
SPRINT: A High-Performance, Energy-Efficient,
and Scalable Chiplet-Based Accelerator With
Photonic Interconnects for CNN Inference

Yuan Li , Student Member, IEEE,

Ahmed Louri, Fellow, IEEE, and Avinash Karanth , Senior Member, IEEE

Abstract—Chiplet-based convolution neural network (CNN) accelerators have emerged as a promising solution to provide substantial

processing power and on-chipmemory capacity for CNN inference. The performance of these accelerators is often limited by inter-chiplet

metallic interconnects. Emerging technologies such as photonic interconnects can overcome the limitations ofmetallic interconnects due

to several superior properties including high bandwidth density and distance-independent latency. However, implementing photonic

interconnects in chiplet-basedCNNaccelerators is challenging and requires combined effort of network architectural optimization andCNN

dataflowcustomization. In this article, we proposeSPRINT, a chiplet-basedCNNaccelerator that consists of a global buffer and several

accelerator chiplets. SPRINT introduces two novel designs: (1) a photonic inter-chiplet network that can adapt to specific communication

patterns in CNN inference throughwavelength allocation andwaveguide reconfiguration, and (2) a CNNdataflow that can leverage the

broadcasting capability of photonic interconnectswhileminimizing the costly electrical-to-optical and optical-to-electrical signal conversions.

Simulations usingmultiple CNNmodels show that SPRINTachieves up to 76% and 68% reduction in execution time and energy

consumption, respectively, as compared to other state-of-the-art chiplet-based architectureswith either metallic or photonic interconnects.

Index Terms—Convolution neural network, chiplet, accelerator, photonic interconnects

Ç

1 INTRODUCTION

THE ever increasing size of convolution neural network
(CNN) models [1], [2], [3], [4] is driving the need to scale

computing systems for higher processing power and on-
chip memory capacity. As monolithic chip scaling slows
down [5], [6], the chiplet-based architecture [7], [8] is con-
sidered a viable approach to continue the growth of com-
puting system performance. Prior work [5] has explored
performing inference of large-scale CNN models on chiplet-
based accelerators. However, in such work, it has been
shown that inter-chiplet metallic interconnects pose a major
challenge to system performance due to excess latency and
energy consumption [5]. This motivates us to explore other
disruptive interconnect technologies for these chiplet-based
accelerators.

Photonic interconnects can overcome the limitations of
metallic interconnects due to superior properties such as
high bandwidth density [9], [10] and distance-independent

latency [11], [12], [13]. Photonic interconnects have been uti-
lized in prior manycore architectures [14], [15], [16], [17],
[18], [19]. However, implementing photonic interconnects in
chiplet-based CNN accelerators requires combined effort of
architectural optimization and dataflow customization. As
stated above, prior photonic inter-chiplet networks [14], [15],
[16], [17], [18], [19] target manycore architectures executing
general applications, and consequently, often exhibit full
connectivity and uniform bandwidth between chiplets to
support diverse communication patterns observed in gen-
eral applications. By contrast, the communication involved
in CNN inference has several specific features such as non-
uniform bandwidth demand between different chiplets, and
recurrence of a few communication patterns [1], [2], [20],
[21]. An optimized or a domain-specific photonic inter-chip-
let network exploiting these specific features would signifi-
cantly improve the performance, energy consumption, and
scalability of chiplet-based CNN accelerators.

Additionally, the CNN dataflow should be customized to
adapt to the unique properties of photonic interconnects.
Most prior CNN dataflow optimizations [5], [22], [23], [24],
[25], [26], [27], which are proposed for accelerators with only
metallic interconnects, target reducing the data transmission
distance by improving local data reuse. However, because of
the distance-independent property of photonic intercon-
nects, the data transmission distance across chiplets would
not be a primary obstacle to system performance, possibly
making the prior CNNdataflow optimizations less effective.

In this paper, we propose SPRINT - a chiplet-based accel-
erator with Silicon Photonic Reconfigurable INTerconnects
for CNN inference. The SPRINT architecture consists of (1)

� Yuan Li and Ahmed Louri are with the Department of Electrical and Com-
puter Engineering, George Washington University, Washington, DC
20052 USA. E-mail: {liyuan5859, louri}@gwu.edu.

� Avinash Karanth is with the School of Electrical Engineering and Com-
puter Science, Ohio University, Athens, OH 45701 USA.
E-mail: karanth@ohio.edu.

Manuscript received 30 Mar. 2021; revised 11 Dec. 2021; accepted 14 Dec. 2021.
Date of publication 28 Dec. 2021; date of current version 7 Mar. 2022.
This work was supported in part by National Science Foundation under Grants
CCF-1702980, CCF-1812495, CCF-1901165, CCF-1953980, CCF-1513606,
CCF-1703013, and CCF-1901192.
(Corresponding author: Yuan Li.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TPDS.2021.3139015

2332 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

1045-9219 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0001-5067-5522
https://orcid.org/0000-0002-9472-4637
https://orcid.org/0000-0002-9472-4637
https://orcid.org/0000-0002-9472-4637
https://orcid.org/0000-0002-9472-4637
https://orcid.org/0000-0002-9472-4637
mailto:liyuan5859@gwu.edu
mailto:louri@gwu.edu
mailto:karanth@ohio.edu

a photonic inter-chiplet network that connects a global buffer
(GLB) and accelerator chiplets, and (2) an optically-enhanced
and tailored CNN dataflow. Specifically, the photonic inter-
chiplet network is optimized to adapt to the specific commu-
nication patterns in CNN inference throughwavelength allo-
cation and waveguide reconfiguration. The novel CNN
dataflow exploits the inherent broadcast and multicast capa-
bilities of photonic interconnects [28], [29], [30], while mini-
mizing the costly electrical-to-optical (E/O) and optical-to-
electrical (O/E) signal conversions [9], [31]. The combined
effects of the photonic inter-chiplet network and the tailored
CNN dataflow result in significant reduction in execution
time and energy consumption for CNN inference. We com-
pare SPRINT with two state-of-the-art chiplet-based archi-
tectures using either an electrical mesh [5] or a photonic
crossbar [18] for inter-chiplet communication. Simulation
studies using multiple CNN models show that SPRINT
achieves up to 76% and 68% reduction in execution time and
energy consumption, respectively. Furthermore, when scal-
ing the system to include 128 chiplets, the reduction in execu-
tion time and energy consumption increases to 78% and 83%,
respectively, indicating the promising scalability of the pro-
posed SPRINT architecture.

2 BACKGROUND AND MOTIVATION

2.1 Communication in CNN Inference

CNNmodels often consist of a series of different layers (e.g.,
convolution layers, fully-connected layers, activation layers,
etc.), where the convolution layers are most common and
take a large fraction of the overall computations [32], [33],
[34], [35]. In this paper, we focus on the processing of the
convolution layers and fully-connected layers.

2.1.1 Computation of a Convolution Layer

The computation of a convolution layer can be formulated
as a multi-dimensional nested loop over weight kernels,
input feature maps (ifmaps), and output feature maps
(ofmaps). The dimensions include the height (R) and width
(S) of the weight kernels, the height (E) and width (F) of the
ofmaps, the number of input channels (C), and the number
of weight kernels (M). The height (H) and width (W) of the
ifmaps are not independent and can be derived from the
previous dimensions. Fig. 1b shows a nested loop example
assuming each of the six dimensions (R, S, E, F, C, M) has a
value of 2. Fig. 1a presents the detailed computations in an
iteration of the C loop. In this iteration, four weights (labeled
1, 2, 3, and 4) of each weight kernel and four input features
(labeled a, b, d, and e) are transmitted to each computation
unit. Within a computation unit, products of weights and
corresponding input features are accumulated to a partial
sum (psum) of an output feature. A complete output feature
is obtained by adding up the psums of all iterations in the C
loop. The above process is repeated to generate other output
features as the weight kernels slide across the ifmaps.

2.1.2 Communication Patterns

Data communications incurred during the computation of a
convolution layer include transmitting weights and input
features to the computation units and gathering the psums

or output features generated in the computation units back
to memory. Unlike the diverse communication patterns in
general applications, the communication patterns in CNN
accelerators are fairly regular and largely determined by the
dimension values of the nested loop, the parameters of the
computing system (e.g., the number of computation units),
and the dataflow utilized. Specifically, the communications
in CNN accelerators exhibit the following three features:

Non-Uniform Bandwidth Demand. Assume that the input
data (weights and input features) are initially located in the
GLB and the generated output data (psums or output fea-
tures) are transmitted back to the GLB. The bandwidth
needed for data exchange between the GLB and the compu-
tation units is often non-uniform. As shown in Fig. 1a, in
one iteration of the C loop, 13 data elements (4 weights and
9 input features) are transmitted from the GLB to a compu-
tation unit while only 4 data elements (4 psums) are trans-
mitted from a computation unit to the GLB. Meanwhile, no
data is exchanged between the two computation units. As
such, prior inter-chiplet networks [15], [16], [18] which pro-
vide equal per-chiplet bandwidth would clearly be ineffi-
cient, if applied to CNN accelerators with GLB and
computation units on different chiplets.

Recurrence of Communication Patterns. As shown in Fig. 1a,
there are three communication patterns in the C loop: uni-
cast of weights, broadcast of input features, and gathering
of psums or output features. These communication patterns
recur in each iteration of the outer E and F loops. A natural
approach to efficiently support the recurrent communica-
tion patterns is to design a network that can dynamically
switch between multiple configurations, each of which
adapts to a specific communication pattern.

Prevalent Broadcasting. Broadcast communication is prev-
alent in the computation of convolution layers [2], as a large
fraction of computations often share the same input data.
As shown in Fig. 1a, the input features are broadcast to two
separate computation units, because each computation unit
processes one weight kernel and both weight kernels slide
across the same ifmaps. Although prior dataflow optimiza-
tions also exploit broadcast and multicast [5], [22], [23], [24],

Fig. 1. Computations in a sample convolution layer and the correspond-
ing nested loop representation. Communications incurred include uni-
casting weights, broadcasting ifmaps, and gathering psums or ofmaps.

LI ETAL.: SPRINT: A HIGH-PERFORMANCE, ENERGY-EFFICIENT, AND SCALABLE CHIPLET-BASEDACCELERATORWITH... 2333

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

[25], [26], [27], these operations are often very costly to
implement in metallic interconnects in terms of latency,
energy consumption, and overall circuity area.

2.2 Photonic Interconnects

In this subsection, we introduce basic optical components
and discuss the drawbacks of existing photonic inter-
chiplet networks when applied to chiplet-based CNN
accelerators.

2.2.1 Photonic Interconnects

Fig. 2 presents a photonic link with wavelength division
multiplexing (WDM). In this example, an off-chiplet laser
emits two optical signals with different wavelengths, �0
and �1. The optical signals are then coupled into a wave-
guide using an optical coupler [9]. At the transmission side,
two micro-ring resonators (MRRs) labeled MMR0 and MMR1

are used as optical modulators to separately modulate input
signals at wavelengths �0 and �1. At the receiving side,
another two MRRs labeled MMR2 and MMR3 are used as opti-
cal filters to select a specific modulated wavelength. The
selected wavelength is detected by a photodetector [9] and
converted back to an electrical signal. The electrical signals
are then amplified by the transimpedance amplifiers (TIAs)
and forwarded to comparators to retrieve the original data
transmitted. A MRR, used as either an optical modulator or
filter, is tuned by a resistive heater controlled by a thermal
tuning unit to mitigate thermal and process variations [9],
[12]. Two or more wavelengths can be multiplexed onto the
same waveguide using WDM technique.

2.2.2 Photonic Inter-Chiplet Networks

Several photonic inter-chiplet networks [14], [15], [16],
[17], [18], [19] have been proposed recently. However,
these networks are implemented in systems with CPU/
GPU chiplets running general manycore applications. The
resulting uniform bandwidth resource allocation and full
connectivity between chiplets lead to excessive implemen-
tation cost. For example, [16], [18], [19] propose a photonic
crossbar using single-write multiple-read (SWMR) chan-
nels. The number of required MRRs in a photonic crossbar
scales quadratically with the number of chiplets, leading
to excessive area cost and energy consumption [9], [28],
[29]. By contrast, the proposed SPRINT architecture is
designed specifically for CNN inference application, which
results in an optimized photonic inter-chiplet network with
much fewerMRRs.

3 SPRINT ARCHITECTURE

SPRINT architecture consists of one GLB and several accel-
erator chiplets integrated in a package. A reconfigurable
photonic inter-chiplet network is designed to provide com-
munication between the GLB and other accelerator chiplets.
The photonic inter-chiplet network supports (1) data trans-
mission from the GLB to accelerator chiplets, and (2) data
gathering from accelerator chiplets to the GLB.

3.1 Photonic Inter-Chiplet Network

3.1.1 Components for Network Reconfiguration

We introduce two additional optical components utilized in
the SPRINT photonic inter-chiplet network to support differ-
ent communication patterns from the GLB to accelerator chip-
lets: electrical-optical switch [36] and tunable splitter [37].

Electrical-Optical Switch. SPRINT includes 1�2 electrical-
optical switches, each of which is associated to an accelera-
tor chiplet. As shown in Fig. 3, a 1�2 electrical-optical
switch consists of two waveguides (one with the input and
through ports while the other one with the drop port) and
two MRRs (labeled MRR0 and MRR1). The two MRRs are
positioned between the two waveguides. Regions inside
and outside the MRRs are p-type and n-type semiconductor
regions, respectively, to form the PIN diode structure.
Switching an optical signal between the through port and
the drop port is accomplished with the switching of MRR
resonance using the free-carrier dispersion effect [36]. When
the MRRs are at off-resonance as shown in Fig. 3a, the opti-
cal signal from the input port is directly forwarded to the
through port. When the MRRs are at on-resonance as shown
in Fig. 3b, the optical signal from the input port is guided
through two MRRs to the drop port. In SPRINT, these 1�2
electrical-optical switches are utilized to either combine or
separate multiple waveguides.

Tunable Splitter. Another component included in SPRINT
is the tunable splitter [37]. Different from MRRs working at
on-resonance and off-resonance states as optical modulators
or filters, a tunable splitter works in the transient zone
between on-resonance and off-resonance. As shown in
Fig. 4, the regions inside and outside the MRR are doped to
form the PIN diode structure. When applying an appropri-
ate voltage to the PIN diode structure, the optical signal
from the input port is split into two parts and guided to the
drop port (a fraction) and through port ((1-a) fraction),
respectively. By tuning the applied voltage (0 to 5 volts),
split ratios in the range of 0.4 to 1.8 can be obtained [37].
Digital-to-analog converters (DACs) are utilized to accu-
rately adjust the applied voltage. In SPRINT, a tunable split-
ter is utilized to split an appropriate portion of the power of

Fig. 2. A wavelength division multiplexing photonic link.

Fig. 3. The electrical-optical switch in (a) off or (b) on state.

2334 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

an optical signal for detection purpose while forwarding the
rest of the optical signal to downstream locations. We cas-
cade multiple tunable splitters [38] in cases where split
ratios at a wider range are necessary.

3.1.2 Photonic Inter-Chiplet Network

For clarity, we illustrate the photonic inter-chiplet network of
a scale-down SPRINT architecture that consists of a GLB and
four accelerator chiplets in Fig. 5. The photonic inter-chiplet
network consists of two parts: (1) GLB-to-accelerator commu-
nication and (2) accelerator-to-GLB communication. In this
example, eight wavelengths are utilized for the inter-chiplet
communication. All the optical components (e.g., wave-
guides, MRRs, photodetectors, electrical-optical switches,
etc.) are implemented on a silicon interposer [39] using
CMOS compatible process, while all the electrical peripheral
circuits are implemented on the silicon dies of the GLB and
accelerator chiplets. In this subsection, we describe the archi-
tectural innovations in SPRINT photonic inter-chiplet net-
work including wavelength allocation for non-uniform
bandwidth demand, and waveguide reconfiguration for
recurrent communication patterns. We further discuss the
physical implementation of this network.

Wavelength Allocation. We divide all the available wave-
lengths into two groups - one group for data transmission
from the GLB to accelerator chiplets (�0, �1, �2, �3 in
Fig. 5), while the other group for data gathering from accel-
erator chiplets to the GLB (�4, �5, �6, �7 in Fig. 5).
Although wavelengths are equally divided into the two

groups in the example shown in Fig. 5, this is not the case in
the full-scale SPRINT architecture, where wavelengths are
non-uniformly allocated based on the specific bandwidth
demand. In Section 4, we demonstrate that the bandwidth
demand may vary when different CNN dataflows and chip-
let-level architectures are implemented, or when different
convolution layers are processed, as these factors signifi-
cantly impact the transmission of weights, input features,
and psums. Please note that the number of wavelengths in
the group for data gathering from accelerator chiplets to the
GLB is proportional to the number of accelerator chiplets in
the system, as each accelerator chiplet is assigned a unique
wavelength (e.g., wavelength �4 is assigned to Chiplet 0

in Fig. 5).
GLB-to-Accelerator Communication. This communication,

represented by the upper part of Fig. 5, is used to transmit
weights and input features from the GLB to accelerator chip-
lets. Due to the recurrent unicast and broadcast communica-
tion patterns shown in Fig. 1 and broadly observed in CNN
inference [2], we propose three communication modes for
the data transmission from the GLB to accelerator chiplets,
namely unicast mode, broadcast mode, and hybrid mode.
The unicast mode is used to simultaneously transmit exclu-
sive data from the GLB to each individual accelerator chiplet
with equal bandwidth. As shown in Fig. 5, four separate
waveguides connect the GLBwith corresponding accelerator
chiplets (e.g., Waveguide 0 connects theGLBwith Chiplet

0), forming four dedicated communication channels. To
eliminate interference, the 1�2 electrical-optical switches
connecting adjacent waveguides (e.g., Switch 0 that con-
nectsWaveguide0 and Waveguide 1) are tuned at off-reso-
nance. Further, the tunable splitters are all disabled since
there are no accelerator chiplets sharing the same communi-
cation channel. Data is transmitted from the GLB to an accel-
erator chiplet usingwavelengths �0, �1, �2, and �3.

The broadcast mode is used to transmit the shared data
from the GLB to all accelerator chiplets in the system. As
shown in Fig. 5, all four waveguides (Waveguide 0-3) are

Fig. 4. The tunable splitter in (a) disabled state or (b) with a split ratio of
a/(1-a).

Fig. 5. A small-scale SPRINTarchitecture. We assume four accelerator chiplets, each with four receivers and one transmitter. Eight wavelengths are
multiplexed in a photonic inter-chiplet network. Wavelengths �0, �1, �2, �3 are responsible for data transmission from the GLB to all other accelerator
chiplets, while wavelengths �4, �5, �6, �7 are responsible for data transmission from a corresponding accelerator chiplet to theGLB. The legends illus-
trate some key components and wires. An optical component with a specific color means this component is associated with one wavelength only.

LI ETAL.: SPRINT: A HIGH-PERFORMANCE, ENERGY-EFFICIENT, AND SCALABLE CHIPLET-BASEDACCELERATORWITH... 2335

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

combined into an SWMR channel by tuning 1�2 electrical-
optical switches (Switch 0-2) at on-resonance. The tunable
splitters are enabled and tuned to different split ratios based
on their positions in the SWMR channel. As the example
shown in Fig. 5, tunable splitters attached to Chiplet 0,
Chiplet 1, and Chiplet 2 are tuned to split ratios of 3/1,
2/1, and 1/1, respectively, based on the number of down-
stream accelerator chiplets along the channel. Please note
that there are no tunable splitters attached to the last acceler-
ator chiplet (Chiplet 3). Data is broadcast from the GLB to
all accelerator chiplets usingwavelengths �0, �1, �2, and �3.

The hybrid mode works as a combination of previous
two communication modes. In this mode, the waveguides
(Waveguide 0-3) are grouped into multiple segmented
SWMR or dedicated communication channels. Some 1�2
electrical-optical switches are tuned at off-resonance while
the others are tuned at on-resonance to separate segmented
channels and maintain intra-segment connectivity, respec-
tively. The tunable splitters are tuned to different split ratios
based on their positions in the corresponding segmented
channel. In the example shown in Fig. 5, we can create two
segmented SWMR channels, each connecting the GLB to a
set of two accelerator chiplets (Chiplet 0/1 and Chiplet

2/3), by tuning Switch 0 and Switch 2 at on-resonance
and Switch 1 at off-resonance. Accordingly, tunable split-
ters attached to Chiplet 0 and Chiplet 2 are tuned to
split ratio of 1/1, while tunable splitters attached to Chip-

let 1 are disabled. Further, by tuning Switch 2 at off-reso-
nance and disabling tunable splitters attached to Chiplet

2, a previous segmented SWMR channel is divided into two
dedicated communication channels. The hybrid mode is
introduced to support more sophisticated communication
patterns observed in CNN inference other than unicast and
broadcast. It is particularly useful in cases when accelerator
chiplets in the system are not fully occupied, or when multi-
ple CNN layers with distinct communication patterns are
processed in a pipelined manner.

The above three communication modes for GLB-to-accel-
erator communication can be tuned at runtime by setting
appropriate switching signals and split ratios on 1�2 electri-
cal-optical switches and tunable splitters, respectively. In
Section 4.2, we will present how unicast and broadcast
modes are utilized in turn for transmission of weights and

input features, respectively, when different chiplet-level
accelerator architectures and dataflows are assumed.

Accelerator-to-GLB Communication. This communication,
represented by the lower part of Fig. 5, is used to collect the
psums and output features from the accelerator chiplets
and transmit them to the GLB. The photonic inter-chiplet
network works as a multiple-write single-read (MWSR)
channel. Each accelerator chiplet is assigned a specific
wavelength (e.g., �4 is assigned to Chiplet 0 in Fig. 5).
Psums and output features generated by different accelera-
tor chiplets are transmitted on different wavelengths (�4,
�5, �6, �7 in Fig. 5) and obtained by receivers at the GLB
side. The received psums are accumulated in the near-data
accumulation engine (NAE) and stored in GLB for future
reference, while output features go through bias and activa-
tion functions and act as the input data of the next CNN
layer.

3.1.3 Physical Implementation

Fig. 6 depicts the physical implementation of SPRINT pho-
tonic inter-chiplet network corresponding to the SPRINT
architecture shown in Fig. 5. For simplicity, we only present
Chiplet 2 and its associated electrical and optical compo-
nents. The physical implementation of the entire SPRINT
photonic inter-chiplet network can be easily inferred.

As shown in Fig. 6, the electrical circuits of transmitters
and receivers, the reconfiguration controller unit (RCU),
and multiple processing elements (PEs) of Chiplet 2 are
integrated on a separate silicon die and connected to the
photonic interposer through micro-bumps [39]. RCU is
used to setup the communication mode for GLB-to-accelera-
tor communication from three available modes discussed in
Section 3.1.2. RCU switches the 1�2 electrical-optical switch
between on-resonance and off-resonance, and tunes associ-
ated tunable splitters to appropriate split ratios with a DAC.
The micro-bumps are used for (1) RCU and thermal tuning
signal transmission from an accelerator chiplet to the pho-
tonic interposer, and (2) data exchange between the pho-
tonic interposer and the accelerator chiplet. We only show
the RCU tuning signal transmission (dashed lines) and data
exchange between the photonic interposer and the accelera-
tor chiplet (solid lines) in Fig. 6b, for simplicity’s sake.

Fig. 6. The physical implementation of the SPRINT photonic inter-chiplet network, taking Chiplet 2 in Fig. 5 as an example. The legends utilized
here are compatible with the ones in Fig. 5.

2336 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

All optical components (e.g., waveguide, modulator, fil-
ter, photodetector, tunable splitter, and 1�2 electrical-opti-
cal switch) are integrated on the photonic interposer. There
are mainly three waveguides shown in Fig. 6: Waveguide 2

and Waveguide 3 that connect the GLB to Chiplet 2 and
Chiplet 3, respectively, and another waveguide for accel-
erator-to-GLB communication. Waveguide 2 is connected
to Waveguide 3 through the drop port of Switch 2. These
main waveguides are located in the same layer in the inter-
poser. Modulators, filters, tunable splitters, and 1�2 electri-
cal-optical switches are vertically coupled [40] to the above
waveguides. The drop port of a tunable splitter is connected
to the corresponding photodetector through another wave-
guide that is located in a separate layer [41] in the interposer
from previously discussed main waveguides, to avoid
waveguide crossing.

We present the working flow of the components involved
in Fig. 6b, by taking the broadcast mode in GLB-to-accelera-
tor communication as an example. Modulated wavelengths
�0, �1, �2, and �3 in Waveguide 2 are selected by vertically
coupled filters and guided to separate tunable splitters. Since
the broadcast mode is enabled and there is only one down-
stream accelerator chiplet after Chiplet 2, the split ratios of
the tunable splitters are tuned to 1/1. The power of each
wavelength is split into two equal portions: one portion from
the drop port of the tunable splitter is guided to a corre-
sponding photodetector for detectionwhile the other portion
from the through port is collected and merged into Wave-

guide 3 through Switch 2. The photocurrent signals from
photodetectors are transmitted through micro-bumps to
receivers and converted to transmitted data.

3.2 Chiplets in SPRINT Architecture

GLB. Two additional modules, NAE and non-convolution
engine, are integrated on the GLB silicon die. NAE performs
accumulation operations on psums collected from accelera-
tor chiplets. In the prior chiplet-based CNN accelerator [5],
an accelerator chiplet may forward the psums locally gener-
ated to a remote accelerator chiplet for cross-chiplet accu-
mulation, possibly leading to communication between two
arbitrary accelerator chiplets. In this case, costly E/O and
O/E signal conversions are inevitable if a photonic inter-
chiplet network is used. By exploiting the distance-indepen-
dent property of photonics, psums generated in accelerator
chiplets are collected and transmitted back to NAE for accu-
mulation, significantly reducing the E/O and O/E signal
conversions. The non-convolution engine is used to process
the non-convolution layers in CNN models by performing
functions such as bias, activation, scaling, and pooling.

Accelerator Chiplet. An accelerator chiplet consists of an
RCU, electrical circuits for transmitters and receivers, and
multiple PEs as shown in Fig. 5. RCU is responsible for tun-
ing the 1�2 electrical-optical switch and tunable splitters, as
we have discussed in Section 3.1.3. The respective numbers
of circuits for transmitters and receivers are determined by
the number of wavelengths used for GLB-to-accelerator and
accelerator-to-GLB communications. In Section 4.2, We will
show that the respective numbers of wavelengths for GLB-
to-accelerator and accelerator-to-GLB communications may
vary when different chiplet-level architectures or underly-
ing dataflows are assumed.

4 SPRINT DATAFLOW CUSTOMIZATION

4.1 Package-Level Data Partition

The conventional CNN dataflow optimizations [5], [22], [23],
[24], [25], [26], [27] are proposed for accelerators with only
metallic interconnects. Such dataflow optimizations often
target reducing data transmission distance by improving
local data reuse. As SPRINT architecture relies on a photonic
inter-chiplet network with distance-independent latency,
prior dataflow optimizations would not necessarily be effec-
tive. This is because (1) data transmission distance would
not be a primary obstacle to system performance, and (2)
new unaddressed factors (e.g., utilization of broadcast and
multicast communications, the number of E/O and O/E sig-
nal conversions, etc.) may have significant impact on system
performance.

At the package level, we spatially distribute the compu-
tations of each weight kernel in the M dimension to an accel-
erator chiplet and temporally iterate the computations of
each input channel in the C dimension. In doing so, the
same input feature would be consumed by all involved
accelerator chiplets, leading to more opportunities for
broadcasting or multicasting communication. Meanwhile,
the accumulation computations along the C dimension are
confined in each individual accelerator chiplet, reducing
cross-chiplet accumulations, hence, reducing the number of
required E/O and O/E signal conversions.

4.2 Chiplet-Level Dataflow

In this subsection, we discuss different configurations of the
SPRINT photonic inter-chiplet network when assuming dif-
ferent chiplet-level accelerator architectures with weight-
stationary (WS) [5] or row-stationary (RS) [22] CNN data-
flow. In Section 6, we present the simulation results when
assuming two additional CNN dataflows, namely output-
stationary (OS) dataflow [23] and no-local-reuse (NLR)
dataflow [27].

4.2.1 Accelerator Chiplet With Weight-Stationary

Dataflow

We assume that the accelerator chiplet architecture is simi-
lar to [5] and WS CNN dataflow is adopted. The circuits for
transmitters and receivers and the local PEs are connected
by a 2D electrical mesh intra-chiplet network as in [5]. Fig. 7
presents the data transmission in an iteration of the C loop,
using the same input CNN layer as in Fig. 1. The working
mode of GLB-to-accelerator communication switches regu-
larly based on the type of the transmitted data.

In Time Step 1, weights from the same input channel (C
dimension) but different weight kernels (M dimension) are
transmitted from the GLB to different accelerator chiplets
using the unicast mode. Since WS dataflow keeps weights
stationary within a PE, no other weights need to be transmit-
ted before the completion of current iteration of the C loop.
Starting from Time Step 2, the GLB broadcasts input fea-
tures to two involved accelerator chiplets. In Time Step 4,
6, and 8, different input features are broadcast (assume that
the local ifmap buffer in a PE can hold all the received input
features for local reuse). Consequently, the broadcast mode
for GLB-to-accelerator communication is selected and main-
tained. In Time Step 3, 5, 7, and 9, psums of corresponding

LI ETAL.: SPRINT: A HIGH-PERFORMANCE, ENERGY-EFFICIENT, AND SCALABLE CHIPLET-BASEDACCELERATORWITH... 2337

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

output features are either stored for future intra-chiplet accu-
mulation or transmitted back to the GLB using accelerator-
to-GLB communication. Time Step 9 indicates the comple-
tion of the current iteration of the C loop. Similar computa-
tions and data transmission are performed for the next input
channel. The final output features are obtained by accumu-
lating the corresponding psums in all iterations of the C loop.
For each iteration of the C loop, GLB-to-accelerator commu-
nication is switched between unicast and broadcast modes
once. Please note that it is not necessary to switch communi-
cationmode this frequently as in Fig. 7, as long as there is suf-
ficient buffer capacity to hold required input data and
intermediate results.

The number of wavelengths for GLB-to-accelerator com-
munication and the number of wavelengths for accelerator-
to-GLB communication are determined by the accelerator
chiplet architecture and the dataflow utilized. In the case
shown in Fig. 7, each local PE requires specific weights and
input features for computation while the generated psums
can be accumulated across local PEs, leading to a peak
bandwidth demand ratio of 4:1 for GLB-to-accelerator and
accelerator-to-GLB communications. Consequently, we allo-
cate 80% of the total wavelengths for GLB-to-accelerator
communication. This allocation may vary when the chiplet-
level architecture or dataflow is altered.

4.2.2 Accelerator Chiplet With Row Stationary Dataflow

We assume that the accelerator chiplet architecture is similar
to [22] and RS CNN dataflow is adopted. Multiple X-buses
and the circuits for transmitters and receivers are connected
by a Y-bus, while each X-bus is used to connect a group of
local PEs as in [22]. Fig. 8 presents the data transmission in
an iteration of the C loop, using the same input CNN layer as
in Fig. 1. Theworkingmode of GLB-to-accelerator communi-
cation switches regularly, but in a different pattern from the
one described in Section 4.2.1, indicating the significant
impact of chiplet-level accelerator chiplet architecture and
underlying dataflow on inter-chiplet communication.

In Time Step 1, two rows of weights from the same
input channel (C dimension) but different weight kernels (M

dimension) are transmitted from the GLB to different accel-
erator chiplets using the unicast mode. In Time Step 2, a
portion of the second row of the input features (labeled d

and e) is broadcast to two involved accelerator chiplets
using the broadcast mode. In Time Step 3, GLB-to-acceler-
ator communication is switched back to the unicast mode to
transmit another two rows of weights from the same input
channel but different weight kernels. In Time Step 4 and
6, the broadcast mode is selected and maintained to respec-
tively transmit input features labeled a, b, f, g, h and input
features labeled c and i. The transmission of input features
follow the exact pattern as in [22], which enables input fea-
ture reuse between PEs along diagonals. In Time Step 5, 7,
and 8, psums of corresponding output features are gener-
ated and transmitted back to the GLB using accelerator-to-
GLB communication. Time Step 8 indicates the completion
of the current iteration of the C loop. Similar computations
and data transmission are performed for other iterations of
C loop until final output features are obtained.

According to [22], the weights and input features are
reused along horizontal and diagonal directions while the
psums are accumulated along the vertical direction, making
a peak bandwidth demand ratio of 3:1 for GLB-to-accelerator
and accelerator-to-GLB communications. Consequently, we
allocate 75% of the total wavelengths for GLB-to-accelerator
communication. The allocation is different from Section 4.2.1
because a different chiplet-level dataflow is utilized.

5 EVALUATION METHODOLOGY

We compare the SPRINT architecture, in terms of execution
time and energy consumption, with other two state-of-the-
art chiplet-based architectures with either an electrical mesh
[5] or a photonic crossbar [18] for inter-chiplet communica-
tion. Meanwhile, we explore four different chiplet-level
architectures and dataflows and their impact on system per-
formance. Table 1 lists the key architectural parameters of
the SPRINT architecture and four different chiplet-level
architectures that we have explored. Different chiplet-level
architectures may lead to distinct bandwidth demands for
different types of data involved, as explained in Section 4.2.

Fig. 7. SPRINT GLB-to-accelerator communication mode selection when using weight-stationary [5] dataflow. We present data transmission in one
iteration of the C loop and the selected communication modes.

Fig. 8. SPRINT GLB-to-accelerator communication mode selection when using row-stationary [22] dataflow. We present data transmission in one
iteration of the C loop and the selected communication modes.

2338 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

For each chiplet-level architecture selected, a specific wave-
length allocation process discussed in Section 3.1.2 is per-
formed and the resulting SPRINT architecture is utilized for
evaluation.

Simulators. In order to simulate chiplet-based architec-
tures, We extend the open-source Timeloop simulator to
support the non-uniform distribution of latency and band-
width between PEs. The execution time is derived from the
computation time and the communication time, taking the
overlap between computation and communication into
account. The extended simulator tracks the number of arith-
metic operations and the number of accesses to each on-
package memory hierarchy to calculate the computation
time and on-package communication time, respectively.
The calculation takes the hierarchical network architecture
(inter-chiplet and intra-chiplet networks) into account and
ensures that data transmission does not exceed the band-
width limit of the corresponding link. The delay for tuning
the 1�2 electrical-optical switches and tunable splitters is
set to 500 ps [37]. The off-package communication time
(access time to off-package DRAM) is obtained from the
DRAMSim2 simulator [47].

Power Model. We evaluate the power consumption of
computations both on the accelerator chiplets and in NAE
using Synopsys Design Compiler. The power consump-
tion of accessing on-package memory hierarchies and off-
package DRAM is obtained using CACTI 6.0 [48] and
DRAMSim2, respectively. The power consumption of on-
package metallic interconnects is obtained using DSENT
[43], while the power consumption of photonic intercon-
nects in SPRINT and the photonic crossbar [18] is derived
from Equation (1)

Ptotal ¼ Plaser þ PTX þ PRX: (1)

The overall power consumption Ptotal consists of three
parts: laser power Plaser, power consumption of transmitting
circuitry PTX , and power consumption of receiving circuitry
PRX. We calculate PTX and PRX using the same parameters
as in [49] and scale the results to 28 nm technology [49],
[50]. Please note that the power consumption for ring heat-
ing has been included in both PTX and PRX. The values for
PTX and PRX are 1.22 mW and 0.92 mW , respectively when
a moderate 0.32 mW [46] ring-heating power consumption
is assumed. Laser power Plaser can be expressed by three
terms: photodetector sensitivity Prs, insertion loss Closs, and
system marginMsystem as shown in Equation (2)

Plaser ¼ Prs þ Closs þMsystem: (2)

We obtain the photodetector sensitivity Prs and insertion
loss Closs from parameters listed in Table 2. The system mar-
gin Msystem is assumed to be 4 dB [28]. From Equations (1)
and (2) and parameters from [49] and Table 2, we obtain the
energy consumption of the SPRINT photonic inter-chiplet
network to be 0.77 pJ=bit, indicating the superior energy
consumption of photonic interconnects.

Architectures for Comparison. SPRINT architecture is com-
pared with two state-of-the-art chiplet-based architectures
with electrical mesh [5] or photonic crossbar [18] for inter-
chiplet communication. These three inter-chiplet networks
are evaluated when four different chiplet-level accelerator
chiplet architectures and dataflows shown in Table 1 are
assumed. Please note that the photonic crossbar in [18] is
originally designed to connect CPU/GPU chiplets. We
replace the CPU/GPU chiplets with accelerator chiplets for
fair comparison. We largely use similar chiplet-level config-
urations as in the original papers for WS chiplet [5], RS chip-
let [22], OS chiplet [23], and NLR chiplet [27]. The GLB is
assumed to be evenly distributed to each accelerator chiplet
when modeling electrical mesh and photonic crossbar inter-
chiplet networks. By contrast, the GLB is assumed to be
placed on a separate silicon die as shown in Fig. 5 when
modeling the SPRINT architecture. To keep the laser power
in a reasonable range, the maximal number of accelerator
chiplets involved in broadcast communication is set to 16 in
SPRINT architecture. In the case when the number of accel-
erator chiplets in the system exceeds 16, broadcast commu-
nication from the GLB to all accelerator chiplets is
implemented as several broadcast communications from
the GLB to a subset of accelerator chiplets attached to the
same GLB-to-Accelerator waveguide as shown in Fig. 5.

Benchmarks. We choose four CNN models, VGG-16 [35],
ResNet-50 [32], DenseNet-201 [51], and EfficientNet-B7 [52]

TABLE 1
SPRINTArchitecture Parameters

Package

Number of chiplets 64
Global buffer 128 KiB / chiplet
Inter-chiplet bandwidth 800 Gbps / chiplet
Data rate per wavelength 10 Gbps

WS Chiplet

Number of PEs 16
Chiplet-level network 2D mesh
Number of vector MACs 8
Vector MAC width 8
Weight buffer 64 KiB / PE
Ifmap buffer 6 KiB / PE
Accumulation buffer 2 KiB / PE

RS Chiplet

Number of PEs 168
Chiplet-level network X-bus / Y-bus
Weight buffer 448 B / PE
Ifmap buffer 24 B / PE
Accumulation buffer 48 B / PE

OS Chiplet

Number of PEs 64
Chiplet-level network dedicated links
Nbin (input feature buffer) 1 KiB
Nbout (output feature buffer) 1 KiB
SB (synapse buffer) 2 KiB

NLR Chiplet

Number of PEs 64
Chiplet-level network dedicated links
Nbin (input feature buffer) 16 B
Nbout (output feature buffer) 16 B
SB (synapse buffer) 256 B

TABLE 2
Photonic Parameters

Component Value Component Value

Laser source 5 dB [42] Ring drop 1 dB [43]
Coupler 1 dB [42] Ring through 0.01 dB [43]
Waveguide 1 dB/cm [42] Photodetector 0.1 dB [42]
Splitter 0.2 dB [44] Waveguide-to-receiver 0.5 dB [45]
Waveguide bend 1 dB [45] Receiver sensitivity -26 dBm [42]
Waveguide crossover 0.05 dB [45] Ring heating 0.32 mW [46]

LI ETAL.: SPRINT: A HIGH-PERFORMANCE, ENERGY-EFFICIENT, AND SCALABLE CHIPLET-BASEDACCELERATORWITH... 2339

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

as the evaluation benchmarks. Table 3 lists the notations,
layer names in Caffe [53], and the number of computations
over the number of parameters (Comp./Comm.) of all 12 and
21 different layers in VGG-16 and ResNet-50, respectively.
We will present the layer-by-layer simulation results of
VGG-16 and ResNet-50 to closely examine the impact of
layer parameters on system performance and energy con-
sumption. For DenseNet-201 and EfficientNet-B7, we will
only present the simulation results of a complete inference
pass. Please note that we have removed redundant layers
with the same configuration parameters. For example,
res2a_branch1 in ResNet-50 has been removed because it has
the same configuration parameters as res2[a-c]_branch2c (L4
in ResNet-50 in Table 3).

6 SIMULATION RESULTS

6.1 Execution Time and Energy Consumption

Execution Time. Fig. 9 depicts the execution time comparison
of SPRINT architecture and two other architectures, namely
electrical mesh [54] and photonic crossbar, when using WS

accelerator chiplets. As compared to the electrical mesh
architecture, SPRINT achieves execution time reduction in
the range of 27% (L9:conv5-1) to 76% (L11:fc-4096)
and 28% (L11:res4a_branch1) to 66% (L21:fc-4096) in
VGG-16 and ResNet-50, respectively. SPRINT performs
extremely well in L11:fc-4096 layer in VGG-16 due to the
low Comp:=Comm: value of this layer, which means that the
data is frequently moved around along the memory hierar-
chy. As compared to the photonic crossbar, SPRINT achieves
execution time reduction in the range of 8% (L9:conv5-1)
to 58% (L11:fc-4096) and 1% (L11:res4a_branch1) to
50% (L21:fc-1000) in VGG-16 and ResNet-50, respec-
tively. The performance discrepancy of photonic crossbar
and SPRINT architecture is relatively small, as they both
exhibit distance-independent latency during data transmis-
sion. SPRINT architecture outperforms photonic crossbar
because the wavelengths are allocated based on real band-
width demand in SPRINT architecture, but equally allocated
to chiplets in photonic crossbar.

Fig. 10 shows the execution time comparison of SPRINT
architecture and two other architectures when using RS
accelerator chiplets. As compared to the electrical mesh
architecture, SPRINT achieves execution time reduction in
the range of 28% (L9:conv5-1) to 63% (L2:conv1-2) and
24% (L18:res5[a-c]_branch2b) to 61% (L5:res2[b-
c]_branch2a) in VGG-16 and ResNet-50, respectively. We
make two observations here. First, the execution time reduc-
tion of SPRINT architecture over electrical mesh architecture
is reducedwhen replacingWS chiplets with RS chiplets. This
is because psums keep being streamed out of an accelerator
chiplet in the original RS dataflow [22], possibly leading to
more inter-chiplet communication. Second, different acceler-
ator architectures and dataflows are suitable for layers with
different configurations. As compared to the photonic cross-
bar, SPRINT achieves execution time reduction in the range
of 14% (L9:conv5-1) to 39% (L12:fc-4096) and 11%
(L18:res5[a-c]_branch2b) to 25% (L5:res2[b-c]
_branch2a) in VGG-16 and ResNet-50, respectively. We
can observe that the execution time reduction of SPRINT

TABLE 3
Convolution and Fully-Connected Layers

Fig. 9. Execution time comparison across different VGG-16 and ResNet-50 layers when utilizing WS accelerator chiplets. In each layer, all values are
normalized to the electrical mesh architecture.

Fig. 10. Execution time comparison across different VGG-16 and ResNet-50 layers when utilizing RS accelerator chiplets. In each layer, all values are
normalized to the electrical mesh architecture.

2340 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

architecture over two other architectures varies when differ-
ent chiplet types or different benchmarks are used.

Energy Consumption. Fig. 11 depicts the energy consump-
tion comparison of SPRINT architecture and two other
architectures when using WS accelerator chiplets. As com-
pared to the electrical mesh architecture, SPRINT achieves
energy consumption reduction in the range of 19% (L11:
fc-4096) to 68% (L1:conv1-1) and 32% (L21:fc-1000)
to 72% (L4:res2[a-c]_branch2c) in VGG-16 and
ResNet-50, respectively. The reduction in energy consump-
tion mainly comes from the energy saving in inter-chiplet
communications. As compared to the photonic crossbar,
SPRINT achieves energy consumption reduction in the
range of 9% (L10:fc-4096) to 52% (L3:conv2-1) and
22% (L21:fc-1000) to 69% (L1:conv1) in VGG-16 and
ResNet-50, respectively. As compared to photonic crossbar,
the reduction in energy consumption in SPRINT architec-
ture comes from fewer MRRs required and their peripheral
circuitries. Fig. 12 shows the energy consumption compari-
son when RS accelerator chiplets are used. We observe simi-
lar trend as in Fig. 11.

Since DenseNet-201 and EfficientNet-B7 include many
layers, it’s difficult to present the per-layer execution time
and energy consumption when comparing SPRINT with
electrical mesh and photonic crossbar. We only present the
execution time and energy consumption of one complete
inference pass using four CNN models on WS and RS

accelerators in Figs. 13 and 14. We observe that though
SPRINT achieves the most reduction in execution time and
energy consumption in ResNet-50 and VGG-16, respec-
tively, SPRINT performs well in the more recent DenseNet-
201 and EfficientNet-B7 models as well.

6.2 SPRINT Adaptability

We study whether the SPRINT photonic inter-chiplet net-
work can adapt to different chiplet-level architectures and
dataflows using four different types of chiplets and corre-
sponding dataflows listed in Table 1. Simulation results in
Figs. 15 and 16 show that SPRINT outperforms the other
two architectures, in terms of execution time (up to 55%
reduction) and energy consumption (up to 52% reduction),
when all four types of chiplets are used, indicating the supe-
rior adaptability of SPRINT photonic inter-chiplet network.
Specifically, SPRINT architecture achieves the most signifi-
cant execution time and energy consumption reduction
when NLR chiplets are used, as the large amount of inter-
chiplet data transmission incurred in NLR dataflow can
fully exploit the benefit of SPRINT photonic inter-chiplet
network. SPRINT architecture achieves the least execution
time and energy consumption reduction when RS chiplets
are used, as the enhanced intra-chiplet data reuse in RS
dataflow makes the impact of implementing an advanced
inter-chiplet network less significant.

Fig. 11. Energy consumption comparison across different VGG-16 and ResNet-50 layers when utilizing WS accelerator chiplets. In each layer, all val-
ues are normalized to the electrical mesh architecture.

Fig. 12. Energy consumption comparison across different VGG-16 and ResNet-50 layers when utilizing RS accelerator chiplets. In each layer, all val-
ues are normalized to the electrical mesh architecture.

Fig. 13. Execution time comparison across VGG-16, ResNet-50, Dense-
Net-201, and EfficientNet-B7 when utilizing WS (left) and RS (right)
accelerator chiplets. All values are normalized to the electrical mesh
architecture.

Fig. 14. Energy consumption comparison across VGG-16, ResNet-50,
DenseNet-201, and EfficientNet-B7 when utilizing WS (left) and RS
(right) accelerator chiplets. All values are normalized to the electrical
mesh architecture.

LI ETAL.: SPRINT: A HIGH-PERFORMANCE, ENERGY-EFFICIENT, AND SCALABLE CHIPLET-BASEDACCELERATORWITH... 2341

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

6.3 SPRINT Scalability

We study the scalability of the SPRINT architecture by vary-
ing the number of accelerator chiplets in the system from 8 to
128. Fig. 17 shows the comparisons of execution time and
energy consumption. When integrating 128 accelerator chip-
lets in the system, SPRINT architecture achieves up to 78%
and 83% reduction in execution time and energy consump-
tion, respectively, as compared to other architectures. We
make the following observations: (1) photonic crossbar and
SPRINT architecture perform worse than electrical mesh
when the number of chiplets is low because of the expensive
E/O and O/E signal conversions; (2) photonic crossbar and
SPRINT architecture show good scalability in terms of execu-
tion time as the system scale increases because of the dis-
tance-independent property of photonics; (3) the energy
consumption of photonic crossbar, though scales better than
electrical mesh, is much higher than that of SPRINT architec-
ture due to the large number of MRRs required; (4) we can
project good scalability of SPRINTwhen the number of chip-
lets increases beyond 128.We also study the scalability of the
SPRINT architecture by varying the number of PEs per accel-
erator chiplet from 8 to 128 while keeping the number of
accelerator chiplets at 64. Fig. 18 shows that SPRINT per-
forms better in terms of execution time and energy consump-
tion as the number of PEs per accelerator chiplet increases.

6.4 Implementation Cost

To achieve equal per-chiplet bandwidth, SPRINT architec-
ture requires 14.5 K MRRs while photonic crossbar requires

over 338 K MRRs, which is 23 times larger. This is because
the number of MRRs scales linearly and quadratically with
the number of chiplets in SPRINT architecture and photonic
crossbar, respectively. [55] has reported a 6-bit DAC with 29
mW power consumption (130 nm technology). We assume
that a 6-bit DAC using 28 nm technology consumes 2.7 mW
power using the scaling factor provided in [50]. Since all the
tunable splitters attached to a chiplet share a split ratio, we
implement one 6-bit DAC in each RCU and it incurs insig-
nificant area and power overhead. Fig. 19 shows that the
energy consumption of DACs is only 1.2% to 1.7% of the
overall energy consumption of the SPRINT photonic inter-
chiplet network. As for timing overhead, the switching time
for a DAC is 200 ps [37] while the tuning time for a tunable
splitter is 500 ps [37]. In our evaluation, we assume that a
new split ratio can be set within 1 ns.

7 RELATED WORK

CNN Accelerator. Several CNN accelerators with different
dataflows [20], [22], [23], [26], [27], [56] have been proposed
in recent years. These accelerators are implemented on
monolithic chips and focus on improving data reuse [21]
assuming uniform latency and bandwidth across PEs. How-
ever, the increasing CNN model size requires scale-up sys-
tems like chiplet-based architectures, in which latency
between PEs in different chiplets becomes significant and
the uniform latency and bandwidth assumption no longer
holds true. Very few prior work [5], [6], [57] explores imple-
menting machine learning models in chiplet-based architec-
tures. Shao et al. [5] implement the CNN on a chiplet-based
architecture with an electrical mesh network for inter-chiplet
communication. Though this work adopts aggressive electri-
cal wire technology to implement the inter-chiplet network,
it still becomes the performance bottleneck as the system
scales up, indicating the scalability limitation of electrical
networks at the chiplet scale. Hwang et al. [57] implement a
recommendationmodel on a chiplet-based architecture. This
work focuses on the accelerator design and the interconnec-
tion network between chiplets is an electrical bus. Ascia et al.
[6] propose to replace the electrical wires with wireless

Fig. 15. Execution time comparison across ResNet-50 (left) and Effi-
cientNet-B7 (right) when utilizing WS, RS, OS, and NLR accelerator
chiplets. All values are normalized to the electrical mesh architecture.

Fig. 16. Energy consumption comparison across ResNet-50 (left) and
EfficientNet-B7 (right) when utilizing WS, RS, OS, and NLR accelerator
chiplets. All values are normalized the electrical mesh architecture.

Fig. 17. Execution time and energy consumption comparison when vary-
ing the number of accelerator chiplets.

Fig. 18. Execution time and energy consumption comparison when vary-
ing the number PEs per accelerator chiplet.

Fig. 19. Energy consumption breakdown of SPRINT photonic network
when utilizing WS and RS accelerator chiplets.

2342 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

channels to implement the inter-chiplet network for
CNN inference. Though exhibiting higher scalability as
compared to the electrical networks, the cost of provid-
ing sufficient bandwidth is significant. Our work exp-
lores scaling up the chiplet-based architecture using
photonic interconnects for large CNN models, as pho-
tonic interconnects are expected to achieve higher scal-
ability and bandwidth density.

Photonic Interconnects in Chiplet-Based Architectures. Imple-
menting photonic interconnects on chip has been well stud-
ied [38], [58], [59], [60], [61], [62]. Prior work [12], [14], [15],
[16], [17], [63], [64], [65] has explored to implement photonic
interconnects on silicon interposer in chiplet-based architec-
tures. Demir et al. [14] propose to construct a many-core
”virtual chip” by connecting multiple smaller chiplets
through a photonic crossbar. Photonic crossbars are also
used to connect the chiplets in [16], [18]. Grani et al. [15] uti-
lize arrayed waveguide grating router (AWGR) photonic
interconnects implemented on the silicon interposer to real-
ize a 16�16 photonic network-on-chip (NoC). Prior work
leverages the distance-independent feature of photonics in
large-scale chiplet-based architectures. However, the imple-
mentation cost is often high as all-to-all communication is
assumed and bandwidth resources are uniformly distrib-
uted. Our work explores to exploiting the specific communi-
cation patterns in CNN inference to further improve the
performance and reduce the implementation cost of the inter-
chiplet interconnects.

8 CONCLUSION

In this paper, we present a chiplet-based CNN accelerator
named SPRINT. The unique features of SPRINT include (1) a
novel photonic inter-chiplet network that is optimized to
adapt to specific communication patterns in CNN inference
through wavelength allocation and waveguide reconfigura-
tion, and (2) a novel optically-enhanced CNN dataflow that
exploits the inherent broadcasting and multicasting capabili-
ties of photonics to efficiently support the prevalent broad-
casting communication in CNN inference. Simulation studies
using multiple CNNmodels show that SPRINT provides sig-
nificant reduction in execution time and energy consumption,
as well as superior scalability, as compared to other state-of-
the-art chiplet-based architectures with metallic or photonic
inter-chiplet interconnects.

ACKNOWLEDGMENTS

We sincerely thank the anonymous reviewers for the excel-
lent feedback.

REFERENCES

[1] R. Mayer and H. A. Jacobsen, “Scalable deep learning on distrib-
uted infrastructures: Challenges, techniques, and tools,” ACM
Comput. Surv., vol. 53, no. 1, pp. 1–37, 2020.

[2] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proc. IEEE, vol. 105,
no. 12, pp. 2295–2329, Dec. 2017.

[3] B. Klenk and L. Dennison, “Why data science and machine learn-
ing need silicon photonics,” in Proc. Opt. Fiber Commun. Conf.
Exhib., 2020, pp. 1–3.

[4] S. M. Nabavinejad, M. Baharloo, K. Chen, M. Palesi, T. Kogel, and
M. Ebrahimi, “An overview of efficient interconnection networks
for deep neural network accelerators,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 10, no. 3, pp. 268–282, Sep. 2020.

[5] Y. S. Shao et al., “Simba: Scaling deep-learning inference with
multi-chip-module-based architecture,” in Proc. IEEE/ACM Int.
Symp. Microarchit., 2019, pp. 14–27.

[6] G. Ascia, V. Catania, A. Mineo, S. Monteleone, M. Palesi, and
D. Patti, “Improving inference latency and energy of DNNs
through wireless enabled multi-chip-module-based architectures
and model parameters compression,” in Proc. IEEE/ACM Int.
Symp. Networks-on-Chip, 2020, pp. 1–6.

[7] A. Kannan, N. E. Jerger, and G. H. Loh, “Enabling interposer-
based disintegration of multi-core processors,” in Proc. IEEE/ACM
Int. Symp. Microarchit., 2015, pp. 546–558.

[8] H. Zheng, K. Wang, and A. Louri, “A versatile and flexible chiplet-
based system design for heterogeneous manycore architectures,” in
Proc. ACM/IEEEDes. Autom. Conf., 2020, pp. 1–6.

[9] D. A. B. Miller, “Device requirements for optical interconnects
to silicon chips,” Proc. IEEE, vol. 97, no. 7, pp. 1166–1185, Jul.
2009.

[10] Y. Li, A. Louri, and A. Karanth, “Scaling deep-learning inference
with chiplet-based architecture and photonic interconnects,” in
Proc. ACM/IEEE Des. Autom. Conf., 2021, pp. 1–6.

[11] S. Van Winkle , A. Karanth, R. Bunescu, and A. Louri, “Extending
the power-efficiency and performance of photonic interconnects for
heterogeneousmulticores withmachine learning,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit., 2018, pp. 480–491.

[12] A.Narayan, Y. Thonnart, P. Vivet, andA. K. Coskun, “PROWAVES:
Proactive runtime wavelength selection for energy-efficient pho-
tonic NoCs,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 40, no. 10, pp. 2156–2169, Oct. 2021.

[13] L. Bernstein, A. Sludds, R.Hamerly, V. Sze, J. Emer, andD. Englund,
“Freely scalable and reconfigurable optical hardware for deep
learning,” Sci. Reports, vol. 11, no. 1, pp. 1–12, 2021.

[14] Y. Demir, Y. Pan, S. Song, N. Hardavellas, J. Kim, and G. Memik,
“Galaxy: A high-performance energy-efficient multi-chip architec-
ture using photonic interconnects,” in Proc. ACM Int. Conf. Super-
computing, 2014, pp. 303–312.

[15] P. Grani, R. Proietti, V. Akella, and S. J. Ben Yoo, “Design and
evaluation of AWGR-based photonic NoC architectures for 2.5D
integrated high performance computing systems,” in Proc. IEEE
Int. Symp. High-Perform. Comput. Archit., 2017, pp. 289–300.

[16] A. Narayan, Y. Thonnart, P. Vivet, C. F. Tortolero, and A. K.
Coskun, “WAVES: Wavelength selection for power-efficient 2.5D-
integrated photonic NoCs,” in Proc. Des. Autom. Test Eur. Conf.,
2019, pp. 516–521.

[17] P. Fotouhi, S. Werner, J. Lowe-Power , and S. J. Ben Yoo , “Enabling
scalable chiplet-based uniform memory architectures with silicon
photonics,” in Proc. Int. Symp.Memory Syst., 2019, pp. 222–334.

[18] Y. Thonnart et al., “POPSTAR: A robust modular optical NoC
architecture for chiplet-based 3D integrated systems,” in Porc.
Des. Autom. Test Eur. Conf., 2020, pp. 1456–1461.

[19] A. Narayan, Y. Thonnart, P. Vivet, A. Joshi, and A. K. Coskun,
“System-level evaluation of chip-scale silicon photonic networks
for emerging data-intensive applications,” in Proc. Des. Autom.
Test Eur. Conf., 2020, pp. 1444–1449.

[20] H. Kwon, A. Samajdar, and T. Krishna, “MAERI: Enabling flexible
dataflow mapping over DNN accelerators via reconfigurable
interconnects,” in Proc. ACM Int. Conf. Architectural Support Pro-
gram. Lang. Oper. Syst., 2018, pp. 461–475.

[21] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and
T. Krishna, “Understanding reuse, performance, and hardware
cost of DNN dataflow: A data-centric approach,” in Proc. IEEE/
ACM Int. Symp. Microarchit., 2019, pp. 754–768.

[22] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in
Proc. ACM/IEEE Int. Symp. Comput. Archit., 2016, pp. 367–379.

[23] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. ACM/IEEE Int. Symp. Comput. Archit., 2015,
pp. 92–104.

[24] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A
dynamically configurable coprocessor for convolutional neural
networks,” in Proc. ACM/IEEE Int. Symp. Comput. Archit., 2010,
pp. 247–257.

LI ETAL.: SPRINT: A HIGH-PERFORMANCE, ENERGY-EFFICIENT, AND SCALABLE CHIPLET-BASEDACCELERATORWITH... 2343

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

[25] L. Cavigelli, D. Gschwend, C. Mayer, S. Willi, B. Muheim, and
L. Benini, “Origami: A convolutional network accelerator,” in Proc.
ACMGreat Lakes Symp. Very Large Scale Integr., 2015, pp. 199–204.

[26] H. J. Yoo, S. Park, K. Bong, D. Shin, J. Lee, and S. Choi, “A 1.93
TOPS/W scalable deep learning/inference processor with tetra-
parallel MIMD architecture for big data applications,” in Proc.
IEEE Int. Solid-State Circuits Conf., 2015, pp. 80–81.

[27] T. Chen et al., “DianNao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in Proc. ACM
Int. Conf. Architectural Support Program. Lang. Oper. Syst., 2014,
pp. 269–284.

[28] A. V. Krishnamoorthy et al., “Computer systems based on silicon
photonic interconnects,” Proc. IEEE, vol. 97, no. 7, pp. 1337–1361,
Jul. 2009.

[29] M. Petracca, B. G. Lee, K. Bergman, and L. P. Carloni, “Design
exploration of optical interconnection networks for chip multi-
processors,” in Proc. IEEE Symp. High Perform. Interconnects, 2008,
pp. 31–40.

[30] R. G. Beausoleil et al., “A nanophotonic interconnect for high-per-
formance many-core computation,” in Proc. IEEE Symp. High Per-
form. Interconnects, 2008, pp. 182–189.

[31] D. Vantrease et al., “Corona: System implications of emerging
nanophotonic technology,” in Proc. ACM/IEEE Int. Symp. Comput.
Archit., 2008, pp. 153–164.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[33] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[34] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in Proc.
IEEEConf. Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[35] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. Int. Conf.
Learn. Representations, 2015, pp. 1–14.

[36] A. Biberman et al., “Broadband silicon photonic electrooptic
switch for photonic interconnection networks,” IEEE Photon. Tech-
nol. Lett., vol. 23, no. 8, pp. 504–506, Apr. 2011.

[37] E. Peter, A. Thomas, A. Dhawan, and S. R. Sarangi, “Active
microring based tunable optical power splitters,” Opt. Commun.,
vol. 359, pp. 311–315, 2016.

[38] J. Bashir, E. Peter, and S. R. Sarangi, “A survey of on-chip optical
interconnects,” ACM Comput. Surv., vol. 51, no. 6, pp. 1–34, 2019.

[39] X. Hu, D. Stow, and Y. Xie, “Die stacking is happening,” IEEE
Micro, vol. 38, no. 1, pp. 22–28, Jan./Feb. 2018.

[40] H. Venghaus, Wavelength Filters in Fibre Optics. Berlin, Germany:
Springer, 2006.

[41] K. Bergman, L. P. Carloni, A. R. Biberman, J. Chan, and G. Hen-
dry, Photonic Network-on-Chip Design. Berlin, Germany: Springer,
2014.

[42] R. Morris, A. Karanth, and A. Louri, “Dynamic reconfiguration of
3D photonic networks-on-chip for maximizing performance and
improving fault tolerance,” in Proc. IEEE/ACM Int. Symp. Micro-
archit., 2012, pp. 282–293.

[43] C. Sun et al., “DSENT - A tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in
Proc. IEEE/ACM Int. Symp. Netw.-on-Chip, 2012, pp. 201–210.

[44] S. Werner, J. Navaridas, and M. Luj�an, “Designing low-power,
low-latency networks-on-chip by optimally combining electrical
and optical links,” in Proc. IEEE Int. Symp. High-Perform. Comput.
Archit., 2017, pp. 265–276.

[45] R. Morris and A. Karanth, “Power-efficient and high-performance
multi-level hybrid nanophotonic interconnect for multicores,” in
Proc. IEEE/ACM Int. Symp. Netw.-on-Chip, 2010, pp. 207–214.

[46] A. Joshi et al., “Silicon-photonic CLOS networks for global on-chip
communication,” in Proc. IEEE/ACM Int. Symp. Netw.-on-Chip,
2009, pp. 124–133.

[47] P. Rosenfeld, E. Cooper-Balis , and B. Jacob, “DRAMSim2: A cycle
accurate memory system simulator,” IEEE Comput. Archit. Lett.,
vol. 10, no. 1, pp. 16–19, Jan.–Jun. 2011.

[48] N.Muralimanohar, R. Balasubramonian, andN. P. Jouppi, “CACTI
6.0: A tool to model large caches,” HP Lab., vol. 27, pp. 1–24,
2009.

[49] R. Polster, Y. Thonnart, G. Waltener, J. Gonzalez, and E. Cassan,
“Efficiency optimization of silicon photonic links in 65-nm CMOS
and 28-nm FDSOI technology nodes,” IEEE Trans. Very Large Scale
Integr. Syst., vol. 24, no. 12, pp. 3450–3459, Dec. 2016.

[50] A. Stillmaker and B. Baas, “Scaling equations for the accurate pre-
diction of CMOS device performance from 180 nm to 7 nm,” Inte-
gration, vol. 58, pp. 74–81, 2017.

[51] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 4700–4708.

[52] M. Tan and Q. V. Le, “EfficientNet: Rethinking model scaling for
convolutional neural networks,” in Proc. 36th Int. Conf. Mach.
Learn., 2019, pp. 6105–6114.

[53] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” inProc. ACM Int. Conf. Multimedia, 2014, pp. 675–678.

[54] Y. Li and A. Louri, “ALPHA: A learning-enabled high-perfor-
mance network-on-chip router design for heterogeneous many-
core architectures,” IEEE Trans. Sustain. Comput., vol. 6, no. 2,
pp. 274–288, Second Quarter 2021.

[55] X. Wu, P. Palmers, and M. S. J. Steyaert, “A 130 nm CMOS 6-bit
full nyquist 3 GS/s DAC,” IEEE J. Solid-State Circuits, vol. 43,
no. 11, pp. 2396–2403, Nov. 2008.

[56] Y. Chen et al., “DaDianNao: A machine-learning supercomputer,”
in Proc. IEEE/ACM Int. Symp. Microarchit., 2014, pp. 609–622.

[57] R. Hwang, T. Kim, Y. Kwon, and M. Rhu, “Centaur: A chiplet-
based, hybrid sparse-dense accelerator for personalized recom-
mendations,” in Proc. ACM/IEEE Int. Symp. Comput. Archit., 2020,
pp. 968–981.

[58] R. R. Tummala, “Moore’s law meets its match (system-on-pack-
age),” IEEE Spectrum, vol. 43, no. 6, pp. 44–49, Jun. 2006.

[59] S. Werner, J. Navaridas, and M. Luj�an, “A survey on optical net-
work-on-chip architectures,” ACM Comput. Surv., vol. 50, no. 6,
pp. 1–37, 2017.

[60] T. Alexoudi et al., “Optics in computing: Fromphotonic network-on-
chip to chip-to-chip interconnects and disintegrated architectures,”
J. Lightw. Technol., vol. 37, no. 2, pp. 363–379, 2019.

[61] Y. Demir and N. Hardavellas, “SLaC: Stage laser control for a flat-
tened butterfly network,” in Proc. IEEE Int. Symp. High-Perform.
Comput. Archit., 2016, pp. 321–332.

[62] M. Wade et al., “TeraPHY: A chiplet technology for low-power,
high-bandwidth in-package optical I/O,” IEEE Micro, vol. 40, no. 2,
pp. 63–71,Mar./Apr. 2020.

[63] Y. Li, A. Louri, and A. Karanth, “SPACX: Silicon photonics-based
scalable chiplet accelerator for DNN inference,” in Proc. IEEE Int.
Symp. High-Perform. Comput. Archit., 2022, pp. 1–13.

[64] A. Coskun et al., “Cross-layer co-optimization of network design
and chiplet placement in 2.5-D systems,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 39, no. 12, pp. 5183–5196,
Dec. 2020.

[65] Z. Wang et al., “CAMON: Low-cost silicon photonic chiplet
for manycore processors,” IEEE Trans. Comput.-Aided Des. Integr.
Circuits Syst., vol. 39, no. 9, pp. 1820–1833, Sep. 2020.

2344 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 33, NO. 10, OCTOBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

Yuan Li (Student Member, IEEE) received the BS
degree in physics from the University of Science
and Technology of China, China, in 2010, and the
MS degree in microelectronics from the University
of Newcastle upon Tyne, U.K., in 2011. He is cur-
rently working toward the PhD degree in computer
engineering at the George Washington University,
Washington, DC. His research interests include
machine learning architectures, accelerator-rich
heterogeneous systems, and emerging intercon-
nect andmemory technologies.

Ahmed Louri (Fellow, IEEE) received the PhD
degree in computer engineering from theUniversity
of Southern California, Los Angeles, California, in
1988. He is the David and Marilyn Karlgaard
Endowed chair professor of electrical and com-
puter engineering at the George Washington Uni-
versity, Washington, DC, which he joined in August
2015. He is also the director of the High Perfor-
mance Computing Architectures and Technologies
Laboratory. From 1988 to 2015, he was a professor
of electrical and computer engineering at the Uni-

versity of Arizona, Tucson, Arizona, and during that time, he served six
years (2000 to 2006) as the chair of the Computer Engineering Program.
From 2010 to 2013, he served as a program director in the National Sci-
ence Foundation’s (NSF) Directorate for Computer and Information Sci-
ence and Engineering. He directed the core computer architecture
program and was on the management team of several cross-cutting pro-
grams. He conducts research in the broad area of computer architecture
and parallel computing, with emphasis on interconnection networks, optical
interconnects for scalable parallel computing systems, reconfigurable com-
puting systems, and power-efficient and reliable Network-on-Chips (NoCs)
for multicore architectures. Recently he has been concentrating on:
energy-efficient, reliable, and high-performance many-core architectures;
accelerator-rich reconfigurable heterogeneous architectures; machine
learning techniques for efficient computing, memory, and interconnect sys-
tems; emerging interconnect technologies (photonic, wireless, RF, hybrid)
for NoCs; future parallel computing models and architectures (including
convolutional neural networks, deep neural networks, and approximate
computing); and cloud-computing and data centers. He is the recipient of
the 2020 IEEEComputer Society Edward J. McCluskey Technical Achieve-
ment Award, “for pioneering contributions to the solution of on-chip and off-
chip communication problems for parallel computing and manycore
architectures.” He is currently the editor-in-chief of the IEEE Transactions
on Computers. More information, please visit https://hpcat.seas.gwu.edu/
Director.html.

AvinashKaranth (SeniorMember, IEEE) received
the BE degree in electronics and communications
from the Manipal Institute of Technology, Manga-
lore University, India, in February 2000, and theMS
and PhD degrees from Electrical and Computer
Engineering Department, The University of Ari-
zona, Tucson, Arizona, in May 2003 and August
2006, respectively. Presently, he is the Joseph
Jachinowski professor in the School of Electrical
Engineering and Computer Science, Ohio Univer-
sity, Athens, Ohio. He directs the Technologies for

Emerging Computer Architecture Lab (TEAL) at Ohio University, Athens,
Ohio. His research interests include computer architecture, optical inter-
connects, Network-on-Chips (NoCs) and emerging technologies such as
nanophotonics, 3D, and wireless interconnects. He is the recipient of NSF
CAREER Award, in 2011, Presidential Research Scholar Award, in 2017,
Best Paper Award at the ICCD 2013 conference and his papers have been
nominated for Best Paper at the IEEE Symposium on Network-on-Chips
(NoCs) in May 2010 and the IEEE Asia & South Pacific Design Automation
Conference (ASP-DAC) in January 2009. He is amember of the ACM.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: SPRINT: A HIGH-PERFORMANCE, ENERGY-EFFICIENT, AND SCALABLE CHIPLET-BASEDACCELERATORWITH... 2345

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:54:02 UTC from IEEE Xplore. Restrictions apply.

https://hpcat.seas.gwu.edu/Director.html
https://hpcat.seas.gwu.edu/Director.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

