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Abstract—We propose SecureNoC, a learning-based framework to enhance NoC security against Hardware Trojan (HT) attacks while
holistically improving performance and power. The proposed framework enhances NoC security with several architectural innovations,
namely a per-router HT detector, multi-function bypass channels (MBCs), and a lightweight data encryption design. Specifically, the
threat detector uses an artificial neural network for runtime HT detection with high accuracy. The MBCs consist of a router bypass route
and reconfigurable channel buffers which can efficiently isolate malicious nodes and reduce power consumption. The proposed data
encryption design adapts to diverse traffic patterns and dynamically deploys novel lightweight encryption techniques for desired
security goals with improved latency. Additionally, to balance the trade-offs and handle the dynamic interactions of the proposed
dynamic designs, a proactive deep-Q-learning (DQL) control policy is proposed to simultaneously provide optimized NoC security,
performance, and power consumption. Simulation studies using PARSEC benchmarks show that the proposed SecureNoC achieves
36% higher HT detection accuracy over state-of-the-art NoC security techniques while reducing network latency by 39% and energy
consumption by 46%.
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1 INTRODUCTION

AS technology scales, Network-on-Chip (NoC) architec-
tures [1], [2], have emerged as the prevailing communi-

cation fabric for manycore architectures. However, as
computing resources are dynamically shared, NoCs are
becoming increasingly vulnerable to security threats [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]. In NoCs,
maliciously implanted Hardware Trojans (HTs) [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25] have been shown to
destruct NoC functionality, degrade NoC performance, leak
information, and covertly transmit data.

A large body of work has been devoted to secure NoCs
against HTs from three major aspects, namely HT detection,
HT mitigation, and data encryption [16], [17], [18], [19], [20],
[21], [22], [23], [24]. Prior threat detection techniques [3], [5],
[19], [21], [24] monitor NoC attributes and detect malicious
components by capturing abnormal attribute values (e.g., injec-
tion rate, buffer/link utilization, and latency) that far exceed a
manually designed threshold. The threshold values, if not

carefully selected, can result in inaccurate detection and perfor-
mance penalties. For HT mitigation, existing designs [11], [12],
[24] separate the shared NoC resources (e.g., virtual channels
and communication paths) to isolate the HT-infected routers.
These techniques can provide non-interference transmissions
but inevitably restrict the NoC utilization. Conventional data
encryption methods [15], [26], [27], [28] consist of complex com-
putations and incur additional traffic for broadcasting public
keys and sharing private keys, which can result in further net-
work latency and power overheads.

In this paper, we propose SecureNoC, a learning-based
design framework consisting of architectural and algorith-
mic designs to enhance HT detection, threat mitigation, and
data encryption in a holistic manner. We also intend to use
machine learning algorithms to optimize the dynamic
behavior of the proposed design and provide improved per-
formance and power, as compared to existing techniques.
The major contributions of this paper are as follows:

� Improved Threat Detection Design: We propose archi-
tectural enhancements to the conventional router to
improve NoC security with accurate threat detection.
The proposed threat detection hardware uses an arti-
ficial neural network to accurately identify the HT-
injected faults in the transmitted packets and detect
HT-infected routers at runtime.

� Improved Channel Design: We propose to mitigate HT
attacks with a multi-function router bypass channel
(MBC) design to route packets and avoid HT-
infected routers. The proposed MBC uses a simple
switch logic design for reduced network latency and
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power consumption. Additionally, reconfigurable
channel buffers, which can be configured as buffers
or repeaters, are implemented at inter-router chan-
nels to improve network throughput.

� On-demand Lightweight Data Encryption Design: We
propose a novel data encryption methodology for
on-chip communication named semi-private key
encryption (SPK) for data protection. The SPK uses a
secret sharing technique for data encryption to
reduce the overhead of encryption and improve
performance.

� Learning-based Control Policy Design: We propose to
use deep Q-learning (DQL) to balance the trade-offs
and handle the dynamic interactions of the proposed
dynamic hardware designs, with the goal of holisti-
cally optimizing security, performance, and power
consumption. Specifically, the per-router DQL
agents learn from the dynamic interactions between
the proposed reconfigurable hardware components
and the entire NoC environment to evolve an opti-
mal control policy that selects the most suitable oper-
ation mode at runtime.

We evaluate the proposed SecureNoC design using
GEM5 [29] simulator with PARSEC benchmarks on an 8 � 8
2D mesh network. Simulation results show that SecureNoC
improves HT detection accuracy by 36% and provides
advanced data protection over state-of-the-art NoC security
techniques [3], [12] while reducing end-to-end network
latency and energy consumption by 39% and 46%,
respectively.

2 BACKGROUND AND MOTIVATION

Fig. 1 shows packet transmission and the related HT attacks
in an 1 � 3 on-chip network. The figure shows an HT-free
source router (green), an HT-free destination router (green),
and an HT-infected intermediate router (red). The network
interface transforms data generated from the processing
cores into packets that consist of multiple flits and inject
those flits into the associated routers for transmission. The
routers and inter-router links comprise the NoC. Before
transmission, the plain-text of sensitive data is first
encrypted and turned into cipher-text before being injected
into the network. Following that, the network interface gen-
erates a packet and injects it into the NoC for transmission.
The ciphertext is decrypted at the destination router to
recover the original data. In this section, we briefly describe
the HT attack model in NoCs.

2.1 Hardware Trojan (HT) Attack Model
Hardware Trojans (HTs) are intentional hardware altera-
tions of the design specification or the corresponding imple-
mentation. HTs are implanted during the IC design phase
of the circuits. After being implanted, the HTs usually
remain dormant to avoid being detected and are activated
upon internal or external triggering events. In NoCs, HTs
are usually implanted in the routers. Fig. 1 shows the attack
model, in which a router is infected with a fault-injection
HT. Specifically, HTs can downgrade performance by inten-
tionally injecting faults in packets and incurring retransmis-
sion traffic to create network congestion which can

significantly disrupt traffic. Furthermore, the congestion
can build up excessive back pressure to the upstream
routers and saturate the communication channels, thus acti-
vating denial-of-service attacks by causing the target router
to exhaust scarce resources. According to previous
research [11], [14], [30], [31], such resource exhaustion can
lead to interference of the transmitted packets of different
regions and potentially cause leakage of sensitive informa-
tion through the side or covert channel effects.

In this paper, we focus on the attack model in which the
HT-implanted router insert faults into transmitted packets
to inject extra traffic into the network to cause network con-
gestion [6], [11], [12], [32]. We assume the HTs are simple
and only able to inject errors into the transmitted packets. In
other words, the HTs neither are capable of processing a
large amount of data nor altering the functionalities of the
HT detection module (e.g., learning the parameters of the
Detect-ANN), since adding such functionalities is power
and area consuming, which makes the HTs easier to be
detected by BIST. However, the HTs can randomize the
ratio of the injected faults, so that the characteristic of the
altered NoC attributes can not be captured easily. In this
paper, existing HTs [7], [8], [9] with different manufacturing
variability are implemented in some of the routers. Specifi-
cally, these implanted fault-injection HTs remain dormant
until triggered. The triggering events are runtime tempera-
ture (router chip temperature) [7], local buffer utilization [8],
and operation voltage shifting variation [9].

2.2 Data Encryption Schemes
Encryption methods are used to generate cipher-text to
replace plain-text for data protection. Encryption methods
can be generally categorized into symmetric encryption and
asymmetric encryption. Symmetric encryption uses the
same secret key for both encryption and decryption. The
key for each data transmission should be unique to ensure
security. Specifically, the encryption algorithm produces
the cipher-text by taking the key and plain-text as inputs.
Similarly, the decryption algorithm uses the ciphertext and
the same key to recover the plain text. Asymmetric encryp-
tion, on the other hand, uses a set of public keys that are
known by all entities. Each router is assigned to a unique
public key, and all public keys are stored in a public-key-
mapping table which can be accessed by all routers. The
source encrypts the data using the destination router’s pub-
lic key, and the ciphertext can only be decrypted by the des-
tination router using a unique private key associated with
its public key.

However, in NoC, both encryption methods have poten-
tial security vulnerabilities during public key sharing and

Fig. 1. HT attack model. The packet is transmitted from the HT-free
source router to the HT-free destination router via an HT-implanted inter-
mediate router.
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private key transmission. Conventional complex key shar-
ing techniques solve these problems at the cost of significant
computational overhead and power consumption [33]. Con-
sequently, prior works [15], [28] have deployed lightweight
encryption schemes. These techniques provide data protec-
tion functionalities, such as cryptographic hash function,
message authentication, and random number generation to
build a data encryption system with reduced overhead.
However, these solutions still follow the traditional encryp-
tion method that requires multiple rounds of complex oper-
ations performed on the plain-text and secret keys, thus
incurring overheads in terms of power and timing.

3 PROPOSED SECURENOC ARCHITECTURE

We propose SecureNoC for secure and efficient NoC archi-
tecture consisting of architectural and algorithmic enhance-
ment techniques, as shown in Fig. 2. On the hardware side,
Fig. 2a shows the enhanced router where we add a per-
router threat detection hardware (blue box inside the
router) for accurate runtime HT detection. We also deploy
channel buffers [34], [35], [36] as inter-router buffers for per-
formance enhancement and power savings. We propose
new multi-function bypass channels (MBCs) shown in
Fig. 2b to mitigate HT attacks. These channels are composed
of bypass links (red lines) and an MBC controller, which is
responsible for traffic flow control and configuration of the
channel buffers. On the algorithm side, we propose an on-
demand data encryption method with lightweight data
encryption algorithms to protect sensitive information with
minor overheads, as shown in Fig. 2c.

3.1 Per-Router Threat Detection Hardware
We propose a per-router threat detection hardware which
consists of an artificial neural network, named D-ANN [32],
for HT detection. Using D-ANN, the threat detection hard-
ware is able to learn from runtime network activities and
automatically identify HT-infected routers. Specifically, the

threat detection hardware first monitors and extracts the
values of local runtime attributes from the on-chip sensors.
A total of twelve NoC attributes are used, which include
buffer utilization (the number of occupied virtual channels)
for each input port (total of 5), link utilization (the value of
input-flits per cycle) for each input port (total of 5), and
packet injection rate, and local operation temperature.
Those attribute values will be fed into the input layer of the
D-ANN. Using the input values, D-ANN then calculates a
label, either HT-infected or HT-free, as the HT detection
result. Afterward, the threat detection hardware forwards
the detection result to the proposed DQL module (Sec-
tion 4.2) for operation mode selection.

The proposed D-ANN is a fully connected neural net-
work, which is composed of three layers, namely an input
layer, a hidden layer, and an output layer. We explore
twelve NoC attributes as inputs, which include buffer utili-
zation (the number of occupied virtual channels) for each
input port (total of 5), link utilization (the value of input-flits
per cycle) for each input port (total of 5), and packet injec-
tion rate, and local operation temperature. The hidden
layer, which consists of several ReLU neurons, uses all of
these attribute values and calculates the output values of
the D-ANN. The number of ReLU neurons in this layer
directly impacts the classification accuracy and computa-
tional/storage overhead. We implement 30 neurons in this
layer for the best accuracy/cost ratio (detailed discussion is
given in Section 5.4). The output layer consists of two neu-
rons. The first neuron has an output value that equals 0,
which means the local router is HT-free, and the second
neuron has an output value that equals 1, which means the
router is HT-infected. To identify the HT-infected routers
promptly while reducing the computational overhead, the
proposed D-ANN gathers network attributes and calculates
the detection results every 5000 clock cycles.

The objective of the proposed threat detection hardware
design is to identify the anomaly behaviors (induced by the
HTs) by observing runtime NoC activities (the values of a
number of runtime attributes) using the D-ANN. Therefore,
we create two data sets for training the D-ANN. One of the
two data sets is the training set that consists of the ”normal”
runtime attribute values with no implanted HTs. The attri-
bute values are captured at each time step. The other set
consists of the ”abnormal” runtime attribute values with
implanted HTs. Specifically, first, synthetic and real applica-
tions from the PARSEC benchmark (blk, dedup, fre, and
swa) are executed in a fully HT-free system for five training
rounds while the runtime attributes used in the D-ANN are
monitored and recorded. The D-ANN takes these attributes
as inputs and calculates the weights as the outputs are all
labeled as ”HT-free”, meaning the output neuron is the first
neuron (the output value is 0) for all inputs for this data set.
Then, the same applications are executed for 20 rounds
with HT-implanted routers. The HTs inject transient faults
into packets and cause network congestion. During this
phase of application execution, runtime attributes are
recorded and fed to the input layer of the D-ANN, and the
HT-infected routers are labeled in the output layer. Specifi-
cally, for the routers where we injected HTs, we set the out-
put neuron of the data set of this phase to the second
neuron, and the output value is 1.

Fig. 2. Microarchitecture of the proposed SecureNoC design. The figure
shows (a) the security-enhanced router design, (b) the proposed multi-
function bypass channels (MBCs), and (c) the on-demand light-weight
data encryption design.

WANG ET AL.: SECURENOC: A LEARNING-ENABLED, HIGH-PERFORMANCE, ENERGY-EFFICIENT, AND SECURE ON-CHIP... 711

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:53:28 UTC from IEEE Xplore.  Restrictions apply. 



During the training process using the two data sets, the
D-ANN calculates the outputs using the input attribute val-
ues. The calculated outputs will be compared to the
assigned output values, so that the error E of the D-ANN
model is obtained. The back-propagation algorithm is
deployed to use the error E to update the weights Wij for
D-ANN, using the following equation:

Wnew
ij … Wold

ij � a �
@E

@Wold
ij

(1)

E is calculated by subtracting the actual output calcu-
lated by the neural network and the assigned value (0 for
HT-free, and 1 for HT-infected). We update the weights in
D-ANNs until they converge. To explore the training sets
for a better training result, the HT-infected routers are ran-
domly selected at the beginning of each round. Each round
consists of 20 full executions of each synthetic traffic and
real application, respectively.

One possible design constraint of the proposed D-ANN
is the robustness of the offline-trained model. To tackle
this issue, we train the proposed D-ANN with both syn-
thetic traffic and a number of real benchmarks. Moreover,
we also train the D-ANN multiple rounds with randomly
implanted HTs with the goal of comprehensively covering
sufficient communication behaviors. Additionally, the
inaccurate detection of HT-infected routers can lead to
penalties such as unnecessary router isolation, perfor-
mance degradation, and insecure data transmission. Thus,
a trained model should avoid false-positive results (that
identify HT-free routers as HT-infected) and false-negative
results (that identify HT-infected routers as HT-free). In
this paper, both false-positives and false-negatives can be
mitigated by updating and correcting the threat detection
results periodically. Specifically, false-positives can be a
problem when an HT-free router is always labeled as HT-
infected. In the proposed design, even if the HT-free router
is labeled as HT-infected by mistake, the detection result
will be updated at the next time step. As the trained D-
ANN has a high HT-detection accuracy, the wrongly
labeled router has a high chance to be labeled as HT-free
correctly at the next time step. By doing so, the penalty of
isolating that HT-free router will be limited to one time
step. Therefore, the false-positive problem can be miti-
gated. False-negatives occur when the HT is not activated
and the router is labeled as HT-free, which are common in
conventional designs. The proposed D-ANN resolves this
problem by monitoring the runtime NoC behaviors con-
secutively and providing HT-detection results every 2000
cycles. As the D-ANN utilizes the average attribute values
within the time step, it can sensitively capture the anomaly
behavior of HT-infected routers, even if the HTs are only
activated for a short period. Therefore, false-negatives are
reduced.

3.2 Multi-Function Bypass Channels (MBCs)
We propose multi-function bypass channels (MBCs) to
bypass traffic around HT-infected routers. We also propose
to use tri-state buffers [34], [35], [36], [37] in the inter-router
channels and remove a portion of router buffers to improve

network performance and reduce overall power consump-
tion. The design details are described next.

3.2.1 MBC Functionalities
According to the labeling results from D-ANN, the transmit-
ted packets, whose source and destination are both HT-free,
are considered as high-security-demand packets, while the
packets whose source or destination router is HT-infected are
considered as low-security packets. For high-security-
demand packets, if no data encryption method is used, it
must be ensured that all the routers in the data path should be
HT-free. In this case, router bypassing can be used to isolate
the HT-infected router during transmission and maintain net-
work connectivity. For this, we propose a multi-function
bypass channel (MBC), as demonstrated in Fig. 2. First, MBC
integrates a set of bypass links to isolate the HT-infected
routers. Additionally, we implement a number of reconfigur-
able inter-router MBC channel buffers for the use of MBC to
improve network throughput. Additional benefits of the
MBCs include providing on-demand flit buffering, and
enabling router power-gating to save power. Each MBC chan-
nel buffer is constructed with tri-state transistors [34] which
can be configured as channel buffers or repeaters for different
use cases. For example, when the router is HT-infected and to
be power-gated for reduced power, the bypass links can be
used for transmitting packets, and the MBC buffer can be con-
figured as on-demand link storage buffers for improved
throughput. To perform non-interference transmission
between high-security packets and low-security packets for
improved security, the high-security packets can use MBC to
bypass the HT-infected routers, while the low-security pack-
ets are transmitted through the router logic of the HT-infected
routers. Compared to existing solutions that stall low-security
packet transmission while transmitting high-security pack-
ets [11] or limit the throughput of different traffic regions [12],
the proposed design fully utilize network resources thus min-
imizing performance losses. At last, we implement an MBC
controller for configuring the MBC buffers and controlling
the activation of the bypass links.

Specifically, MBC connects all the input and output ports
of an isolated router with the bypass links and a simple
switch logic using MUXes and DEMUXes. The proposed
bypass links allow the high-security packets to be propa-
gated using a round-robin scheme without traversing the
HT-infected router logic. Low-security traffic, on the other
hand, can still use the router to better utilize NoC resources.
Note that the bypass links add five 128-bit data paths to the
conventional design. This will ensure the same bisection
bandwidth when the router is bypassed and also increase
the bisection bandwidth when the bypass links are used
along with the router links. The overheads of these addi-
tional links are demonstrated in Section 5.5. The mode selec-
tion of the channel buffers is controlled by the MBC
controller with a 1-bit mode-selection signal. The benefit of
using the reconfigurable channel buffers is as follows. First,
MBC channel buffers can buffer the high-security demand
flits that bypass the HT-infected router to improve MBC
throughput. Second, for high traffic loads, the channel buf-
fers can be used to buffer the incoming flits in addition to
router buffers. Compared with router buffers, the channel
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buffers significantly reduce power consumption with negli-
gible latency overhead [37]. Third, for moderate traffic
loads, the channel buffers can be configured as repeaters to
reduce network latency. Finally, when the traffic load is
low, the under-utilized router can be power gated. In this
case, with the additional channel buffers, MBC allows mul-
tiple sporadic flits to be propagated without first powering
on the corresponding router, which can achieve significant
power savings. The dynamic selection of MBC functionali-
ties is explained in Section 4.1. Next, we detail the buffer
allocation for both channel buffers and router buffers, as
well as the flow control algorithm.

3.2.2 Channel Buffer Allocation and Flow Control
In this paper, we use the unified dynamic buffer allocation
scheme [38] for both MBC channel buffers and router buf-
fers to maximize network throughput. The proposed per-
router buffer allocation table records the routing informa-
tion of all five input ports of the corresponding router and
can be accessed consistently, even when the router is
bypassed, isolated, or power-gated. The proposed unified
dynamic buffer allocation table is constructed by adding
several new entries to the existing virtual channel (VC) state
table [39]. The entries of the proposed buffer allocation table
include the VC identifier (VC), read pointer (RP), write
pointer (WP), allocated output ports (OPX and OPY), out-
put VC (OVC), state (ST), credit count (CR), and four MBC-
related entries, namely an input port identifier (Port) that
indicates the input port ID of the incoming flit, a down-
stream router status indicator (DRS) that records the avail-
ability of the downstream router, a channel buffer pointer
(CBP), and a channel buffer credit indicator (CBC).

The flow control using the proposed buffer allocation
table is as follows. First, the routing information in the
header flit is extracted and used for route computation and
virtual channel (VC) allocation. When the router is HT-free
and available for packet transmission, the buffer allocation
table assigns an unoccupied VC to the header flit. When a
free VC slot is assigned to the header flit of a packet, the
credit count (CR), which records available router slots
(including router/VC buffers and channel buffers), is
updated. The allocated VC slot, along with the computed
OPX/OPY and OVC, are recorded in the buffer allocation
table. Afterward, the body flits use the recorded VC of the
header flit and the corresponding output information to
complete the packet transmission. It is noteworthy that if the
router is bypassed, isolated, or power-gated, incoming pack-
ets can still be transmitted with no problem following the
same process, as the buffer allocation table is accessible.
Since the simple switch design using MUX/DEMUX has lim-
ited throughput, a routing mechanism that avoids transmit-
ting intense traffic through bypass channels should be
applied. Moreover, to better utilize network resources, espe-
cially the isolated routers, a different routing algorithm
might be needed for the low-security packets. Thus, we pro-
pose an adaptive routing algorithm [32] that intelligently bal-
ances traffic loads with various routing algorithms
(O1TURN, West-First, and Negative-First) to avoid injecting
into bypass channels and optimize the worst-case through-
put of different NoC traffic patterns using various routing

algorithms [40], [41], [42]. The O1TURN routing dynamically
applies XY or YX routing for each packet to better utilize the
network spatially under normal traffic loads. The West-First
and Negative-First restrict different types of turns that are
allowed and achieve lower latency and less dynamic power
consumption than O1TURN under intense traffic-loads[40].
The routers in the proposed design have multiple virtual
channels to avoid both protocol and routing deadlocks.

3.3 On-Demand Light-Weight Data Encryption
Using a Semi-Private Key Sharing (SPK) Method

In data-protected NoC systems, flits are encrypted before
being injected into the local router. Typical data encryption
methods consume excessive computation time and power
consumption due to the multi-round complex computations.
For example, conventional AES encryption uses a 128-bit
secret key for a 128-bit flit and consists of 10 rounds of com-
putation, which can cause significant performance degrada-
tion in resource-constraint NoC systems. Previous
works [15], [43] have reduced the overhead of the traditional
encryption techniques with reduced encryption rounds, pro-
posed smaller block/key sizes, or optimized hardware
designs. However, these techniques still have complex com-
putations that consume multiple clock cycles. Moreover, the
static use of these techniques can lead to additional costs or
security issues as described previously. For example,
deploying complex data encryption at every hop can result
in excessive power consumption as the packets injected by
the HT-infected routers need not to be protected. Similarly,
simple encryption that has reduced overheads might not be
sufficient for systems with multiple HT-infected routers.

To this end, we propose an on-demand light-weight data
encryption technique that adapts to diverse traffic for opti-
mized data protection while reducing power and computa-
tional overheads simultaneously. Specifically, for low-
security traffic whose source or destination is detected to be
HT-infected by D-ANN, no encryption algorithm is applied.
For high-security-demand traffic, we propose a lightweight
encryption method called semi-private key (SPK) encryp-
tion for data protection. The proposed SPK is based on the
secret-sharing theory. The proposed SPK eliminates the
multi-round complex computation of the conventional AES
and only requires a small number of additions and multipli-
cations. Moreover, by using a semi-private key that is stored
within each router, the proposed SPK eliminates both the
traffic for private key transmission and the security vulnera-
bility of using fully public keys as described in Section 2.2.

In the proposed SPK, a single public key is used for both
encryption and decryption of all transmitted packets. We
use the secret sharing [44], [45] theory to only store a unique
share of the public key in each router, and the public key can
be recovered with multiple unique shares. The secret sharing
theory [44], [45] is based on the Lagrange interpolating polyno-
mial with a ðt; nÞ threshold. A certain secret S is shared by n
participants in the system, each of which keeps a unique
secret shadow of S. The secret S can only be recovered if at
least t ðt � nÞ secret shadows are retrieved. The secret shar-
ing theory is proven to be absolutely secure in the mathemat-
ical finite field [46]. Specifically, to protect the secret S, first, a
Lagrange polynomial is constructed as follows:
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L ðxÞ … S þ a1 � x þ a2 � x2 þ . . . þ at�1 � xt�1 mod ðpÞ
(2)

where S is the secret. p is a pre-defined prime number
which is larger than S. Note that the degree of L ðxÞ is ðt �
1Þ, meaning that any attempt to reconstruct the polynomial
with less than t secret shadows will give the incorrect poly-
nomial with the wrong secret S.

The secret shadow si , where i 2 ð1; t � 1Þ, is then created
using different integer values of xi and calculating the corre-
sponding f i ðxÞ values. Next, the value P and a unique
shadow s þ i … ðxi ; f i ðxÞÞ is sent to each router. After dis-
tributing the secret shadows, the Lagrange polynomial L ðxÞ
is destroyed by deleting the secret S and coefficients ai ,
where i 2 ð1; t � 1Þ. To retrieve the secret S, at least t secret
shadows should be compromised. With t secret shadows, S
can be recovered using:

S … F ð0Þ …
Xt

i…1

f i ðxÞ
Q

1�j �t;j 6…i ðx � xj Þ
Q

1�j �t;j 6…i ðxj � xi Þ
modðpÞ (3)

In this paper, we use the same concept while extending
the ðt; nÞ threshold to a set of ðk; nÞ thresholds for different
routers to share the public key K in the NoC system. The
variables of Lagrange polynomial L ðxÞ are randomly
selected, while the value of n equals the number of routers.
The computation of L ðxÞ and the corresponding secret
shadows are completed in a least-utilized HT-free core.
Later, the secret shadows, or semi-private keys, are distrib-
uted to each router. As each router only stores a share of the
public key, we call this method ”semi-private key sharing”.
To retrieve the original secret key S, the router needs to
compromise the other routers and gather at least k other
secret shadows.

The selections of the polynomial and the variable t can
impact the network performance. For a larger t , the routers
in the NoC system need to gather more secret shadows,
which can result in increased traffic loads and additional
computation time. A smaller t , on the other hand, requires
fewer secret shadows to recover the secret key, thus may
pose security risks. To achieve the optimized data protec-
tion with minimized overhead, we define the k value for
each router as k … di þ 1, in which di is the degree of the
router Ri . The t � k secret shadows are stored locally, while
k secret shadows are distributed among other routers. For
example, in a 2-D mesh network, the k value for the routers
in the corners is 3. Similarly, the k values for the routers on
the edges and in the center of the mesh are 4 and 5, respec-
tively. Additionally, We only authorize the source and des-
tination router to gather the secret shadows from adjacent
routers. By doing so, the source router and the destination
router can gather sufficient secret shadows, and the HT-
infected routers are prevented from retrieving the secret
key. Note that the proposed D-ANN and MBC ensure that
the HT-infected router will not become the source or desti-
nation for traffic with high security demands. Besides, as
discussed previously, there is no encryption or decryption
needed for low-security traffic, thus the HT-infected router
is neither authorized to acquire secret shadows from other
routers nor to get secret shadows from the key distribution
phase.

According to information-theoretical entropy func-
tion [47], the entropy of the proposed SPK is H ðSjST Þ …
H ðSÞ, which is perfect privacy for each transmission [48].
Therefore, SPK can fulfill data protection demands with
reduced overheads.

Fig. 3 shows an example of the secret shadow gathering
in the proposed SPK. The packet is transmitted from the
source router to the destination router, and the data path is
shown with blue arrows, using YX routing with an HT-
infected router located in the data path. Similar to the itera-
tive operations of D-ANN, the secret shadows are created
and assigned in discrete time steps. At the beginning of
each time step, the Lagrange polynomial with a new public
key S is decided, and the secret shadows are transmitted to
each router, as shown with red arrows. During packet trans-
mission, the source and destination router first issue a hand-
shake signal to the adjacent router and selects one
additional router in its X or Y direction using the XY/YX
routing algorithm. Subsequently, the source router gathers
the secret shadows and retrieves the secret key for encryp-
tion. The encryption method used is a single-round XOR
operation with S for minimized overhead. Similarly, the
destination router can calculate the key and use it for
decryption. As described in Section 2.1, an HT-infected
router might access the secret shadows of the adjacent
router through information leakage at this stage. However,
it is insufficient for secret key recovery.

The use of SPK ensures data protection and eliminates
the multi-round complex computation of conventional
encryption methods and full-key transmission in state-of-
the-art solutions [15], [28]. The overheads of the SPK are
induced by key computation and transmission of the secret
shadows. Detailed performance analysis, in terms of secu-
rity, power consumption, and computation overheads, is
presented in Section 5.

4 DYNAMIC OPERATION MODES AND
LEARNING-BASED CONTROL POLICY

4.1 Dynamic Operation Modes
We propose three dynamic operation modes, each of which
has various security techniques and hardware configura-
tions. The operation modes will be selected and deployed

Fig. 3. Examples of data encryption using SPK.The blue arrows show
the data path of the packet transmitted from the source router to the des-
tination router. The red arrows show the data transmission for sharing
secret key shadows.
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by each router independently and iteratively in a sequence
of discrete time steps, directed by a deep-Q-learning (DQL)-
based control policy. The proposed operation modes are
described as follows.

� Operation Mode 1: In this operation mode, the router
is power-gated, and the associated MBC bypass links
are activated. When configured as such, the MBC
channel buffers are configured to be on-demand link
storage for the incoming flits. This mode is triggered
when the router is underutilized or when the corre-
sponding router is detected as an HT-infected router.
In this case, the router is powered off and isolated to
significantly reduce overall power consumption and
provide network security.

� Operation Mode 2: In this mode, the bypass channel is
activated, while the router is not power-gated. In
this case, the MBC bypass links are used to provide
non-interference packet transmission. Specifically,
the bypass channel dynamically routes high-security
packets without traversing HT-infected routers, as
well as utilizing the bypassed routers to propagate
low-security packets without degrading network
performance. MBC channel buffers are configured as
flit buffers. This operation mode provides basic net-
work security as data protection techniques are not
deployed.

� Operation Mode 3: In this mode, the MBC bypass links
are disabled. The router switches its adaptive
encryption hardware to SPK. This operation mode is
beneficial when the transmitted data requires mod-
erate protection aside from non-interference packet
transmission. The MBC buffers are configured as
repeaters to reduce latency.

The three proposed operation modes work together to
comprehensively cover broad use cases with different traf-
fic, workload, and security requirements. The three opera-
tion modes each has various security-enhancement
techniques and hardware configurations. Specifically, the
first operation mode, which power-gates the HT-infected
router, can provide basic security features. This is benefi-
cial when the traffic load is low, as the power-gating fea-
ture can save static and dynamic power consumption.
However, if the traffic load is high, as this operation mode
only activates the bypass links for data transmission, this
operation mode will lead to excessive network latency.
Therefore, we design the second operation mode, which
allows the low-security packets to be transmitted using the
HT-infected routers. This is beneficial to the network
latency when traffic load is high, while still providing basic
security due to the non-interference transmission. For the
maximized security, we propose the third operation mode
with an additional data encryption feature. This operation
mode sacrifices performance and power, as it induces addi-
tional timing and power overheads for data encryption, for
the highest level of data protection. In summary, Operation
Mode 1 is beneficial when traffic load is low and basic secu-
rity feature is required; Operation Mode 2 is beneficial
when traffic load is high and basic security feature is
required; Operation Mode 3 is beneficial when maximum
security feature is required.

The dynamic operation modes are independently yet
simultaneously selected by each router using a deep-Q-
learning (DQL)-based control policy demonstrated in Sec-
tion 4.2 at each time step, and the buffer allocation table is
updated accordingly. It is noteworthy that even though the
MBC configuration cannot be changed within a time step,
the encryption method (bypass-only or SPK) suggested by
the per-router DQL can be overwritten by the HT-free cores
on demand. However, this overwriting function is disabled
in this paper during design evaluations in Section 5. As pre-
viously discussed, the proposed on-demand data encryp-
tion and per-router power-gating/bypassing design allows
individual routers to deploy the most beneficial strategy at
any time step, thus achieving improvements on perfor-
mance metrics for the entire NoC.

4.2 Deep-Q-Learning (DQL)-Based Control Policy
We present a per-router deep-Q-learning (DQL)-based con-
trol policy to balance the trade-offs and select one of the
dynamic operation modes at runtime. DQL [49] is a type of
reinforcement learning [50] algorithm that learns from the
dynamic interactions between autonomous agents (routers)
and the environment (NoC system) and optimizes the
router control policy. In SecureNoC, each per-router DQL
agent interacts with the NoC system in a sequence of dis-
crete time steps t .

At each time step, per-router DQL agent monitors a set of
runtime network attributes and observes the current work-
ing status, named state s. With the given state s, the router
takes an action a by selecting an operation mode that will be
applied at the following time step. The selection of the
action a is directed by a trained policy, which indicates the
long-term return Rt of taking the action a. At the subse-
quent time step, the router impacts the entire NoC system
after taking the selected action by incurring changes of NoC
attributes and performance metrics. Comparing the new
performance metrics to their previous values, the network
will have a system-level evaluation on the immediate bene-
fit r of taking the action a. The value r is used to update the
long-term return Rt for decision making in the future.
Meanwhile, a new state s0 is observed, and a new time step
will start.

In DQL, the goal of the DQL agent is to learn a policy that
optimizes the agent’s long-term return, Rt , which is the
exponentially discounted sum of the immediate rewards of
all future time steps [36], [51], [52], [53]. The return at time
step t is therefore defined as:

Rt … r tþ1 þ gr tþ2 þ g2r tþ3 þ . . . …
X1

k…0
gkr tþkþ1 (4)

The variable g (where 0� g �1) in this equation is a dis-
count rate which determines the impact of future rewards on
the total return: as g approaches 1, the agent becomes less
near-sighted by giving increasing weight to future rewards.
The impact of g on DQL is presented in Section 5.4.

In this paper, we use the deep-Q-learning algorithm [35],
[50], [54] to estimate Rt with an action-value function Q s; að Þ.
The Q-value represents the expected maximum long-term
return that the agent, starting in state s, follows the optimal
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policy for all future actions. The design details of the pro-
posed DQL are presented as follows.

Action-Value Function and Deep-Q-learning. In DQL, we
model the return R as follows. In this paper, a model of the
environment characterizes how the state of the environment
changes as a result of an agent action, and the reward that
the agent receives after each action. The model is specified
through a probability distribution pðstþ1; r tþ1jst ; at ). Corre-
spondingly, the agents compute an action-value function
Qp(s, a) that captures the return R they are expected to
receive in this model of the environment if they start in state
s, take action a, and follow the policy p for the remaining
actions:

Qpðs; aÞ … EpfRt jst … s; at … a; atþ1:1 � pg

… Epfr tþ1 þ gr tþ2 þ g2r tþ3 þ . . .
jst … s; at … a; atþ1:1 � pg

… Epfr tþ1 þ gQpðstþ1; atþ1Þ
jst … s; at … a; atþ1 � pg

(5)

Because the agent always intends to maximize its
expected return, it can be shown that in the optimal policy
p�, the optimal Q-value of a given pair of state-action is:

Q�ðs; aÞ … EpfRtþ1 þ g max
a0

Q�ðstþ1; a0Þjst … s; at … ag

p�ðsÞ … max
a

Q�ðs; aÞ (6)

The first equation in (6) is called the Bellman optimality
equation and is used to formulate RL algorithms such as the
Q-learning algorithm used in this paper.

To find the optimal Q-value function Q*(s, a), tabular Q-
learning algorithm [55] can be used. In conventional Q-
learning, assuming the state s is discrete, a table of Q-values
is initialized with random values for all possible (s, a) pairs.
At each time step, the Q-learning algorithm chooses actions,
based on the current Q, such that, over many time steps, all

actions are taken in all states. After taking an action a and
observing the reward r and new state s0, the action-value
table entry Q(s, a) is changed using the following temporal
difference rule:

Qðs; aÞ … ð1 � aÞQðs; aÞ þ a‰r þ g max
a0

Qðs0; a0Þ	 (7)

The learning rate a can be reduced over time and deter-
mines how well Q-learning will converge. With an appro-
priate value of a, Q-learning converges to the optimal Q-
value function Q* and its corresponding optimal policy
p [55]. In the proposed DQL, we replace the Q-table with a
trained neural network, called Q-ANN. The design details
of DQL are presented below.

Design Space of the DQL. We formulate the design space of
the proposed DQL as follows:

State Space: We construct the state vector S with a set of
local NoC attributes for each router, which are observed at
each time step, as listed in Table. 1. These attributes include
input-link-related metrics, buffer-related metrics, output-
link-related metrics, and security metrics. According to the
range of each attribute, all of these attribute values are dis-
cretized into several bins to limit the number of ðs; aÞ pairs.
For example, link utilization is discretized into 5 levels. We
select these listed attributes because they represent the traf-
fic patterns and congestion-related NoC behaviors. More-
over, global information, such as dimensional traffic
intensity, is not selected to reduce the overhead of collecting
the attribute values at runtime.

Action Space: The action space A … {a1; a2; a3} consists of
the three operation modes, as described in Section 4.1. Spe-
cifically, a1 represents the Operation Mode 1, and a2 repre-
sents the Operation Mode 2. a3 represents the Operation
Mode 3.

Reward Function: At time step t for router i , the immedi-
ate reward function is designed as:

TABLE 1
Attributes in the State Vector

Category Attributes Description

1. +X link utilization Flits/cycle of +X input port
2. –X link utilization Flits/cycle of –X input port

Router Input Related Metrics 3. +Y link utilization Flits/cycle of +Y input port
4. –Y link utilization Flits/cycle of –Y input port
5. Local port injection rate Injection rate in flit/cycle
6. +X buffer utilization Number of utilized buffers at +X input port
7. –X buffer utilization Number of utilized buffers at –X input port

Buffer Related Metrics 8. +Y buffer utilization Number of utilized buffers at +Y input port
9. –Y buffer utilization Number of utilized buffers at –Y input port
10. Local buffer utilization Number of utilized buffers at local input port
11. +X Link utilization Output flits/cycle of +X output port
12. –X Link utilization Output flits/cycle of –X output port

Router Output Related Metrics 13. +Y Link utilization Output flits/cycle of +Y output port
14. –Y Link utilization Output flits/cycle of –Y output port
15. Local port link utilization Output flits/cycle of local output port
16. +X D-ANN result D-ANN label of +X downstream router
17. –X D-ANN result D-ANN label of –X downstream router

Security Related Metrics 18. +Y D-ANN result D-ANN label of +Y downstream router
19. –Y D-ANN result D-ANN label of –Y downstream router
20. Local D-ANN result D-ANN label of local router
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r i;t … �log aðLatencyi;t Þ � log bðPoweri;t Þ (8)

The Latency is the network latency of router i , which is the
average end-to-end packet latency calculated by the average
timing difference between the packet injections and ejec-
tions within the time step. The Power refers to the average
power consumption that equals the summation of the static
and dynamic power consumption monitored by the NoC’s
shared power module. The coefficients a and badjust which
one is the prior optimization objective over the other. In this
paper, both a and bare set to 2.

The Working of DQL. In DQL, a Q(s, a) value is used to
estimate the long-term return of taking a specific action. The
Q-value is defined as:

Q s; að Þ … 1 � að ÞQ s; að Þ þ a
�
r þ gmaxa0Q s0; a0ð Þ

�
(9)

The value maxQ s0; a0ð Þ represents the maximum Q-value in
the state entry s0, which is obtained at the beginning of the
following time step. The coefficient a is the learning rate of
DQL. It determines how much the intermediate reward
impacts the expectation of the long-term return. It is also
noteworthy that the selection of the learning rate a also
impacts the convergence time of DQL and the performance
of the trained policy. A detailed discussion of how the coef-
ficients impact system performance is presented in
Section 5.4.

In the proposed design, the Q-values are calculated by an
artificial neural network, called Q-ANN, at runtime. In this
paper, each Q-ANN consists of an input layer with 20 neu-
rons, a hidden layer with 30 neurons, and an output layer
with 3 neurons. The input layer represents the selected NoC
attributes, while the output layer includes the Q-values of
the three possible actions to take. The hidden layer and
weights in the Q-ANN record the correlation between the
observed state and the corresponding Q-values. This elimi-
nates the excessive area overhead of conventional
designs [50], [56] that store the Q-values in state-action map-
ping tables.

Fig. 4 shows the working of the proposed DQL-based
control policy during the execution of an application. First,
all Q-values are initialized to 0, and the operation modes for
all routers are set to Operation Mode 2. At each time step,

the DQL process consists of a number of stages, as shown in
Fig. 4. At stage �1 , the DQL agent (router) monitors the val-
ues of runtime NoC attributes F1; F2; . . . ; F20. These attri-
bute values together formulate a state vector sx , which is
the current state vector for the DQL agent. In conventional
Q-learning, a Q-table is used to map the state vector sx to
the Q-values of all possible actions. In the proposed DQL,
we replace the Q-table with a trained neural network, Q-
ANN. In the proposed DQL design, these values, or the
state vector, are fed into the Q-ANN’s input layer. The Q-
values of all possible actions for sx are calculated by the Q-
ANN. Afterwards, at stage �2 , the router selects an action a
that has the highest Q-value from the three possible actions.
The selected action will be deployed at the next time step
(for example, a2). At the following time step, at stage �3 , as
the router takes the selected action a2, the router interacts
with the entire NoC system, which result in a transition to a
new state s’. Meanwhile, the NoC performance metrics (i.e.,
network latency and power consumption) are captured,
and a reward r is calculated. The reward will be used in the
temporal difference rule shown in (9) to update Qðs; aÞ.
Each router will go through the three stages at each time
step. Note that stage �3 can be skipped when the Q-ANN is
stable and converged. In the proposed design, we use an
offline-training process, therefore the Q-value updating
stage is only used for training and does not exist in the infer-
ence phase. The offline-training process is described below.

Training and Testing Phases of the Proposed DQL. In this
paper, we first train the proposed DQL offline with
GEM5 [29] simulator with a set of synthetic traffics and real
applications from the PARSEC benchmark (blk, dedup, fre,
and swa). At first, Q-values for all possible s; að Þ pairs are
initialized to zero. During the training phase, a subset of
PARSEC benchmark applications and synthetic traffic are
executed using GEM5, and the dynamic interactions
between the routers and the entire NoC system are
recorded. The router observes the current sx at each time
step and selects an action that has the highest Q-value for
the specific sx . If several actions are with the same Q-values,
a random action will be selected. As we designed the
reward using a negative log-function, all of the visited state-
action pairs have negative Q-values, while the Q-values for
all the unvisited (s, a) pairs are zero. Therefore, the DQL
agents are forced to explore new (s, a) pairs at the early
stage of the training process. Moreover, an exploration fac-
tor � [50], [56] is used to allow each router to take a random
action with a small probability of � at each time step. This
further increases the exploration of DQL to avoid sub-opti-
mal decisions. Upon taking the action, the router observes a
new state and the variation of system performance metrics.
During this process, the Q-ANN uses the attribute values of
the state vector as inputs of the input layer, and the outputs
of the Q-ANN are the Q-values. The Q-ANN uses (9) to cal-
culate the difference DQ at each time step. DQ is then be fed
to the mini-batch gradient descent as the error of D-ANN
output. A back-propagation is deployed to update the
weights in the hidden layer.

The offline-trained model is capable of being applied to
different applications without a new training procedure.
Specifically, the proposed training process uses a number of
synthetic traffic and carefully selected real applications

Fig. 4. Deep-Q-learning process. At time step t, the router observes the
state, and the action with the maximum Q-value for the current state is
selected. Thereafter, the reward for rðs; aÞ is calculated, and the Q-value
is updated following (9).
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from the PARSEC benchmark (blk, dedup, fre, and swa) to
abstract a wide range of data and traffic patterns to compre-
hensively cover the communication behaviors. These traffic
patterns are captured by the NoC attributes and can cover
as many common communication patterns in the testing
phase. The proposed DQL makes decisions only rely on the
captured communication patterns, or observed attribute
values, regardless of what specific application is used.
Therefore, the trained model can be directly utilized with-
out retraining, as the dynamic behaviors of the testing appli-
cation can also be destructed into the communication
patterns captured by the trained model.

The trained ANN will be implemented in the routers for
testing, without further updating to reduce computational
overheads. In this paper, since we only focus on fault injec-
tion HTs, the training result is acceptable as long as the ANN
can distinguish injected faults and apply suitable security
mechanisms based on the NoC attributes. Therefore, there is
no need to retrain the ANN for different applications. In the
testing phase, the DQL agent observes the attribute values,
calculates three Q-values, and selects the action that has the
highest Q-value. The timing and area overheads of the pro-
posed DQL are presented in Section 5.5.

5 EXPERIMENTAL RESULTS

5.1 Simulation Setup
We evaluate the proposed SecureNoC design using the
GEM5 full-system simulator [29], in which we fully incorpo-
rate the HT attack models and security techniques. Table 2
describes the simulation parameters used.

Before evaluation, we first train the proposed D-ANN
and DQL (Q-ANN) using synthetic traffic and real applica-
tions that are different from the testing data set. The Q-val-
ues are initialized to 0. The learning rate a and the discount
rate g are set to 0.1 and 0.9, respectively. Additionally, the
DQL agents have a small probability of � = 0.05 to select a
random action for exploring unvisited state-action pairs.
The trained D-ANN and Q-ANN will be implemented in
each router for the testing phase. Subsequently, we ran-
domly select 6 routers in the NoC to be HT-infected routers.
At runtime, these HT-infected routers can inject packets
that cause over 70% link and buffer utilization.

During the testing phase, the PARSEC benchmark
suite [58] is tested, with the time step length set to be 5000
cycles. Each router is initialized to use operation mode 2.
The performance of the proposed SecureNoC design is com-
pared to four other solutions, which are listed in Table 2.
Note that the Proposed SecureNoC design using MBC
replaces half of the router buffers. or VC buffers, with the
proposed reconfigurable channel buffers. Specifically, in all
other techniques listed in Table 2, each input port has a total
of 16 VC buffers, while SecureNoC has 8 channel buffers
and 8 VC buffers for each port. This allows a fair compari-
son across all techniques. The testing phase for each bench-
mark application lasts for the full execution time of each
application. We evaluate the area and power consumption
with Synopsys. The value of power consumption refers to
the summary of NoC static power and dynamic power
using Synopsys and DSENT, respectively. Specifically, We
first modeled the static power of all components with Syn-
opsys. Afterward, the modeled parameters are fed to the
power model of GEM5 (DSENT). At runtime, during the
execution of different PARSEC applications, DSENT calcu-
lates the dynamic power consumption by monitoring NoC
activities (i.e., buffer-writes, crossbar, virtual channel and
switch, D-ANN calculations, and DQL agent activation).

5.2 Performance Analysis
Speedup. We calculate the speedup by comparing the full-
application execution time of each benchmark application
when using a selected technique (FHL+AES+NIBR, D-ANN
+AES+NIBR, D-ANN+SPK+NIBR, or the proposed Secure-
NoC) against the execution time when using the baseline
technique, as shown as the following equation

Speedup…
ExecutionTime baseline

ExecutionTime technique
(10)

Since we use offline training, the training time is not
included in the execution time above. The simulation result
is shown in Fig. 5.

As can be seen in Fig. 5, simply deploying the NIBR tech-
nique for HT mitigation has limited speedup because of the
limited throughput. SecureNoC achieves an average of 21%
speedup over the baseline, due to its capability of selectively
applying data protection mechanisms. The results are show-
ing similar trends across all applications because the major-
ity of the execution time comes from the computational
overheads of the encryption methods. The use of D-ANN
improves the execution time since FHL can induce more
false-negatives, which can result in more HT-injected faults
and retransmission traffic. However, as the routers can be

TABLE 2
Simulation Environment Setup

Field Value

Processing Units 64 CPU Cores @ 32 nm, 1.0V/2.0GHz

NoC Configuration 8 � 8 2D Mesh network,
4-stage router

Packet Parameter 128-bit per flit, 4 flits per packet
Access Delay 4 cycles to L1 cache (64KB)
(cycle) 8 cycles to L2 cache (8MB)

160 cycles to main memory

Baseline: FHL [3]+ AES [57] + isolation
FHL [3] + AES [57] + NIBR [12]

Techniques D-ANN + AES [57] + NIBR [12]
D-ANN + SPK + NIBR [12]
Proposed SecureNoC Design:
D-ANN + SPK + MBC/DQL

Fig. 5. Speedup of full application execution time comparison, normal-
ized to the baseline (higher is better).

718 IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. 7, NO. 3, JULY-SEPTEMBER 2022

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 13:53:28 UTC from IEEE Xplore.  Restrictions apply. 


