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Abstract—The interconnection network plays a vital role in
determining the functionality and performance of a hardware deep
neural network accelerator. We explore employing silicon photonic
interconnects and leveraging their energy-efficient multicast and
distance-independent latency properties. We discuss consequent
innovations in dataflow optimization and architecture design.

Index Terms—silicon photonics, neural network, accelerator

I. INTRODUCTION

A hardware deep neural network (DNN) accelerator typically
includes numerous simple processing elements (PEs) working
in coordination. The interconnection network connecting these
PE and the memory hierarchy plays a vital role in determining
the functionality and performance of a DNN accelerator [1], [2].
Conventional metallic-based wires often create a bottleneck in
scaled-up DNN accelerators as they cannot effectively support
communication over increased distances without performance
degradation [3]–[5]. We propose to incorporate silicon photonic
interconnects in accelerator design to tackle the communication
bottleneck. Among many well-recognized advantages of silicon
photonic interconnects compared to metallic-based wires, we
are particularly interested in the energy-efficient multicast and
distance-independent latency properties [5]–[7] and their impact
on dataflow optimization and architecture design choices.

Prior dataflow optimizations target maximizing data reuse in
memory hierarchies close to computing [1], [2] since accessing
data in lower hierarchies incurs notable overhead in terms of
latency and energy consumption. Nevertheless, local data reuse
inherently constrains the obtainable parallelism, and potentially
creates date duplicates that fill up the valuable on-chip memory.
Fig. 1 shows a unicast channel and a single-write-multiple-read
(SWMR) multicast channel. They both outmatch metallic-based
wires with the advanced ground-referenced signaling (GRS)
technique while SWMR channel achieves 0.1 pJ/bit/receiver
communication, which is 17× lower than metallic-based wires
due to transmitter sharing. Our proposed dataflow optimization
maximizes multicast communications by performing operations
with shared data in parallel on different PEs.

II. DATAFLOW OPTIMIZATION

Operations in a DNN layer are presented as a nested loop on
the following dimensions: output channel ⟨k⟩, input channel
⟨c⟩, weight kernel shape ⟨r s⟩, and output plane shape ⟨e f⟩.
Our dataflow optimization includes three interactive parts, with
the first and the last parts targeting maximizing local data reuse
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Fig. 1: Photonic communication channels (left) and their energy
efficiency per receiver (right) with parameters as in [6].

TABLE I: Parallelism Exploration

Dimension Data Multicast Reuse Communication Patterns

⟨k⟩
W ✘ ✔ GLB → PE Unicast Communication
I ✔ ✔ GLB → PE Multicast Communication
P ✔ GLB ↔ PE Unicast Communication

⟨e f⟩
W ✔ ✘ GLB → PE Multicast Communication
I ✔ ✔ GLB → PE Multicast Communication∗

P ✔ GLB ↔ PE Unicast Communication

⟨c⟩
W ✘ ✔ GLB → PE Unicast Communication
I ✘ ✔ GLB → PE Unicast Communication
P ✔ GLB ↔ PE Unicast Communication

⟨r s⟩
W ✘ ✔ GLB → PE Unicast Communication
I ✔ ✔ GLB → PE Multicast Communication
P ✔ GLB ↔ PE Unicast Communication

⟨k e f⟩
W ✔ ✘ GLB → PE Multicast Communication
I ✔ ✘ GLB → PE Multicast Communication
P ✔ GLB ↔ PE Unicast Communication

⟨k e f c⟩
W ✔ ✘ GLB → PE Multicast Communication
I ✔ ✘ GLB → PE Multicast Communication
P ✔ GLB ↔ PE Unicast Communication

⟨k e f c r s⟩
W ✔ ✘ GLB → PE Multicast Communication
I ✔ ✘ GLB → PE Multicast Communication
P ✘ GLB ↔ PE Unicast Communication

inside off-chip DRAM and on-chip PEs, respectively. We only
elaborate on the second part here since it targets maximizing
multicast communications on the silicon photonic interconnects
between the GLB and PEs while still maintaining reasonable
data reuse in the GLB. Table I illustrates the generated multicast
opportunities, remaining local reuse opportunities, and incurred
communication patterns of all three involved data types, namely
weight kernel (W), input feature (I), and partial sum or output
feature (P), when enabling parallel execution in each individual
dimension or a collection of dimensions. Our observations are:
(1) the priority to enable parallel execution should be ⟨k⟩, ⟨e f⟩,
⟨c⟩, and ⟨r s⟩; (2) parallel execution in ⟨k e f⟩ dimensions
yields maximum multicast of W and I while maintaining local
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Fig. 2: Unicast & multicast (top), two-dimensional multicast
(middle), and write-back unicast (bottom) communication
modes in our proposed architecture design with M ×N = 6
PEs. M and N represent the numbers of rows and columns
of the PE array, respectively.

reuse of P ; (3) the silicon photonic interconnects are expected
to support simultaneous unicast & multicast communication,
simultaneous two-dimensional multicast communication, and
write-back unicast communication.

III. NETWORK ARCHITECTURE

We demonstrate the GLB, PEs, and interconnection network
formed by silicon photonic interconnects inside our proposed
accelerator architecture in Fig. 2. We use M and N to represent
the numbers of rows and columns of the PE array. A laser is
coupled to a waveguide that traverses the transmitters in the
GLB and connects to a set of M horizontal waveguides. A
set of M +N microring resonators (MRRs) is responsible for
splitting a proper fraction of laser power to the corresponding
horizontal waveguide. The M horizontal waveguides finally
merge into one waveguide which connects to the receivers in
the GLB. In addition to working in on-resonant and off-resonant
states to act as modulators or filters, MRRs in our architecture
also work in a transient state with a biased voltage applied.
An MRR in this transient state forwards α and 1− α fraction
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Fig. 3: Execution time (left) and energy (right) comparison
between Simba and our design, normalized to Simba.

of laser power to drop and through ports, respectively, forming
a split ratio of α/ (1− α). The interconnection network in
our proposed architecture can switch dynamically among three
working modes. The unicast & multicast mode is for cases
where only one type of input data (W or I) is multicast such as
parallel execution in ⟨k⟩ dimension only. The two-dimensional
multicast mode is for cases where both types of input data
are multicast such as parallel execution in ⟨k e f⟩ dimensions.
The write-back unicast mode is utilized to send intermediate
or final computing results to the GLB. The MRRs are tuned
accordingly to switch among working modes. In Fig. 2 filled
circles represent MRRs as modulators while hollow circles
represent MRRs as filters or splitters. The color of a circle
represents the specific wavelength that it resonates while a
circle in grey indicates that this MRR is inactive.

IV. EVALUATION

Fig. 3 illustrates the per-layer execution time and energy
comparison between Simba [1], which is a state-of-the-art DNN
accelerator that only implements metallic-based wires, and our
proposed design using the VGG-16 neural network model
for ImageNet application. Our proposed design achieves on
average 51% and 67% decrease in execution time and energy,
respectively. The area of a PE in our architecture is 0.72 mm2

while the area for a transceiver is 0.0096 mm2/wavelength
[8]. The area overhead is 3.9%.
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