16], [17] by two
primary phases: Aggregation and Combination. The computa-
tion in the combination phase is similar to that in conven-
tional neural networks. However, the aggregation phase
depends on the graph structure which is often sparse and
irregular. The sparsity and irregularity would be the new
challenges facing the physical design of GCN architectures.

The key computation function in GCNs can be abstracted
as chain Sparse-dense Matrix Multiplications (SpMMs) [18].
It involves six nested loops that gives rise to a large design
space for GCN accelerators in terms of parallelism, compu-
tation partitioning and scheduling. A number of loop opti-
mization techniques [19], such as loop tiling, loop unrolling,
loop interchange, and loop fusion can be used for GCNs.
Recently, a few customized GCN accelerators [18], [20], [21]
have leveraged these techniques to deliver gains in perfor-
mance and energy efficiency. However, none of them has
systematically studied the impact of these techniques on
system efficiency in terms of latency and loop optimization
techniques, or determine the design variables based on ran-
dom sampling. As a result, they can hardly exploit data
reuse efficiently, leading to increased memory accesses and
performance loss.

In this paper, we propose SGCNAX, a scalable GCN
accelerator architecture for high-performance and energy-
efficient acceleration of GCNs. Specifically, the contribu-
tions of this paper are:

First, we provide an in-depth analysis of the four loop
optimization techniques for GCN computation and use cor-
responding design variables to characterize the GCN data-
flow. We then build analytical models to quantitatively
estimate the design objectives of GCN dataflow, such as
latency and the number of off-chip DRAM accesses. We
found that different GCN configurations require different
design variables of the dataflow to achieve optimal effi-
ciency. Therefore, we propose a flexible dataflow that can
reconfigure the design variables to adapt to different GCN
configurations.

� The authors are with the Department of Electrical and Computer Engineer-
ing, George Washington University, Washington, DC 20052 USA.
E-mail: {lijiajun, haozheng, cory, louri}@gwu.edu.

Manuscript received 27 Aug. 2021; revised 30 Oct. 2021; accepted 24 Nov. 2021.
Date of publication 10 Dec. 2021; date of current version 23 May 2022.
This work was supported by National Science Foundation under Grants
CCF-1702980, CCF-1812495, CCF-1901165, and CCF-2131946.
(Corresponding author: Jiajun Li.)
Recommended for acceptance by A.J. Pe~na, M. Si and J. Zhai.
Digital Object Identifier no. 10.1109/TPDS.2021.3133691

2834 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7208-9345
https://orcid.org/0000-0002-7208-9345
https://orcid.org/0000-0002-7208-9345
https://orcid.org/0000-0002-7208-9345
https://orcid.org/0000-0002-7208-9345
https://orcid.org/0000-0003-4391-2774
https://orcid.org/0000-0003-4391-2774
https://orcid.org/0000-0003-4391-2774
https://orcid.org/0000-0003-4391-2774
https://orcid.org/0000-0003-4391-2774
https://orcid.org/0000-0001-7189-9293
https://orcid.org/0000-0001-7189-9293
https://orcid.org/0000-0001-7189-9293
https://orcid.org/0000-0001-7189-9293
https://orcid.org/0000-0001-7189-9293
mailto:lijiajun@gwu.edu
mailto:haozheng@gwu.edu
mailto:cory@gwu.edu
mailto:louri@gwu.edu

Second, we propose a hardware accelerator called
SGCNAX to support the flexible dataflow. We observe that
current accelerators incur performance losses because of the
workload imbalance caused by the extremely sparse and
unbalanced matrices in GCNs. Specifically, the current accel-
erators suffer from two forms of workload imbalances. The
first is intra-PE (Processing Elements) workload imbalance
when someMultiply-and-Accumulate (MAC) units are proc-
essing zeros while others are processing non-zeros, leading
to the under-utilization of MAC units. The second is inter-PE
workload imbalance, which stems from the way the dataflow
partitions the work across the PEs. Since some PEs may com-
plete the workload earlier as they are allocated sparser work-
loads, they have to sit idle while waiting for the laggards
because of inter-PE synchronization. The proposed SGCNAX
tackles both imbalances by employing two novel hardware/
software co-design techniques. Specifically, SGCNAX
employs an outer-product-based computation architecture
for SpMMs [22], tomitigate the intra-PEworkload imbalance.
For the inter-PE workload imbalance, SGCNAX employs a
group-and-shuffle computing approach, which groups the
rows in a sparse matrix by density so that the row groups are
similar in density, and then maps the rows within a group to
the PEs so that all PEs complete the tasks simultaneously.

We implement the SGCNAX accelerator in RTL targeting
TSMC 40 nm library. We also build a cycle-level simulator
that models the microarchitectural behavior of each module
while supporting different dataflows. Evaluated on five
real-world graph datasets, SGCNAX performs 9.2�, 1.6�
and 1.2� better, and reduces DRAM accesses by a factor of
9.7�, 2.9� and 1.2� compared to HyGCN, AWB-GCN, and
GCNAX, respectively.

2 BACKGROUND

2.1 GCN Computation

The typical structure of a graph convolutional layer is illus-
trated in Fig. 1. The prevalent computation pattern of the
GCN models [13], [23], [24] can be abstracted as a chain
SpMM

Xðkþ1Þ ¼ sðÂXðkÞW ðkÞÞ; (1)

whereXðkÞ is the matrix of input features in layer k; each col-
umn ofX represents a feature vector while each row denotes
a node. W ðkÞ is the weight matrix of layer k. sð�Þ denotes the
non-linear activation function such as ReLU. Â is a trans-
formed matrix from the graph adjacency matrix. The trans-
formation function varies across different GCN models.

Since Â can be computed offline from A, we hereafter use A
to denote the normalized Â. Table 1 lists the notations used
in GCNs.

The chain SpMM in GCNs consists of six loops as shown
in the pseudo-code in Fig. 2. We assume that A 2 RM�N ,
X 2 RN�K ,W 2 RK�C . Matrix B 2 RN�C is the intermediate
result of X �W and O 2 RM�C is the final output matrix.
We assume that we use the execution order of A�ðX �W Þ
as it reduces the number of computations for most graph
datasets [18].

2.2 GCN Accelerators

Recently, a few GCN accelerators have been proposed,
which provide substantial improvements in performance
and energy efficiency compared to generic CPU- and GPU-
based solutions. Specifically, HyGCN [20] exploits two ded-
icated compute engines, i.e., an aggregation engine and
a combination engine, to accelerate the Aggregation and
Combination phases, respectively. AWB-GCN [18] is an
architecture for accelerating GCNs and Sparse-dense Matrix
Multiplication (SpMM) kernels, and addresses the issue of
workload imbalance in processing real-world graphs.
GCNAX [21] proposes a flexible dataflow for GCNs that
simultaneously improves resource utilization and reduces
data movement.

These accelerators can be illustrated by the typical architec-
ture shown in Fig. 3. It consists of an accelerator chip and off-
chip memory (usually DRAM). The accelerator chip is com-
posed of a Processing Unit (PU), a global buffer (GLB), and a
Scheduler. The PU can support high compute parallelism for

Fig. 1. Illustration of a GCN layer. The graph contains six nodes. A: adja-
cency matrix,XðlÞ: feacture vectors of layer l, W ðlÞ: weight matrix of layer
l,Xðlþ1Þ: feacture vectors of layer lþ 1.

TABLE 1
Notations in GCNs

Term Meaning

G graph G ¼ ðV;EÞ
V vertices of G
E edges of G
Dv degree of vertex v
eði;jÞ edge between vertex i and j
NðvÞðSðvÞÞ (sampling subset of) neighbor set of v
AðAijÞ (element of) adjacency matrix
av aggregation feature vector of v
hv feature vector of v
b combination bias vectors
X feature matrix composed by feature vectors

Fig. 2. Pseudo code of the chain SpMM in GCNs.

LI ETAL.: SGCNAX: A SCALABLE GRAPH CONVOLUTIONAL NEURAL NETWORK ACCELERATORWITH WORKLOAD BALANCING 2835

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

matrix multiplications, either consisting of two separate
engines (HyGCN) or one uniform engine (AWB-GCN,
GCNAX). The scheduler is used to map the GCNs onto
the proposed accelerator using the computation sequences
defined by the loop optimization techniques. GLB is usually a
uniform software-controlled SRAM scratchpad memory that
can be used to exploit input data reuse and hideDRAMaccess
latency, or to store intermediate data. The accelerator often
has three levels of memory hierarchy, including DRAM, GLB,
and local registers in PEs. The energy consumption for data
access depends on the memory hierarchy [25]. In this paper,
we focus on the expensive off-chip DRAM accesses (between
off-chipDRAMandGLB).

Although these GCN accelerators delivered considerable
performance gains, few of them have considered the scal-
ability of GCN accelerators. As GCN accelerators typically
employ an array of multiply-and-accumulate (MAC) units
to compute matrix multiplications, scaling the performance
of accelerators would be determined by how well we handle
the increased number of MAC units. To achieve this, we can
either employ a monolithic array with a large number of
MAC units, or employ more arrays. In this paper, we will
investigate the scalability problem of GCN accelerators.

3 GCN DATAFLOW

A GCN’s dataflow defines how the loops are ordered, parti-
tioned, and parallelized. That being said, the chain SpMMs
can bemanipulated (e.g., ordered andpartitioned.) to capture
different data reuse opportunities. In this paper, we will
investigate four loop optimization techniques, namely loop
unrolling, loop tiling, loop interchange, and loop fusion, to
optimizeGCN’s dataflow.

3.1 Loop Optimization Techniques

3.1.1 Loop Unrolling

Loop unrolling determines the parallelization strategy of
the GCN loops, which determines the PE array scale and
organization as well as the size of registers in each PE. It
can be used to increase the utilization of massive computa-
tion resources. Researchers have extensively studied the
methods to unroll SpMM for parallel computations. As
illustrated in Fig. 4 which takes SpMM1 as an example,
unrolling different loops directs parallelization of different
computations, which affects the optimal PE array architec-
ture with respect to the data reuse opportunities and mem-
ory access patterns.

� Loop-1 unrolled (Fig. 4a): in this case, a column vec-
tor of Pn pixels from X is multiplied with a pixel
from W in each cycle, and generates a column vector
of Pn pixels which will be accumulated to matrix B.
If data reuse in local registers is not enabled, it will
involve 2� Pnþ 1 SRAM reads and Pn SRAM
writes in each cycle.

� Loop-2 unrolled (Fig. 4b): in this case, a row vector of
Pc pixels fromW is multiplied with a pixel fromX in
each cycle, and generates a row vector of Pc pixels
which will be accumulated to matrix B. If data reuse
in local registers is not enabled, it will involve 2�
Pcþ 1 SRAM reads and Pc SRAM writes in each
cycle. This unrolling is also called outer-product
method.

� Loop-3 unrolled (Fig. 4c): in this case, the inner prod-
uct of a row vector of Pk pixels fromX and a column
vector of the same size from W is computed in each
cycle, and generates one pixel which will be accumu-
lated to matrix B. If data reuse in local registers is not
enabled, it will involve 2� Pkþ 1 SRAM reads and 1
SRAM write in each cycle. This unrolling is also
called inner-product method.

These unrolling factors (Pn; Pk; Pc) will determine the
total number of parallel MAC operations as well as the
number of required multipliers.

Fig. 3. A typical GCN accelerator architecture.

Fig. 4. Loop unrolling: (a) unroll Loop-1; (b) unroll Loop-2; (c) unroll
Loop-3.

2836 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

3.1.2 Loop Tiling

Loop tiling can be applied for each SpMM to leverage data
locality, and it determines the required capacity and the par-
titioning of GLB. As the on-chip GLB capacity is usually not
large enough to hold all the data in GCNs, loop tiling can be
used to divide the entire data and only fit a small portion of
the data into the on-chip GLB. By properly selecting the loop
tile size, the data reuse can be maximized to reduce off-chip
DRAM access. This will significantly improve the overall
energy efficiency, as the energy cost of off-chip memory
accesses is orders ofmagnitude higher than that of arithmetic
operations. The tile size sets the lower bound of the required
GLB capacity. In other words, the GLB should be sized large
enough to hold the data tiles.

3.1.3 Loop Interchange

Loop interchange [26] determines the computation order of
the loops, and it can be used to enable different types of
data reuse to reduce external memory traffic by exchanging
the order of the nested loops. There are two types of loop
interchange in the GCN loops, namely intra-tiling and inter-
tiling loop orders. Intra-tiling loop order determines the pat-
tern of data movements from on-chip GLB to register files.
Inter-tiling loop order determines the data movement from
external memory to on-chip GLB. Loop interchange along
with local memory promotion can reduce the data move-
ments. Specifically, if the innermost loop is irrelevant to a
matrix, i.e., the loop iterator does not appear in the access
function of the matrix [27], there will be redundant memory
operations between different loop iterations which can be
eliminated to reduce memory access operations.

3.1.4 Loop Fusion

Loop fusion optimization [28] can be leveraged to reduce
data transfer of intermediate data. Specifically, we can fuse
the processing of SpMM1 and SpMM2 to reduce the data
transfer of matrix B between off-chip DRAM and on-chip
GLB. As shown in Fig. 2, if the two SpMMs are executed
sequentially without fusion, the elements of matrix B are
stored back to DRAM in SpMM1, and they are again fetched
from DRAM to on-chip in SpMM2. Therefore, we can
reduce the data transfer of these intermediate data by fusing
the execution of SpMM1 and SpMM2. When SpMM1 fin-
ishes the computation of loop k and generates a B chunk,
we can pause the execution of SpMM1 and proceed to the
execution of SpMM2. By doing so, the data transfer of
the intermediate matrix (B) is eliminated. Notably, although

loop fusion reduces data transfer of intermediate results, it
somehow sacrifices the freedom of loop interchange. Specif-
ically, the iteration k in SpMM1 must be the innermost loop
to ensure that matrix B finishes all its computations (not a
PartialMat) before being forwarded to SpMM2. Moreover,
as m becomes the innermost loop in the communication
part of SpMM2, matrix O has to be frequently transferred
between on-chip and off-chip. Since O is the result matrix,
the volume of data transfer is doubled compared to the
input matrix such as matrix A because the result matrix has
to be written back to the main memory when being
replaced, whereas the input matrix can be directly replaced
without being written back.

Table 2 lists the parameters in GCNs and the design vari-
ables used by the four loop optimization techniques, where
variables with a prefix of capital T denotes the tile size, and
P for unrolling factors. Since both SpMM1 and SpMM2 con-
tain the loop n and c, we hereafter use n0; c0 as the loop iter-
ator in SpMM1, and n1; c1 as the loop iterator in SpMM2.

3.2 Flexible GCN Dataflow

Although we have concluded the key design factors of GCN
dataflow, it is not easy to decide which combination of
design variables is optimal for a given GCN layer. Simply
using static design variables by random sampling for all
layers as many prior works did [18], [20] is far from optimal
due to the dimension and sparsity variance across different
layers. Therefore, in this subsection, we introduce how to
determine the design variables for a given graph convolu-
tional layer. We first formulate the selection of design varia-
bles as an optimization problem, which aims at finding the
best combination of design variables that maximizes the
design objectives (e.g., minimizing the number of off-chip
DRAM accesses and latency) under certain design con-
straints (e.g., on-chip storage size and the number of multi-
pliers). We found that it is an NP-hard problem because of
the large design space, thus requiring heuristic solutions in
practice. Therefore, we propose a greedy search algorithm
to address this problem.

3.2.1 Design Objectives

We are primarily targeting substantial improvements for
the following three design objectives:

� Computation latency which depends on the loop
unrolling factors and the sparsity of data.

� The number of off-chip DRAM accesses which pri-
marily relies on the size of GLB and the degree of

TABLE 2
GCN Loop Parameters and Design Variables

SpMM1 (B ¼ XW) SpMM2 (O ¼ AB)

GCN Loops Loop-1 Loop-2 Loop-3 Loop-4 Loop-5 Loop-6

Dimensions N C K M C N

Without Loop Fusion Loop Tiling Tn0 Tc0 Tk Tm Tc1 Tn1
Loop Unrolling Pn0 Pc0 Pk Pm Pc1 Pn1

With Loop Fusion
Loop Tiling Tn0 Tc0 Tk Tm -(equal to Tc0) -(equal to Tn0)

Loop Unrolling Pn0 Pc0 Pk Pm Pc1 Pn1

LI ETAL.: SGCNAX: A SCALABLE GRAPH CONVOLUTIONAL NEURAL NETWORK ACCELERATORWITH WORKLOAD BALANCING 2837

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

data reuse. These latter are determined by the tile
size, inter-tiling loop order, and loop fusion strategy.

� The number of on-chip SRAM accesses, which is
determined by the loop unrolling strategies and
intra-tiling loop order, since they determine the
reuse patterns of the data transfer from GLB to local
registers.

To simultaneously achieve all the design objectives might
be infeasible as the best combination of design variables for
off-chip DRAM accesses may not be optimal for on-chip
SRAM accesses, and vice versa. Therefore, to optimize the
overall efficiency, we combine the three design objectives
into one by calculating their weighted total as follows:

Minimize
X

J ¼ LðXuÞ þ v1 �VdðX t;X oo;X fÞ
þ v2 �VsðXu;X oiÞ

s:t: 0 < Tm � M; 0 < Tk � K

0 < Tn0 � N; 0 < Tn1 � N

0 < Tc0 � C; 0 < Tc1 � C

SX þ SW þ SB1 <¼ GLBsize

SA þ SO þ SB2 <¼ GLBsize

Pn0 � Pc0 � Pk � #PEs

Pn1 � Pc1 � Pk � #PEs;
(2)

where X ¼ X t [X oo [X f [Xu [X oi denotes the entire
search space, and X t;X oo;X f ;Xu;X oi denote the parameter
spaces of tile size, inter-tiling loop order, loop fusion strat-
egy, unrolling factors, and intra-tiling loop order, respec-
tively. L, Vd and Vs denote the computation latency, the
number of off-chip DRAM accesses and on-chip SRAM
accesses, respectively. SX; SW ; SB1; SA; So; SB2 denote the
required on-chip storage size of the corresponding matrices,
which are determined by the tile size. v1 and v2 are adjust-
ment parameters that reflect the difference in the energy
cost between basic arithmetic operation, DRAM access and
SRAM access. According to [25], we set v1 ¼ 206:5;v2 ¼ 1:6
indicating a basic DRAM access operation and SRAM access
consumes 206.5� and 1.6� more energy than a basic arith-
metic operation does.

To solve this optimization problem, we first need to mea-
sure L, Vd, and Vs, given a combination of design variables
and a GCN layer. In this paper, we use the analytical mod-
els in [21] to estimate these numbers. Then, we need to find
out which combination of design variables can minimize
the design objective described in Equation (2). However,
this would take substantial time to explore all the potential
design variables finding the optimal solution due to the
large design space. According to our experiments, the
exhaust search process takes tens of hours to fully explore
the entire design space on an Intel I7-8650U@1.90GHz pro-
cessor, which is infeasible for practical use. Therefore, it
requires heuristic solutions in practice.

To simplify the search, We use outer-product-based com-
putation architecture [22] as shown in Fig. 4b. Although this
method would have a negative impact on the reuse of the
output matrix, it provides additional input matrix reuse
compared to the inner-product-based method. More impor-
tantly, it well supports the elimination of zero computations
and avoids the intra-PE workload imbalance problem. We
store the sparse matrix in Compressed Sparse Column

(CSC) format, while the input DenseMat is stored in dense
format in row-major order. Since the input pixel from X is
the input operand for all the Pc0 multiplications, these com-
putations can be skipped simultaneously if the input pixel
is zero.

For the design variables in loop interchange, loop tiling,
and loop fusion, we provide a greedy search algorithm that
can reduce the search time to several seconds. Table 3 shows
how to determine the design variables for off-chip DRAM
accesses (X t;X oo;X f). This greedy algorithm leverages the
empirical rules concluded from many simulation results.

The tile size setting priority indicates which tile size has
the priority for larger number settings. For example, if N �
C �GLBsize, Tn0 and Tm have the highest priority for larger
number settings, which means they will be set to the maxi-
mum number while satisfying other constraints. Tc0; Tc1

have the second-highest priority. When Tn0 and Tm are
already set as the largest number, then Tc0; Tc1 will be set as
large as possible. Furthermore, we discovered that the main
reason for the large search space is that X t (the search space
of tile size) contains every integer value between 1 to the
dimension size. Therefore, pruning the search space X t can
significantly shrink the entire search space. Most tile size
values cannot be fully divided by the dimension size. In
such cases, we need to pad the data block to simplify data
movements [29], which will degrade the GLB space utiliza-
tion. Clearly, the tile size that causes less padding will uti-
lize the GLB space efficiently thus reducing unnecessary
off-chip DRAM accesses. Among a set of tile size that results
in the same number of iterations, the one requires minimum
padding has the fewest data padding. Therefore, from 1 to
dimension size, we only need to consider the smallest tile
size values that yield a new number of loop iterations. For
example, assume a value of 10 for dimension N , the candi-
date tile size will be {1,2,3,4,5,10} since they yield the num-
ber of loop iterations of {10,5,4,3,2,1}. The number of points
to sweep in dimension N will be reduced from OðNÞ to
Oð2 ffiffiffiffiffi

N
p Þ. To better understand the greedy search, Table 4

presents the tile size, loop order and loop fusion choices for
five datasets: Cora, CiteSeer, PubMed, Nell and Reddit [30]
when we constrain the GLBsize at 128KB.

4 SGCNAX ARCHITECTURE

4.1 Overview

We propose an accelerator architecture, called SGCNAX, to
support the flexible dataflow, which is depicted in Fig. 5. It
consists of a host CPU, an off-chip DRAM, and an

TABLE 3
The Greedy Search Algorithm to Determine

the Design Variables

Conditions Loop
Fusion

Inter-tiling
Loop Order

Tile Size Setting
Priority

N �C �GLBsize No n0 !c0 !k,
m !c1 !n1

�1Tn0; Tm�2Tc0; Tc1�3Tn1; Tk

N �C < GLBsize Yes n0 !c0 !k !m �1Tn0; Tn1�2Tc0; Tc1�3Tm; Tk

2838 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

accelerator chip. The accelerator consists of a Control Unit
(CU), a global buffer (GLB), a Data Dispatcher, a PE array, a
Multi-stage Permutation Network, and an Accumulator
Buffer. The host CPU is used to configure the tile size, loop
order, and loop fusion strategy for different datasets, and
generates corresponding commands to the Control Unit.
The GLB is used to exploit input data reuse and hide
DRAM access latency, or for the storage of intermediate
data. The Data Dispatcher distributes the input data to the
PE array. The Permutation Network collects the outputs
from the PE array and sends them to the Accumulator
Buffer for accumulation. The Data Dispatcher and Permuta-
tion Network work collaboratively to mitigate inter-PE
workload imbalance (will be discussed in Section 4.4).

4.2 PE Architecture

Fig. 5 also shows the PE architecture. It consists of a Sparse-
Mat Buffer (SMB), Input/Output DenseMat Buffers (IDMB/
ODMB), a Look-Ahead FIFO, a DenseRow Prefetcher (DRP),

a MAC Array, and a PE Control Unit. To process the SpMM,
a portion of the sparse matrix is fetched from DRAM into
SMB in CSC format, and a portion of the input/output
matrix is fetched into IDMB and ODMB in dense format.
First, an old PartialMat row is fetched from ODMB to the
MAC array waiting for accumulation. Meanwhile, an ele-
ment value from SMB is sent to the FIFO, while its row index
in the CSC format is sent to DRP. Then, the DRP fetches the
corresponding input DenseMat row from IDMB according
to the received index and the row index of the PartialMat
row. Since the required input DenseMat row is not known
until receiving the index of the SparseMat element, there is a
latency between the arriving time of the SparseMat element
and the input DenseMat row to the MAC Array. The look-
ahead FIFO is used to hide this latency. Instead of directly
sending the SparseMat element to MAC Array, it is sent to
the FIFO. At the same time, the DRP calculates the required
row index and prefetches rows to MAC Array. The MAC
Array will then conduct the outer product between the Spar-
seMat element and the DenseMat row and the generated
rowwill be accumulatedwith the Old PartialMat row.

When possible, the PartialMat row is held consistently in
the MAC Array until its related computations are finished.
Upon completion of the current PartialMat row, the gener-
ated new PartialMat row is then flushed to ODMB, and it
proceeds to the next PartialMat row according to the execu-
tion order defined by the dataflow. When the output Dense-
Mat can serve as the input DenseMat for the following
SpMM, which is the case when we enable loop fusion, the
IDMB and ODMB are logically swapped to the two SpMMs’
computation sequence.

4.3 Spatial Tiling Strategy

As we scaled the accelerator with multiple PEs based on the
GCNAX architecture [21], we will need a spatial tiling strat-
egy to spread the work across the PE array so that each PE
can operate independently. There are many spatial tiling
strategies, such as partitioning the adjacency matrix (A), fea-
ture matrix (X), or weight matrix (W) along the row and/or
column dimension into smaller tiles and distributing them
to the PEs. Different spatial tiling strategies lead to different
computation and communication patterns. For example,
For example, as shown in Fig. 2, if we partition matrix X
along dimension n in SpMM1 into smaller tiles, the PEs will

TABLE 4
Design Variables (Tile Size, Inter-Tiling Loop Order and Loop Fusion) Derived From Greedy Search

Dataset Layer (M-N-K-C) gA gX Loop fusion Inter-tiling Loop order Tile Size Tuple (Tn0; Tc0; Tk; Tn1; Tc1; Tm)

Cora L1 (2708-2708-1433-16) 0.0018 0.0127 Yes n0 !c0 !k !m (2708,16,1,2708,16,1)
L2 (2708-2708-16-7) 0.0018 0.78 Yes n0 !c0 !k !m (2708,7,1,2708,7,1)

Citeseer
L1 (3327-3327-3703-16) 0.0011 0.0085 Yes n0 !c0 !k !m (3000,16,5,3000,16,1)
L2 (3327-3327-16-6) 0.0011 0.0085 Yes n0 !c0 !k !m (3000,6,1,3000,6,1)

Pubmed L1 (19717-19717-500-16) 0.00028 0.1 No n0 !c0 !k,m !c1 !n1 (3073,16,1,1,16,3073)
L2 (19717-19717-16-3) 0.00028 0.776 No n0 !c0 !k,m !c1 !n1 (3000,3,1,1025,3,3000)

Nell L1 (65755-65755-61278-64) 0.000073 0.00011 No n0 !c0 !k,m !c1 !n1 (4096,1,33,1,1,4096)
L2 (65755-65755-64-186) 0.000073 0.864 No n0 !c0 !k,m !c1 !n1 (257,186,1,1,17,2817)

Reddit
L1 (232965-232965-602-64) 0.0021 0.516 No n0 !c0 !k,m !c1 !n1 (641,64,1,1,9,4096)
L2 (232965-232965-64-41) 0.0021 0.6 No n0 !c0 !k,m !c1 !n1 (1153,41,1,1,17,2817)

Fig. 5. The proposed SGCNAX architecture for scalable GCNs.

LI ETAL.: SGCNAX: A SCALABLE GRAPH CONVOLUTIONAL NEURAL NETWORK ACCELERATORWITH WORKLOAD BALANCING 2839

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

share the matrix W and the tiles of X will be distributed to
different PEs. By contrast, if we partition matrix W along
dimension c, the PEs will share the matrix X and the tiles of
W will be distributed to the PEs. For GCNs, considering
that the dimension k and c are usually small, partitioning
along these two dimensions will cause under-utilization of
PEs because we may not have enough useful work to fully
populate the PEs. Hence, we choose to partition the matrix
X and A along the dimension n. Consequently, matrix W
and matrix B are broadcast to the PEs, and each PE operates
on its own subset of the computation task.

4.4 Inter-PE Workload Balancing

Since the distribution of the non-zeros in the adjacency
matrix and feature matrix is extremely unbalanced as the
majority of non-zeros are in only a small set of rows/col-
umns, it can lead to severe workload imbalance across the
PEs and consequently a severe performance degradation.
To this end, we employ a group-and-shuffle approach to
mitigate this inter-PE workload imbalance, which groups
the rows (or columns depending on the spatial strategy, we
assume rows hereafter for simplicity) in a sparse matrix by
density so that the row groups are similar in density, and
then map the rows within a group to the PEs so that each
PE will complete its workload almost simultaneously.

Fig. 6 shows a simple example to better illustrate the con-
cept of group-and-shuffle. The size of the sparse matrix is
8�8. We assume there are four PEs in total so each PE will
be allocated a 2�8 tile. The densities of each row, the den-
sity-sorted rank order of each row, and the utilization of the
four PEs is also shown in the figure. When there is no work-
load balancing as shown in Fig. 6a, the rows are distributed
to the PEs by the row index (e.g., R1 and R2 to PE0, R3 and
R4 to PE1). Since the row density varies, PEs with denser
rows such as PE2 will take more cycles to complete the com-
putation task, while the others have to idle because of PE
synchronization. To address this problem, we first group
the rows by the density-sorted rank order, e.g., the densest
row (R5) and the sparsest row (R4) will be in the same
group, so that these row groups are similar in density (from
8/16 to 9/16). Then each row group will be mapped to a PE

so that each PEwill complete the task almost simultaneously.
Since the grouping shuffles the output positions in the out-
put matrix, we need to “unshuffle” the outputs to recover
the correct positions. In SGCNAX, the Data Dispatcher per-
forms the sorting and grouping of the rows, and it sends the
“shuffle” information to the Control Unit. The Control Unit
configures Permutation Network to “unshuffle” the outputs
to the Accumulator Buffer.

Researchers have also proposed various techniques to
address the load imbalance problem in sparse neural net-
work accelerators. For example, Procrustes [31] addresses
the load imbalance across a 2D PE array by distributing the
non-sparse minibatch dimension across one hardware
dimension and the sparse tensor dimension across the other
hardware dimension. However, it’s dedicated to DNNs and
might need some augmentation to work with GCNs, which
can be our future work.

5 EXPERIMENTAL METHODOLOGY

Hardware Simulator. To evaluate the performance of our
design, we built a cycle-level simulator in C++ to model the
behavior of the hardware. The simulator models the micro-
architectural behaviors of each module, and supports the
dataflows with reconfigurable design variables. The simula-
tor counts the exact amount of DRAM reads and writes,
which is used to estimate the DRAM access energy con-
sumption according to [25].

SGCNAX Configurations. Table 5 lists the major configura-
tions of the SGCNAX that we explore. SGCNAX is equipped
with eight PEs, each with a 1� 16MACArray using double-
precision floating-point multipliers. The SMB/IDMB/
ODMB in each PE is sized so that the tiles of thematrix can fit
into these local buffers. The accumulator buffer has 16 banks,
eachwith 512 entries. The global buffer size is 1MB.

ASIC Synthesis. To measure the area and power con-
sumption, we model all the PE logic including the MAC
Array, FIFOs, DRP, and DRAM. We use the Synopsys
Design Compiler with the TSMC 40nm library for the syn-
thesis, and estimate the power using Synopsys PrimeTime
PX. We set the clock frequency at 1 GHz. We use Cacti [32]
to estimate the area, power, and access latency of the on-
chip buffers and FIFOs.

Baselines. We compare SGCNAX with three GCN acceler-
ators (HyGCN, AWB-GCN, and GCNAX), and an SpMM

Fig. 6. An example of group-and-shuffle workload balancing mechanism.

TABLE 5
SGCNAXConfigurations

2840 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

accelerator (SpArch). Table 7 summarizes the characteristics
of these baselines and SGCNAX.

The baseline accelerators are scaled to be equipped with
the same number of multipliers and DRAM bandwidth as
GCNAX. Since HyGCN and AWB-GCN use single-precision
floating-point numbers (32-bit) whereas SpArch uses dou-
ble-precision (64-bit), we uniformly use double-precision for
all accelerators to provide a fair comparison. As HyGCN
uses a tandem-engine architecture consisting of SIMD cores
for the aggregation phase and systolic modules for the com-
bination phase, the multipliers are divided into two groups
in a ratio of 1:8 for the two engines according to its original
configuration. We also resized the baseline accelerators to be
equipped with the on-chip storage capacity. The DRAM
bandwidth for all the accelerators is scaled to 128 GB/s. Note
that as HyGCN uses edge-centric programming model for
the aggregation phase, their computation in the aggregation
phase is not matrix multiplication. Our simulator takes this
into account and estimates the execution cycles and DRAM

accesses according to HyGCN’s dataflow. Although SpArch
is not customized for GCNs, it is still selected as a baseline
since it supports the key computations in GCNs. As SpArch
does not mention how to support chain SpMM, we assume
that it processes the chain SpMM sequentially without loop
fusion.Hereafterwe denote SpArchG as our simulated accel-
erator that uses SpArch to process chain SpMM.

6 EXPERIMENTAL RESULTS

6.1 Area and Power

We obtain the area and power consumption of the SGCNAX
PE under TSMC 40 nm technology. Table 6 summarizes the
area and power of themajor components in SGCNAX and its
PE. A significant fraction of the PE area is contributed by
memories (SMB, IDMB, and ODMB), which consume 82.9%
of the total area, while the MAC array only consumes 7.1%.
IDMB and ODMB are heavily banked for parallelization so
they consumemore area than SMB. The Data Dispatcher and
Permutation Network only consumes 6.0% of the total area,
which shows that the workload balancing module incurs a
negligible area overhead in exchange for higher resource
utilization.

6.2 Performance

Fig. 7 compares the performance of SGCNAX and the base-
lines measured by the total number of execution cycles. On
average, SGCNAX is 9.2�, 11.5�, 1.6�, and 1.2� faster than
HyGCN, SpArchG, AWB-GCN and GCNAX, respectively.
SGCNAX outperforms the baselines on all five datasets. The
reasons for the high performance of SGCNAX are threefold.
First, the execution order of the chain-SpMM of SGCNAX

TABLE 7
Characteristics of the Accelerators

Accelerator Execution order Compute engine Loop fusion Loop order Tile size Inner Spatial Dataflow

HyGCN ðAXÞW y Tandem engine Yes Static Static Inner product
AWB-GCN AðXW Þ Uniform engine Yes Static Static Inner product
SpArchG§ ðAXÞW Uniform engine No Static Static Outer product
GCNAX AðXW Þ Uniform engine Adaptive Adaptive Static Outer product
SGCNAX AðXW Þ Uniform engine Adaptive Adaptive Adaptive Outer product

yHyGCN uses edge-centric programming model for the aggregation phase, so their computation in the aggregation phase is not matrix multiplication. Neverthe-
less, the result of the aggregation phase is a large matrix that is used as the input to perform matrix multiplication in the combination phase.
xSpArchG uses SpArch [33] (an SpGEMM accelerator) to process matrix multiplications in GCNs.

TABLE 6
Hardware Characteristics of SGCNAX

Fig. 7. Speedup of SGCNAX and the baseline accelerators over HyGCN.

LI ETAL.: SGCNAX: A SCALABLE GRAPH CONVOLUTIONAL NEURAL NETWORK ACCELERATORWITH WORKLOAD BALANCING 2841

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

reduces the number of operations compared to that of
HyGCN. Second, SGCNAX uses a uniform-engine architec-
ture that can avoid the workload imbalance incurred by tan-
dem-engine architectures. HyGCN can only achieve optimal
performance by carefully orchestrating the computational
capacity of the combination and aggregation engines for a
given dataset, but it inevitably incurs performance loss when
accommodating different datasets with different computa-
tional requirements for the aggregation and combination
engines. Finally, SGCNAX achieves the lowest DRAM
accesses by adaptively configuring the dataflow for different
datasets, which also explains why SGCNAX outperforms
AWB-GCN and SpArch. The number of DRAM accesses has
a strong impact on performance since it might be the system
bottleneck. AWB-GCNuses the inner-product-basedmethod
for SpMM which incurs workload imbalance between PEs
thereby degrading the performance. AWB-GCN addresses
this inefficiency by a software scheduler and additional hard-
ware modules that increase hardware complexity and intro-
duce extra overhead. Since SpArchG is customized for
sparse-sparse matrix multiplication, it achieves high perfor-
mance when performing AX. However, the performance
gain of SpArchG is hindered because 1) its processing order
results in larger computation volume; 2) SpArchG is not
good at processing dense-dense matrix multiplication. Fur-
thermore, by alleviating inter-PE workload imbalance and
using adaptive tile size, SGCNAX performs 1.2� better than
GCNAXon average.

As for the speedup for specific datasets, SGCNAX per-
forms 3.1–26.1� better over HyGCN, 4.1–25.6� better over
SpArchG, 1.3–2.0� better over AWB-GCN, and 1.1–1.3�
better over GCNAX. The performance gain on the Reddit
dataset is not so significant because the execution order
reduces computations by only 2.9� which is not that much
compared to other datasets. Besides, the density of feature
vectors in Reddit (larger than 50%) is higher than that of
other datasets, which hinders the performance gains of
SGCNAX because it still performs SpMM even though the
input matrix is not that sparse.

6.3 DRAM Accesses

Fig. 8 shows the number of DRAM accesses of the five accel-
erators. Overall, SGCNAX achieves on average 9.7�, 7.5�,
2.9� and 1.2� reduction on DRAM accesses over HyGCN,
SpArchG, AWB-GCN, and GCNAX, respectively. This
benefits from the optimal tile size tuple, the data reuse opti-
mization, and the adaptive loop fusion strategy. The DRAM

access reduction varies across the datasets. Specifically,
SGCNAX reduces DRAM accesses by a factor of 7.5–11.8�
over HyGCN, 4.8–11.0� over SpArchG, 1.9–4.4� over AWB-
GCN, and 1.1–1.4� over GCNAX. Since HyGCN and
SpArchG use an inefficient execution order, they involve
more computations that result in more DRAM accesses.
AWB-GCN optimizes the reuse of the intermediate matrix.
However, it sacrifices the reuse of the output matrix due to
the limited on-chip storage size. Moreover, the tile sizes are
not carefully tailored in theAWB-GCN accelerator. SGCNAX
uses adaptive tile size thus saving DRAM accesses compare
to GCNAX that uses static tile size.

6.4 Energy Consumption

Fig. 9 shows the normalized energy consumption of the four
accelerators. Overall, SGCNAX achieves 12.3�, 9.9�, 3.0�
and 1.3� energy savings compared to HyGCN, SpArchG,
AWB-GCN, and GCNAX, respectively. This is because our
proposed accelerator has fewer DRAM accesses and better
utilization of the computing resources.

Energy-Delay Product. Energy-delay product is used to ver-
ify that a dataflow does not achieve high energy efficiency by
sacrificing processing parallelism. Fig. 10 shows the normal-
ized EDP of the four accelerators. The delay is calculated as
the reciprocal of the number of execution cycles. Compared
with the baseline accelerators, SGCNAX is 152.9�, 159.1�,
4.8�, and 1.5� better in EDP averaged on the five datasets.

6.5 PE Granularity

As described in Section 4, two factors may lead to per-
formance degradation of SGCNAX. One is the workload

Fig. 8. Number of DRAM accesses of SGCNAX and the baseline accelerators.

Fig. 9. Energy consumption of SGCNAX and the baselines (the energy
consumption of SGCNAX is normalized to 1).

2842 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

imbalance across the PEs, the other is intra-PE MAC array
fragmentation when we don’t have enough work to fully
populate the MAC array in each PE. we conduct a sensitivity
analysis to quantify the effects of both factors on the accelera-
tor performance. Assuming a fixed 128 multipliers for the
accelerator, we sweep the total number of PEs from 16 (16
PEs, 8 MAC units per PE) down to 4 (4 PEs, 32 MAC units
per PE). Clearly, SGCNAXwith 4 PEs is more likely to suffer
from intra-PE fragmentation because we may not have a
large enough working set to fully populate the large MAC
array. However, SGCNAX with 16 PEs is more likely to suf-
fer inter-PE workload imbalance and requires a more com-
plicated data dispatcher and permutation network. We
found that SGCNAX with 8 PEs strikes a balance between
the two factors.

7 RELATED WORK

Graph Neural Network (GNN) Accelerators. Besides the GCN
accelerators mentioned in Section 2, there are also a few
other GNN accelerators in the literature. Auten et al. [34]
proposed a GNN accelerator to efficiently execute the irreg-
ular data movement required for graph computation in
GNNs, while also providing a high compute throughput
required by GNN models. EnGN [35] is designed to acceler-
ate the three key stages of GNN propagation, which is
abstracted as common computing patterns shared by typical
GNNs. GRIP [36] is designed for low-latency inference of
GNNs, which splits GNN inference into a fixed set of edge-
and vertex-centric execution phases that can be imple-
mented in hardware, and then specialize each unit for the
unique computational structure found in each phase.
GraphACT [37] is dedicated to the acceleration of training
GCNs on CPU-FPGA heterogeneous systems, which incor-
porates multiple algorithm-architecture co-optimizations.
VersaGNN [38] is a systolic-array-based versatile GNN
accelerator that unifies dense and sparse matrix multiplica-
tion in GNNs.

Graph Analytics Accelerators. With the emergence of appli-
cations on graph analytics, many accelerators are proposed
to efficiently support these workloads [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53]. Hong
et al. [39], [54] propose a warp centric execution model for
graph applications. Ozdal et al. [41] propose a configurable
architecture template that is specifically optimized for itera-
tive vertex-centric graph applications with irregular access

patterns and asymmetric convergence. Graphicionado [44]
exploits not only data structure-centric datapath specializa-
tion, but also memory subsystem specialization for efficient
graph analytics processing. Medusa [45] is a parallel graph
processing system on GPUs that enables developers to lever-
age the massive parallelism and other hardware features.
GraphR [46] is a ReRAM-based graph processing accelerator
that leverages the near-data processing and explores the
opportunity of performingmassive parallel analog operations
with low hardware and energy cost. GraphABCD [47] is an
asynchronous heterogeneous graph analytic framework that
offers algorithm and architectural supports for asynchronous
execution, without undermining its fast convergence proper-
ties. Yan et al. [48] propose a hardware/software co-design
with decoupled datapath and data-aware dynamic schedul-
ing to alleviate irregularity in graph analytics accelerators.
Although these accelerators deliver considerable perfor-
mance and energy efficiency improvement, they are ineffi-
cient when handling GCNs because even though they are
designed to alleviate the irregularity of graph data, they do
not leverage the regularity inGCNs.

Neural Network Accelerators. There have been many works
devoted to accelerating neural networks [55], [56], [57], [58],
[59], [60], [61]. For dense neural networks, the accelerators
mainly focus on leveraging the massive parallelism to
improve performance and utilization, such as TPU [55] and
Eyeriss [56]. Due to the intrinsic sparsity structure, many
accelerator [57], [58], [59], [60] have been proposed to
reduce operations from sparsity. However, GCNs contain
two-phase matrix multiplications that enable new kinds of
parallelisms and data reuse patterns that are not exploited
in these neural network accelerators. Although we can
extend CNN accelerators to run SpMMs by equalizing the
input and filter dimensions, it weakens the advantages of
CNN accelerators since they are specialized for convolu-
tions rather than matrix multiplications.

8 CONCLUSION

In this paper, we propose a scalable accelerator architecture
for GCNs called SGCNAX. The salient feature of the proposed
architecture is that the dataflow can reconfigure the loop opti-
mization variables to adapt to different GCN configurations,
which simultaneously improves resource utilization and
reduces data movement. The SGCNAX accelerator tailors the
compute engine, buffer structure and size to support the opti-
mized dataflow. Furthermore SGCNAX is capable tomitigate
workload imbalances through hardware/software co-design
approaches namely the use of an outer-product-based com-
putation architecture for SpMM computation, and a group-
and-shuffle computing approach for concurrent PEs compu-
tation and simultaneous completion. We evaluated our pro-
posed architecture on five real-world graph datasets. The
simulation results show that SGCNAX performs 9.2�, 1.6�
and 1.2� better, and reduces DRAM accesses by a factor of
9.7�, 2.9�, and 1.2� compared to HyGCN, AWB-GCN, and
GCNAX, respectively.

REFERENCES

[1] X. Wang et al., “Traffic flow prediction via spatial temporal graph
neural network,” in Proc. The Web Conf., 2020, pp. 1082–1092.

Fig. 10. Energy delay product (EDP) of SGCNAX and the baselines
accelerators (the EDP of SGCNAX is normalized to 1).

LI ETAL.: SGCNAX: A SCALABLE GRAPH CONVOLUTIONAL NEURAL NETWORK ACCELERATORWITH WORKLOAD BALANCING 2843

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

[2] W. Jiang and J. Luo, “Graph neural network for traffic forecasting:
A survey,” 2021, arXiv:2101.11174.

[3] W. Shi and R. Rajkumar, “Point-GNN: Graph neural network for
3D object detection in a point cloud,” in Proc. IEEE/CVF Conf. Com-
put. Vis. Pattern Recognit., 2020, pp. 1711–1719.

[4] Y. Shen et al., “Person re-identification with deep similarity-
guided graph neural network,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 486–504.

[5] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich,
“SuperGlue: Learning feature matching with graph neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 4938–4947.

[6] A. Luo et al., “Cascade graph neural networks for RGB-D salient
object detection,” inProc. Eur. Conf. Comput. Vis., 2020, pp. 346–364.

[7] C.-Y. Wee et al., “Cortical graph neural network for ad and MCI
diagnosis and transfer learning across populations,” NeuroImage:
Clin., vol. 23, 2019, Art. no. 101929.

[8] T.-A. Song et al., “Graph convolutional neural networks for
alzheimer’s disease classification,” in Proc. IEEE 16th Int. Symp.
Biomed. Imag., 2019, pp. 414–417.

[9] S.-H. Wang et al., “Covid-19 classification by FGCNet with deep
feature fusion from graph convolutional network and convolu-
tional neural network,” Inf. Fusion, vol. 67, pp. 208–229, 2021.

[10] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A
survey,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 249–270,
Jan. 2022.

[11] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks
on graph-structured data,” 2015, arXiv:1506.05163.

[12] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,” in
Proc. 30th Int. Conf. Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[13] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” 2016, arXiv:1609.02907.

[14] H. Yang, “AliGraph: A comprehensive graph neural network
platform,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov.
Data Mining, 2019, pp. 3165–3166.

[15] A. Lerer et al., “PyTorch-BigGraph: A large-scale graph embed-
ding system,” 2019, arXiv:1903.12287.

[16] M. Yan et al., “Characterizing and understanding GCNs on GPU,”
IEEEComput. Archit. Lett., vol. 19, no. 1, pp. 22–25, Jan.–Jun. 2020.

[17] Z. Zhang, J. Leng, L. Ma, Y. Miao, C. Li, and M. Guo,
“Architectural implications of graph neural networks,” IEEE Com-
put. Archit. Lett., vol. 19, no. 1, pp. 59–62, Jan.–Jun. 2020.

[18] T. Geng et al., “AWB-GCN: A graph convolutional network accel-
erator with runtime workload rebalancing,” in Proc. 53rd Annu.
IEEE/ACM Int. Symp. Microarchit., 2020, pp. 922–936.

[19] Y. Ma et al., “Optimizing loop operation and dataflow in FPGA
acceleration of deep convolutional neural networks,” in Proc. ACM/
SIGDA Int. Symp. Field-Programmable Gate Arrays, 2017, pp. 45–54.

[20] M. Yan et al., “HyGCN: A GCN accelerator with hybrid
architecture,” in Proc. IEEE Int. Symp. High Perform. Comput.
Archit., 2020, pp. 15–29.

[21] J. Li, A. Louri, A. Karanth, and R. Bunescu, “GCNAX: A flexible
and energy-efficient accelerator for graph convolutional neural
networks,” in Proc. IEEE Int. Symp. High-Perform. Comput. Archit.,
2021, pp. 775–788.

[22] S. Pal et al., “OuterSPACE: An outer product based sparse matrix
multiplication accelerator,” in Proc. IEEE Int. Symp. High Perform.
Comput. Archit., 2018, pp. 724–736.

[23] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 31st Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 1024–1034.

[24] K. Xu et al., “How powerful are graph neural networks?,” 2018,
arXiv:1810.00826.

[25] M. Horowitz, “Energy table for 45nm process,” Stanford VLSI
wiki, 2012. [Online]. Available: http://vlsiweb.stanford.edu/

[26] J. R. Allen and K. Kennedy, “Automatic loop interchange,” in
Proc. SIGPLAN Symp. Compiler Construction, 1984, pp. 233–246.

[27] C. Zhang et al., “Optimizing FPGA-based accelerator design for
deep convolutional neural networks,” in Proc. ACM/SIGDA Int.
Symp. Field Programmable Gate Arrays, 2015, pp. 161–170.

[28] W. Pugh, “Uniform techniques for loop optimization,” in Proc. 5th
Int. Conf. Supercomputing, 1991, pp. 341–352.

[29] Q. Nie, “Memory-driven data-flow optimization for neural
processing accelerators,” Ph.D Dissertation, Elect. Eng. Dept.,
Princeton Univ., Princeton, NJ, USA, 2020. [Online]. Available:
https://dataspace.princeton.edu/handle/88435/dsp01cf95jf42w

[30] Z. Wu et al., “A comprehensive survey on graph neural networks,”
2019, arXiv:1901.00596.

[31] D. Yang, A. Ghasemazar, X. Ren, M. Golub, G. Lemieux, and
M. Lis, “Procrustes: A dataflow and accelerator for sparse deep
neural network training,” in Proc. 53rd Annu. IEEE/ACM Int.
Symp. Microarchit., 2020, pp. 711–724.

[32] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“CACTI 6.0: A tool to understand large caches,” Univ. Utah
Hewlett Packard Lab., Tech. Rep., 2009. [Online]. Available:
https://www.cs.utah.edu/~rajeev/cacti6/cacti6-tr.pdf

[33] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient
architecture for sparse matrix multiplication,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit., 2020, pp. 261–274.

[34] A. Auten, M. Tomei, and R. Kumar, “Hardware acceleration of
graph neural networks,” in Proc. 57th ACM/IEEE Des. Autom.
Conf., 2020, pp. 1–6.

[35] S. Liang et al., “EnGN: A high-throughput and energy-efficient
accelerator for large graph neural networks,” IEEE Trans. Comput.,
vol. 70, no. 9, pp. 1511–1525, Sep. 2021.

[36] K. Kiningham, C. Re, and P. Levis, “GRIP: A graph neural net-
work accelerator architecture,” 2020, arXiv:2007.13828.

[37] H. Zeng and V. Prasanna, “GraphACT: Accelerating GCN
training on CPU-FPGA heterogeneous platforms,” in Proc.
ACM/SIGDA Int. Symp. Field-Programmable Gate Arrays, 2020,
pp. 255–265.

[38] F. Shi, A. Y. Jin, and S.-C. Zhu, “VersaGNN: A versatile accelera-
tor for graph neural networks,” 2021, arXiv:2105.01280.

[39] S. Hong et al., “Accelerating CUDA graph algorithms at maximum
warp,” ACM SIGPLAN Notices, vol. 46, no. 8, pp. 267–276, 2011.

[40] V. Balaji and B. Lucia, “Combining data duplication and graph reor-
dering to accelerate parallel graph processing,” in Proc. 28th Int.
Symp. High-Perform. Parallel Distrib. Comput., 2019, pp. 133–144.

[41] M. M. Ozdal et al., “Energy efficient architecture for graph analyt-
ics accelerators,” ACM SIGARCH Comput. Archit. News, vol. 44,
no. 3, pp. 166–177, 2016.

[42] G. Dai et al., “FPGP: Graph processing framework on FPGA a case
study of breadth-first search,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2016, pp. 105–110.

[43] T. Oguntebi and K. Olukotun, “GraphOps: A dataflow library for
graph analytics acceleration,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2016, pp. 111–117.

[44] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi,
“Graphicionado: A high-performance and energy-efficient accel-
erator for graph analytics,” in Proc. 49th Annu. IEEE/ACM Int.
Symp. Microarchit., 2016, pp. 1–13.

[45] J. Zhong and B. He, “Medusa: A parallel graph processing system
on graphics processors,” ACM SIGMOD Rec., vol. 43, no. 2,
pp. 35–40, 2014.

[46] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “GraphR: Accelerat-
ing graph processing using ReRAM,” in Proc. IEEE Int. Symp. High
Perform. Comput. Archit., 2018, pp. 531–543.

[47] Y. Yang et al., “GraphABCD: Scaling out graph analytics with
asynchronous block coordinate descent,” in Proc. ACM/IEEE 47th
Annu. Int. Symp. Comput. Archit., 2020, pp. 419–432.

[48] M. Yan et al., “Alleviating irregularity in graph analytics accelera-
tion: A hardware/software co-design approach,” in Proc. 52nd
Annu. IEEE/ACM Int. Symp. Microarchit., 2019, pp. 615–628.

[49] A. Abdolrashidi, D. Tripathy, M. E. Belviranli, L. N. Bhuyan, and
D. Wong, “WIREFRAME: Supporting data-dependent parallelism
through dependency graph execution in GPUs,” in Proc. 50th
Annu. IEEE/ACM Int. Symp. Microarchit., 2017, pp. 600–611.

[50] X. Ma, D. Zhang, and D. Chiou, “FPGA-accelerated transactional
execution of graph workloads,” in Proc. ACM/SIGDA Int. Symp.
Field-Programmable Gate Arrays, 2017, pp. 227–236.

[51] F. Sadi et al., “PageRank acceleration for large graphs with scal-
able hardware and two-step SpMV,” in Proc. IEEE High Perform.
Extreme Comput. Conf., 2018, pp. 1–7.

[52] Y. Wang, J. C. Hoe, and E. Nurvitadhi, “Processor assisted work-
list scheduling for FPGA accelerated graph processing on a
shared-memory platform,” in Proc. IEEE 27th Annu. Int. Symp.
Field-Programmable Custom Comput. Machines, 2019, pp. 136–144.

[53] Y. Zhuo et al., “GraphQ: Scalable PIM-based graph processing,” in
Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchit., 2019,
pp. 712–725.

[54] M. Zhang et al., “GraphP: Reducing communication for PIM-based
graph processing with efficient data partition,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit., 2018, pp. 544–557.

2844 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 11, NOVEMBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

http://vlsiweb.stanford.edu/
https://dataspace.princeton.edu/handle/88435/dsp01cf95jf42w
https://www.cs.utah.edu/~rajeev/cacti6/cacti6-tr.pdf

[55] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in Proc. 44th Annu. Int. Symp. Comput. Archit.,
2017, pp. 1–12.

[56] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks,”
in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit., 2016,
pp. 367–379.

[57] J. Albericio et al., “Cnvlutin: Ineffectual-neuron-free deep neural
network computing,” ACM SIGARCH Comput. Archit. News,
vol. 44, pp. 1–13, 2016.

[58] S. Zhang et al., “Cambricon-X: An accelerator for sparse neural
networks,” in Proc. 49th Annu. IEEE/ACM Int. Symp. Microarchit.,
2016, pp. 1–12.

[59] A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” in Proc. 44th Annu. Int. Symp.
Comput. Archit., 2017, pp. 27–40.

[60] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. N. Vijaykumar,
“SparTen: A sparse tensor accelerator for convolutional neural
networks,” in Proc. 52nd Annu. IEEE/ACM Int. Symp. Microarchit.,
2019, pp. 151–165.

[61] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. 43rd Int. Symp. Comput. Archit., 2016,
pp. 243–254.

Jiajun Li (Member, IEEE) received the BE degree
from the Department of Automation, Tsinghua Uni-
versity, China, in 2013,and the PhDdegree from the
Institute of Computing Technology, Chinese Acad-
emy of Sciences, China, in 2019. From 2019 to
2021, he was a postdoctoral researcher with the
Department of Electrical and Computer Engineer-
ing, George Washington University, Washington,
DC. He is currently an associate professor with the
School of Astronautics, Beihang University, China.
His current research interests include machine
learning and heterogeneous computer architecture.

Hao Zheng (Member, IEEE) received the BS
degree in electrical engineering from Beijing Jiao-
tong University, Beijing, China, and the PhD
degree in computer engineering from George
Washington University, Washington, DC. He is
currently an assistant professor of electrical and
computer engineering at the University of Central
Florida, Orlando, Florida. His research interests
include computer architecture and parallel com-
puting, with emphasis on interconnection net-
works, machine learning techniques for efficient
computing, and energy-efficient manycore archi-
tecture designs.

KeWang (Member, IEEE) received the BS degree
in electrical engineering from Peking University,
China, in 2013, and the MS degree in electrical
engineering from Worcester Polytechnic Institute,
Worcester, Massachusetts, in 2015. He is currently
working toward the PhD degree in computer engi-
neering in the School of Engineering and Applied
Science, GeorgeWashington University, Washing-
ton, DC. His research interests include optimized
NoC design of high performance, power efficiency
and reliability usingmachine learning.

Ahmed Louri (Fellow, IEEE) received the PhD
degree in computer engineering from the Univer-
sity of Southern California, Los Angeles, Califor-
nia, in 1988. He is the David andMarilyn Karlgaard
Endowed chair professor of electrical and com-
puter engineering at the George Washington
University, Washington, DC., which he joined in
August 2015. He is also the director of High Perfor-
manceComputing Architectures and Technologies
Laboratory. From1988 to 2015, hewas a professor
of electrical and computer engineering at the Uni-

versity of Arizona, Tucson, Arizona, and during that time, he served six
years (2000 to 2006) as the chair of the Computer Engineering Program.
From 2010 to 2013, he served as a program director in the National Sci-
ence Foundation’s (NSF) Directorate for Computer and Information Sci-
ence and Engineering. He directed the core computer architecture
program and was on the management team of several cross-cutting pro-
grams. He conducts research in the broad area of computer architecture
and parallel computing, with emphasis on interconnection networks, opti-
cal interconnects for scalable parallel computing systems, reconfigurable
computing systems, and power-efficient and reliable Network-on-Chips
(NoCs) for multicore architectures. Recently he has been concentrating
on energy-efficient, reliable, and high-performance many-core architec-
tures, accelerator-rich reconfigurable heterogeneous architectures,
machine learning techniques for efficient computing, memory, and inter-
connect systems, emerging interconnect technologies (photonic, wireless,
RF, hybrid) for NoCs, future parallel computing models and architectures
(including convolutional neural networks, deep neural networks, and
approximate computing), and cloud-computing and data centers. He is the
recipient of 2020 IEEE Computer Society Edward J. McCluskey Technical
Achievement Award for pioneering contributions to the solution of on-chip
and off-chip communication problems for parallel computing and many-
core architectures. He is currently the editor-in-chief of the IEEE Transac-
tions on Computers. For more information, please visit https://hpcat.seas.
gwu.edu/Director.html.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: SGCNAX: A SCALABLE GRAPH CONVOLUTIONAL NEURAL NETWORK ACCELERATORWITH WORKLOAD BALANCING 2845

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:52:53 UTC from IEEE Xplore. Restrictions apply.

https://hpcat.seas.gwu.edu/Director.html
https://hpcat.seas.gwu.edu/Director.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

