
Shield: A Reliable Network-on-Chip Router
Architecture for Chip Multiprocessors

Pavan Poluri, Student Member, IEEE and Ahmed Louri, Fellow, IEEE

Abstract—The increasing number of cores on a chip has made the network on chip (NoC) concept the standard communication

paradigm for chip multiprocessors. A fault in an NoC leads to undesirable ramifications that can severely impact the performance of a

chip. Therefore, it is vital to design fault tolerant NoCs. In this paper, we present Shield, a reliable NoC router architecture that has the

unique ability to tolerate both hard and soft errors in the routing pipeline using techniques such as spatial redundancy, exploitation of

idle cycles, bypassing of faulty resources and selective hardening. Using Mean Time to Failure and Silicon Protection Factor metrics,

we show that Shield is six times more reliable than the baseline-unprotected router and is at least 1.5 times more reliable than existing

fault tolerant router architectures. We introduce a new metric called Soft Error Improvement Factor and show that the soft error

tolerance of Shield has improved by three times in comparison to the baseline-unprotected router. This reliability improvement is

accomplished by incurring an area and power overhead of 34 and 31 percent respectively. Latency analysis using SPLASH-2 and

PARSEC reveals that in the presence of faults, latency increases by a modest 13 and 10 percent respectively.

Index Terms—Network-on-chip, router architecture, hard faults, soft errors, mean time to failure

Ç

1 INTRODUCTION

RAPID technology scaling [1], [2] into the deep nanometer
regimes has facilitated designers to fabricate billion tran-

sistor chips. The abundant availability of on-chip transistors
coupled with the desire to design low power chips that either
maintain the same level of performance or improve perfor-
mance compared to their predecessors has led to the inception
and rise of chipmultiprocessors (CMPs). As a result, there has
been a paradigm shift from the design of computation ori-
ented architectures to communication oriented architectures
wherein, the communication between multiple computa-
tional cores on a single chip plays a crucial role in the perfor-
mance of the chip. The need to efficiently handle the strict
communication requirements of CMPs has led to the incep-
tion of network-on-chip (NoC) paradigm [3], [4], [5].

While the decreasing feature size resulted in smaller gate
delays, it has exacerbated the global wire delay prob-
lem [6], [7]. NoC overcomes the problems associated with
this global wire delays and very limited bus bandwidth by
replacing the ad-hoc shared buses with a modular and flexi-
ble interconnect structure comprised of shorter wires
thereby increasing simultaneous communication and on-
chip bandwidth [8], [9], [10], [11], [12], [13], [14], [15], [16]. A
typical NoC is comprised of links and routers that are used
for data transmission and packet routing respectively.

The continuous decrease in feature size has increased the
vulnerability of the transistors and wires to various fault
mechanisms [17]. Faults can be primarily categorized into

permanent faults and transient faults [18]. A fault that mani-
fests either at the fabrication time or during the operation
time of a circuit and continues to affect the circuit’s func-
tionality from the time of its genesis is called a permanent
or hard fault. Traditional causes of permanent faults include
time-dependent dielectric breakdown (TDDB) [19], negative
bias temperature instability [20], hot carrier injection [21]
and electromigration [22].

On the other hand, a fault that survives typically for a
period of one or at most two clock cycles and affects the
functionality of a circuit only during that period is called a
transient fault. Transient faults commonly occur during
runtime and are mainly caused due to alpha particles from
packaging material [23], [24] and thermal radiation from
cosmic rays [25] and process variation [26].

A fault in the NoC could result in undesirable scenarios
such as deadlock in the network, packet loss, increased
packet latency, erroneous messages, all of which, result in
significant consequences on the performance of the chip.
Hence, it is of utmost importance to tackle the reliability of
the NoC from initial design stages.

In this work, we concentrate on the issue of fault toler-
ance in an NoC router. Fault tolerance of the links has been
addressed previously by many scientists [14], [27], [28], [29],
[30], [31] and therefore it is out of scope of this paper.
Within the router, we focus on its pipeline, as it is responsible
for the smooth flow of packets through the router. We pres-
ent a reliable router architecture that is capable of tolerating
both hard and soft errors in the routing pipeline. The pro-
posed reliable router architecture’s hard fault tolerance
methodology is based on employing techniques such as
spatial redundancy, exploitation of idle cycles of existing
resources and bypassing faulty resource. This hard fault
tolerance methodology was first proposed in [32]. Further
analysis of this methodology using Mean Time to Failure
(MTTF) reliability metric and benchmark applications has

� The authors are with the Department of Electrical and Computer Engineer-
ing, University of Arizona, Tucson, AZ 85721.
E-mail: {pavanp, louri}@email.arizona.edu.

Manuscript received 19 Sept. 2014; revised 24 Sept. 2015; accepted 19 Nov.
2015. Date of publication 25 Jan. 2016; date of current version 14 Sept. 2016.
Recommended for acceptance by A. Gordon-Ross.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2016.2521641

3058 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

1045-9219� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

mailto:

been conducted and presented in [33]. In this paper, we
tackle the issue of soft errors in the routing pipeline by
using selective hardening technique, and present an inte-
grated fault tolerant router architecture called Shield, that
can tolerate both hard and soft errors.

The remaining of the paper is presented as follows: in
Section 2, we present the fundamentals of an NoC router
and a brief working of the router pipeline. In Section 3, we
briefly discuss about the existing fault tolerant router archi-
tectures and the motivation for proposing the Shield archi-
tecture. In Section 4, we discuss the effects of hard faults in
the pipeline and summarize the techniques we use to toler-
ate hard errors. In Section 5, we discuss in detail the selec-
tive hardening technique used to improve soft error
tolerance in Shield. In Section 6 we present the reliability
analysis of Shield conducted with respect both hard and
soft errors and in Section 7 we present the performance
analysis in terms of area, power and critical path. Section 8
discusses the latency analysis performed on an NoC and
Section 9 concludes the paper.

2 BASELINE NOC ROUTER ARCHITECTURE AND

PIPELINE

Fig. 1a shows the arrangement of sixteen cores and routers
in a 4 � 4 mesh topology. Fig. 1b [9] illustrates the baseline
architecture of an NoC router comprised of five input ports
and five output ports with each input port comprised of
three virtual channels (VCs). We have shown three VCs per
input port for illustration purpose. This is the traditional
architecture of a router in a mesh topology. Routing Com-
putation (RC) unit, Virtual Channel Allocation (VA) unit
and Switch Allocation (SA) unit are responsible for the
control signals generated within the router pipeline during
the traversal of a packet. The 5 � 5 crossbar (XB) connects
the input ports of the router to its output ports and facili-
tates packet traversal.

For efficient router resource utilization, data traverses the
NoC in the form of flits. A packet is segmented into a single

head flit, single or multiple body flit(s) and a single tail flit.
Head flit is responsible for allocating necessary resources
for a packet, body flit(s) contain the payload of the packet
and the tail flit is responsible for freeing the resources allo-
cated to the packet.

2.1 Details of a Router’s Input Port

Fig. 1c [9] shows the internal architecture of a router’s input
port with three VCs. Each input port is comprised of a
demultiplexer, VCs (buffers) and a multiplexer. Each input
VC is associated with state information comprised of five
fields namely ‘G’ (indicates the current pipeline state), ‘R‘
(stores the result of RC), ‘O’ (stores the result of VA), ‘P‘
(read/write pointers into the VC) and ‘C’ (indicates the
available credit count). This state information facilitates the
smooth flow of a packet in that VC through the router
pipeline.

2.2 Brief Overview of the Router Pipeline Stages

Fig. 2 [9] shows the four-stage pipeline of an NoC router.
Stage 1 (RC). This stage is responsible for deciding the

output port at the current router through which the packet
will exit and traverse towards its next hop. This decision is
made based on the destination information in the head flit
and the routing protocol used in the NoC.

Stage 2 (VA). This stage is responsible for allocating to the
packet at the current router an empty VC at the downstream
router. This stage can be performed in two sub-stages [34]
(as shown in Fig. 3). Every input VC with a head flit that
has just finished RC, arbitrates for an empty VC at the
downstream router in the first sub-stage. In the second sub-
stage, all the different input VCs that are allocated the same
VC at the downstream router compete with each other to
determine which input VC is allocated the empty VC.

Stage 3 (SA). This stage is responsible for determining
which input VC of an input port gets to transmit a flit
through the crossbar in the next cycle. This stage can be per-
formed in two sub-stages [34] (as shown in Fig. 3). The first
sub-stage chooses the winning input VC of a specific input
port and the second sub-stage resolves the competition
between packets in different input VCs trying to access the
same output port of the crossbar.

Stage 4 (XB). Crossbar facilitates connections between the
input and output ports of a router. The winning input VCs
in switch allocation stage transmit a flit in this stage. The

Fig. 1. (a) Mesh based NoC. (b) Details of an NoC router. (c) Details of a router’s input port.

Fig. 2. NoC router pipeline.

POLURI AND LOURI: SHIELD: A RELIABLE NETWORK-ON-CHIP ROUTER ARCHITECTURE FOR CHIP MULTIPROCESSORS 3059

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

crossbar connections are configured every cycle and are
determined by the winners of switch allocation stage.

3 RELATED WORK

In this section, we provide a brief overview of the existing
methodologies that tackle the issue of fault tolerance in the
router pipeline.

In [35], the authors propose the BulletProof router, which
provides fault tolerance from permanent faults via N-mod-
ular redundancy (NMR) technique. Spatial redundancy
based techniques require the existence of multiple copies of
hardware thus, significantly increasing the silicon footprint
as well as the power consumed by the protected router.

In [36], the authors propose Vicis that tolerates perma-
nent faults both at the network as well as at the router level.
It employs a combination of input port swapping algorithm
and an adaptive routing algorithm to redirect traffic around
faulty links. An intra-router bypass bus is used to tolerate
faults in the crossbar and error correcting codes (ECC) is
used to tolerate faults in the datapath of the router.

In [37], the authors propose RoCo router, which can be dis-
integrated into independent row and column components
and hence, a permanent fault in one component will not affect
the other component and the router continues to operate in a
degradedmanner using the fault-free component.

In [38], the authors propose the use of default backup
paths (DBPs) to bypass faulty components within a router.
All the DBPs in the NoC form an unidirectional ring topol-
ogy that allows the cores to communicate with each other
even after all the routers in the NoC are faulty.

In [39], the authors propose the use of allocation compar-
ator (AC) to detect transient faults. The AC unit performs

three comparisons in parallel where it compares the routing
computation, virtual channel allocation and switch alloca-
tion entries and detects the presence of a fault based on the
concept of invariance checking.

In [40], the authors propose to protect the routing com-
putation and arbitration units of an NoC router from tran-
sient faults by using the inherent information redundancy
present in the NoC router. For faults in the routing compu-
tation unit, they use sigma and branch error detection
method and for faults in the arbitration units they use a
self-detecting and self-correcting round robin arbitration
methodology.

In [41], [42], the authors model transient faults as either
affecting the header of a packet or the payload of a packet. In
order to recover from a transient fault, the authors have
implemented a customized packet retransmission scheme
where, the receiver after receiving a predefined number of
packets sends an acknowledgement to the transmitter to con-
firm successful reception of the packets. To tolerate perma-
nent faults, the authors have implemented a dynamic routing
protocol to exploit the existence of alternate routes in the
NoC. Both these implemented mechanisms achieve fault tol-
erance by operating at the network level of the system stack.

In [43], the authors model both permanent and transient
faults as faulty links. To tolerate permanent faults, the
authors have implemented a deflection routing algorithm
that can learn. For transient faults, a combination of auto-
matic repeat request and forward error correction mecha-
nisms have been used. These mechanisms have been
proposed for buffer less NoCs.

The motivation for the proposal of Shield is to design an
integrated NoC router architecture that can tolerate both
permanent and transient faults in the four stages of the

Fig. 3. Component details of a baseline router.

3060 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

router pipeline using techniques that operate either at archi-
tectural or at circuit level in the system stack. Shield con-
tains fault tolerant techniques for each pipeline stage and
hence can tolerate at least one hard error in each pipeline
stage. Put together, Shield can tolerate multiple hard errors
in its pipeline. Shield uses a critical gate identification algo-
rithm to identify the gates in its pipeline that are most sensi-
tive to soft errors and hardens these critical gates to tolerate
soft errors.

4 GUARDING AGAINST HARD ERRORS IN SHIELD

In this section, we briefly summarize the techniques used to
tolerate hard errors. First, we present the effect(s) of a hard
fault in each individual stage and then we present the tech-
nique used to tolerate hard errors in each pipeline stage.

4.1 Effects of Hard Faults in the Pipeline

4.1.1 Routing Computation Stage

A fault in this stage will result in the calculation of an inac-
curate or faulty output port. As a result, the packet will be
forwarded to an incorrect downstream router. This could
result in either increased latency of the packet if an adaptive
routing algorithm is used to route packets or deadlock if a
deterministic routing algorithm is used to route packets.
There is also a potential chance that the downstream router
might drop this unexpected packet resulting in a packet
retransmission at a later time.

4.1.2 Virtual Channel Allocation Stage

A fault in this stage will result either in the allocation of an
incorrect virtual channel at the downstream router or failure
to allocate a virtual channel. If an incorrect virtual channel is
allocated, when the packet is forwarded to the downstream
router, it will be directed to an incorrect virtual channel. If
that virtual channel is occupied by another packet, then the
incoming packet overwrites the existing packet resulting in
data corruption. There is also a potential chance that this
new packet might be overwritten by another packet at a
later time because of incorrect virtual channel allocation. On
the other hand, if a virtual channel has not been allocated at
all, then the packet will remain in the router buffer and will
fail to progress in its pipeline. This results in serious ramifi-
cations in the performance of the network and might also
potentially lead to deadlock.

4.1.3 Switch Allocation Stage

A fault in this stage will prevent the packet at an input port
of the router access to the input port of the crossbar. In this
situation, the packet cannot traverse through the crossbar
and is blocked in the router. A blocked packet will be unable
to free the virtual channel allocated to it eventually resulting
in performance degradation and a potential deadlock
situation.

4.1.4 Crossbar Stage

A fault in the crossbar will disrupt the connections between
an output port of the router and the input ports of the
router. As a result, a packet from any input port will not be
able to access the affected output port. Thus, due to the

fault, the router will either be operating in a degraded fash-
ion or it needs to be completely bypassed by the ongoing
packets.

4.2 Techniques Used to Tolerate Hard Errors

4.2.1 Routing Computation Stage

The routing protocol used in the NoC determines the archi-
tecture of the routing computation unit. In this work, we
use dimension order (XY) routing to route packets. XY rout-
ing does not require routing tables [40] and hence the silicon
footprint of the circuit necessary for performing XY routing
is minimal. Thus, we employ a spatial redundant approach
where we duplicate the routing computation unit of every
input port. This duplicate unit is maintained in power-gated
mode as long as the original unit is functional and is pow-
ered on upon detection of a fault in the original routing
computation unit. Once the duplicate unit is turned on, it
continues to be on for the remainder of the time and so we
implement the power-gating of the duplicate unit using
sleepy transistor method discussed in [16]. Thus, fault toler-
ance for this stage is achieved via spatial redundancy.

4.2.2 Virtual Channel Allocation Stage

We used a two-stage separable virtual channel allocator for
performing virtual channel allocation. As a result, we con-
sider the scenario of fault in both the sub-stages indepen-
dently. From Fig. 3, we can deduce that in the first sub-
stage, each input virtual channel is associated with exact set
of arbiters. When an arbiter associated with an input virtual
channel is detected to be faulty, the complete set of arbiters
associated with that specific input virtual channel is consid-
ered faulty. To perform virtual channel allocation, the
packet in the affected input virtual channel borrows the
arbiter set from another input virtual channel belonging to
the same input port. This is possible because all the input
virtual channels are associated with exact set of arbiters. By
scanning through the ‘G’ state field, which indicates the
state of the virtual channel, the affected virtual channel can
identify another virtual channel belonging to the same input
port to borrow arbiters from. To facilitate this arbiter shar-
ing, the input port of the router needs to be modified as
shown in Fig. 4. This arbiter sharing might incur a latency
of one cycle when the affected virtual channel is unable to
find a virtual channel whose arbiters are idle.

If an arbiter is faulty in the second sub-stage, it will result
in that particular virtual channel at the downstream router
not being allocated to any packet in the current router. This
fault does not result in blocking the packet at the current

Fig. 4. Proposed input port to provide hard fault tolerance.

POLURI AND LOURI: SHIELD: A RELIABLE NETWORK-ON-CHIP ROUTER ARCHITECTURE FOR CHIP MULTIPROCESSORS 3061

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

router because another virtual channel belonging to the
required input port at the downstream router can be
allocated using the associated non-faulty arbiter. To do this,
virtual channel allocation must be repeated, causing an
additional latency of one cycle.

4.2.3 Switch Allocation Stage

We used a two-stage separable switch allocator for perform-
ing switch allocation. So, we consider the scenario of fault in
both the sub-stages independently. From Fig. 3, we can
deduce that each input port is associated with an arbiter that
determines which virtual channel of the input port gets to
compete in the second sub-stage of switch allocation. To
overcome the situation of a faulty arbiter, we propose to cre-
ate a bypass path for each arbiter in the first sub-stage
(Fig. 5a). This bypass path is used to choose a virtual channel
from an input port when the associated arbiter is faulty. The
bypass path always chooses the same input virtual channel
as the winner. This is made possible by adding a 2:1 multi-
plexer at the output of each arbiter in the first sub-stage
(Fig. 5a). One input to this 2:1 multiplexer is the output of the
arbiter and the other input comes from a register that stores
the identification of the default input virtual channel that is
always chosen as winner when bypass path is activated. For
example, if VC3 is decided to be the default input virtual
channel that is always chosen by the bypass path, the identi-
fication of VC3 is stored in the register. When the default vir-
tual channel is empty and there are flits in other virtual
channels belonging to the same input port, flits from any
other virtual channel of the same input port can be transferred
into default virtual channel using implemented read/write
logic. This transferring incurs a latency of one cycle.

If an arbiter is faulty in the second sub-stage, it makes the
associated output port unreachable. This can be avoided by
forwarding the packet via a secondary path. The existence
of this secondary path to reach an output port is described
in the next sub-section where we present the fault tolerance
in the crossbar.

4.2.4 Crossbar Stage

In the generic crossbar (Fig. 3), there exists only one path
to reach a specific output port. If this path is faulty, the

output port becomes inaccessible. To overcome this prob-
lem, we add extra circuitry comprised of one 1:3 demulti-
plexer, three 1:2 demultiplexers and five 2:1 multiplexers.
Fig. 5b shows the modified crossbar. With the help of this
additional circuitry, we can observe that there exist two
paths to reach every output port. In the fault-free case,
the primary path is used by the flits and in the event of a
fault in the primary path; the secondary path can be
used. The switch allocator generates the select signals to
these additional multiplexers and de-multiplexers. This
secondary path is also used to provide fault tolerance to
the second stage of switch allocator.

We considered each stage of the pipeline independently
and employed a technique customized to the stage’s func-
tionality that enables the stage to tolerate hard errors. For
further details regarding hard error tolerance, please refer
to [33]. In the following section, we present the proposed
methodology for tackling soft errors.

5 GUARDING AGAINST SOFT ERRORS IN SHIELD

Transient faults in a logical circuit are mainly caused by
particle strikes [25] on the circuit. Not all particle strikes
on a circuit result in a transient fault. If the transient
change in the charge, as a result of a particle strike is suf-
ficient enough to cause a bit flip, and if the bit flip is cap-
tured by a sequential element, there is a chance for the
particle strike to alter the computational result of the cir-
cuit. A transient fault is termed as a soft error when it is
clocked by a sequential element of the circuit. Note that
in this work, we focus on soft errors only in combina-
tional logic circuits. We assume that, soft errors in
sequential logic circuits such as buffers can be tolerated
using techniques based on ECC such as in [44] and hence,
we do not discuss fault tolerance regarding sequential cir-
cuits further in this paper.

The propagation of a transient fault to an output
depends on the three different masking mechanisms
inherent in a logic circuit namely, logical masking, latch-
window masking and electrical masking [45], [46], [47], [48].
Logical masking arises when an active path from
the affected gate to the output port or latch is absent.

Fig. 5. Hard fault tolerance. (a) Proposed switch allocator. (b) Proposed crossbar.

3062 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

Latch-window masking occurs when the generated tran-
sient from the affected gate arrives at the latch or flip-
flop at a time other than during the clock window for
latching. Electrical masking occurs when the transient
generated by the affected gate weakens as it traverses
through the active path from the affected gate to the out-
put port or latches. With technology scaling down, tran-
sistors are becoming smaller resulting in reduced
electrical masking [49]. Further, due to higher clock rates
(faster devices), the latch window masking is decreas-
ing [49]. However, based on the definition, logical mask-
ing is completely dependent on the specific circuit.
Therefore, among the three masking mechanisms, in this
paper we are interested in logical masking and hence we
describe it in further detail.

5.1 Logical Masking Analysis

Consider a simple combinational logic circuit such as
shown in Fig. 6a. It takes in three inputs (a, b, c) and produ-
ces a single output (f). It is comprised of 6 gates (g1, g2, g3,
g4, g5, g6). The output of g6 is clocked into register R1 (D
flip-flop) and the output of the circuit (f) takes the value
stored in R1. We evaluate this simple circuit (Fig. 6a) in the
following three different scenarios. We assume there is no
electrical and latch-window masking in these scenarios.

Scenario I. Consider the input combination (a ¼ 1, b ¼ 0, c
¼ 1) for this scenario (Fig. 6a). As a result, the output of the
circuit (f) is 1. Let us assume a charged particle hits the out-
put of gate g3 and flips its output value from 0 (in the fault-
free case) to 1. As a result, the output of gates g5 and g6
change to 0. Hence, the value of f changes to 0. Thus, in this
scenario, a particle hit resulted in changing the output of
the circuit.

Scenario II. Consider the input combination (a ¼ 1, b ¼ 0,
c ¼ 1) for this scenario (Fig. 6b). As a result, the output of
the circuit (f) is 1. Let us assume a charged particle hits the
output of gate g1 and flips its output value from 0 (in the
fault-free case) to 1. Due to the nature of g4 (nor gate), the bit
flip occurred at gate g1 does not propagate to the output
and hence, the output of the circuit (f) is unchanged. Thus,
in this scenario, the transient fault (particle hit) has been
logically masked.

Scenario III. Consider the input combination (a ¼ 1, b ¼ 0,
c ¼ 0) for this scenario (Fig. 6c). As a result, the output of
the circuit (f) is 1. Let us assume a charged particle hits the
output of gate g3 and flips its output value from 0 (in the
fault-free case) to 1. Due to the nature of g5 (nand gate), the
bit flip occurred at gate g3 does not propagate to the output
and hence, the output of the circuit (f) is unchanged. Thus,

in this scenario as well, the transient fault (particle hit) has
been logically masked.

From the three scenarios we just described, we can
come to a conclusion that, though a particle hit at a specific
gate results in changing the output of that particular gate,
whether the output of the entire circuit changes or remains
the same (effect of particle hit is logically masked) depends
on the gate affected by the hit (Figs. 6a and 6b), as well
as the input combination during the hit (Fig. 6c). Hence,
the number of gates in a circuit and the total number of
possible input vectors for the circuit play a crucial role in
calculating the logical masking of a circuit. In the following
sub-section, we present a mathematical model that we
use to calculate the logical masking of an arbitrary combi-
national circuit.

5.1.1 Logical Masking Model

Consider an arbitrary combinational circuit with NG gates,
N inputs and T outputs. Therefore, the total number of

inputs possible for the circuit isNV ¼ 2N . Each input combi-
nation is a vector of length N and the circuit produces an
output vector of length T for the particular input combina-
tion. Let M be the average logical masking of the entire cir-
cuit. For an arbitrary gate i and arbitrary input vector j, we
defineMði; jÞ as:

� Mði; jÞ ¼ 1, if a transient fault occurs at gate i when
the input vector is j and the output vector of the cir-
cuit is identical to the output vector of the circuit in
the absence of a transient fault.

� Mði; jÞ ¼ 0, if a transient fault occurs at gate i when
the input vector is j and the output vector of the cir-
cuit is different from the output vector of the circuit
in the absence of a transient fault.

Let,

� pGðiÞ be the probability that the gate i is affected by a
transient fault.

� pV ðjÞ be the probability that the input vector is jwhen
the transient fault occurred.

The average logical masking M of the circuit can be cal-
culated as

M ¼
X

i

X

j

pGðiÞpV ðjÞMði; jÞ: (1)

We assume all gates have equal probability of being
affected by a transient fault and hence,

� pGðiÞ ¼ 1=NG.

Fig. 6. Example of logical masking.

POLURI AND LOURI: SHIELD: A RELIABLE NETWORK-ON-CHIP ROUTER ARCHITECTURE FOR CHIP MULTIPROCESSORS 3063

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

We also assume that, all the input vectors are equally
probable and hence,

� pV ðjÞ ¼ 1=NV .
The above assumption for equal probability for all input

vectors is justified as follows: in the context of an NoC, we
assume that all the output ports of an NoC router have equal
probability of encountering a packet. Thus, all the input
ports of an NoC router have equal probability of receiving a
packet. Therefore, all the input vectors for the routing com-
putation stage have equal probability. Based on the descrip-
tion of virtual channel and switch allocation stages (Section
2.2), it can be deduced that arbiters form the fundamental
building blocks for both these stages. We use round-robin
arbiters in both the stages. Round-robin arbiters perform a
fair arbitration [9]. This indicates that all the virtual channels
of any input port have equal probability of storing a packet.
Thus, the input vectors for both virtual channel allocation
and switch allocation stages have equal probability. Since, all
the output ports are equally probable, all the input vectors
for the crossbar also have equal probability.

Thus, the average logical masking M of the circuit can be
rewritten as

M ¼
P

i

P
j Mði; jÞ

NGNV
: (2)

From Equation (2), we can deduce that the value of aver-
age of logical masking ranges between 0 and 1 i.e.,
0 < M < 1. Considering a pessimistic approach wherein
we assume that electrical masking and latch-window mask-
ing do not occur, whether a bit flip at the output of a gate
affects the output of the circuit (manifest as soft error) or
not solely depends on if the bit flip is logically masked or
not. In this particular scenario, the average logical masking
value of a circuit can be viewed as a measure of the circuit’s
ability to tolerate soft errors i.e., the probability (P) of a sin-
gle transient fault being masked by the circuit. Thus, calcu-
lating 1� P gives the probability of a single transient fault
in the circuit manifesting as a soft error.

5.1.2 Selective Hardening of Critical Gates

Hardening the gates of a logic circuit is a well-known meth-
odology to make the circuit tolerate transient faults [47], [48],
[50]. The process of hardening a gate involves either having
a duplicate copy of the gate (architectural modification) or
resizing the gate (circuit modification) by increasing the
width of the gate’s transistors [51], [52]. Employing either of
these approaches results in increasing the gate’s driving
strength and shortens the amplitude of the transient pulses
generated by particle strikes [51]. We employ the gate resiz-
ing technique for hardening a gate. A gate can be considered
immune to transient faults, if it is sized such that, the genera-
tion of a pulse with amplitude larger than Vdd=2 is not possi-
ble by the deposited charge as a result of particle strike [50],
where Vdd is the operating voltage.

Hardening all the gates of a circuit incurs too much cost
in terms of the area and power consumption of the circuit.
Selective hardening [53], [54], [55], which involves hardening
only a few selected gates of a circuit, is known to improve
the circuit tolerance to soft errors. The goal of selective

hardening is to achieve a right balance between the required
soft error tolerance and the overhead incurred as a result of
hardening [54]. One of the key aspects in achieving the best
tolerance to soft errors via selective hardening is to identify
which gates to harden. In order to identify the gates of a cir-
cuit to be hardened, we use the traditional hardening algo-
rithm presented in [52] as the base and modify it according
to our requirements to identify the critical gates of a circuit
and to rank the gates according to their criticality. The criti-
cality of a gate is determined by its sensitivity to soft errors.
The higher the sensitivity of a gate, the greater is its critical-
ity. In the following sub-section we present the details of
our critical gate identification algorithm.

5.1.3 Critical Gate Identification Algorithm

In this sub-section, we present the algorithm we use to iden-
tify the critical gates of a circuit. The mathematical model
presented in Section 5.1.1 is the crux of this algorithm. It
takes the circuit description as an input and outputs the list
of gates sorted according to their sensitivity towards soft
errors. The working of the algorithm can be described as fol-
lows in three steps.

Step 1. Based on the circuit description provided as input,
the algorithm calculates the number of inputs taken by the
circuit and the number of gates in the circuit. Based on the
number of inputs, the number of input vectors is calculated.

Step 2.An input vector is applied to the circuit and the cor-
rect output of the circuit is computed. Then, the output of a
randomly chosen gate is flipped (simulating a charged parti-
cle hit) and the output of the circuit is computed again. This
computed value is compared to the original output value to
determine if the change in the output of the chosen gate has
affected the output of the circuit. If it has affected, then the
chosen gate’s criticality is updated. This process of flipping
the output of a gate value and comparing it with the original
value is repeated for all the gates in the circuit. Note that at
any point of time only one gate’s output is flipped.

Step 3. Step 2 is repeated for all possible input vectors to
determine the aggregate criticality value of all the gates.

Table 1 shows the pseudo code for the critical gate identi-
fication algorithm. Since the algorithm sorts all the gates of a
circuit according to their criticality values in a descending
order, the higher a gate is in the list, higher is its sensitivity
towards soft errors. The number of gates hardened depends
upon the area overhead that is accepted. Based on the analy-
sis described in [51], we increase the gate size by 3X for
every gate that is chosen to be hardened. The impact of
increasing the size of some gates is presented in Section 7
where we discuss the overhead incurred by the techniques
to achieve fault tolerance. In the following section, we per-
form reliability analysis to estimate the improvement in reli-
ability achieved via employing the discussed techniques.

Note that Equation (2) is applicable when all the input
vectors are equally probable. In the event where some input
vectors are more probable than the other, a correlation exists
between the input and output vectors. Then, the logical
maskingM of the circuit is calculated as

M ¼
P

i

P
j Mði; jÞ � pVðjÞ

NG
: (3)

3064 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

However, the critical gate identification algorithm can
still be used to identify the most vulnerable gates in the
event of correlated input and output vectors. Since, some of
the input vectors have higher probability, the logic gates of
the circuit that exist in the critical path of these high proba-
bility input vectors will have increased probability to be
deemed vulnerable than the remaining gates in the circuit.

6 RELIABILITY IMPROVEMENT ANALYSIS

In this section, we conduct an analysis to quantify the
improvement in reliability achieved by Shield in compari-
son to the baseline unprotected router and other fault toler-
ant router architectures. Fig. 7 shows the comprehensive
view of the Shield router architecture with the redundant
routing computation units, proposed input port, proposed
switch allocator, proposed crossbar and with selective hard-
ening performed on routing computation, virtual channel
allocation and switch allocation circuits (shown in the figure

with light rectangular shading). Due to the fundamental
difference in the nature and behavior of a transient and a
hard fault, we estimate the reliability improvement with
respect to soft and hard errors separately.

6.1 Reliability Improvement for Soft Errors

As mentioned in Section 5.1, masking of a circuit (logical
masking) plays an important role in determining its vulnera-
bility to soft errors. The higher the masking, the better is the
immunity of a circuit to soft errors. Thus, we estimate the
reliability improvement of Shield with respect to soft errors
by calculating the improvement in logical masking achieved
via hardening critical gates in comparison to the logical
masking of the baseline unhardened circuitry. Consider a
five-input, five-output port NoC router with each input port
comprised of four virtual channels. Assume that it is part of
an 8 � 8 NoC that employs dimension order (XY) routing to
route packets from source to destination. Fig. 8 shows the
path of a flit through the various circuits of the router pipe-
line. It traverses through a comparator responsible for rout-
ing computation stage, four input and 20 input arbiter
responsible for virtual channel allocation, couple of five
input arbiters responsible for switch allocation and 5 to 1
multiplexer responsible for the crossbar stage.

Using the mathematical model presented in Section
5.1.1, we calculate the masking of all these circuits exclu-
sively. For explanation purposes, we show here how the
masking of a 5:1 multiplexer is calculated. Fig. 9 shows a
5:1 multiplexer realized using four 2:1 multiplexers. It has
five inputs (data) and a 3-bit select signal (control). We are
interested in the select (control) signal because, it decides
which input to forward to the output. As can be seen in
Fig. 9, the circuit is comprised of four gates (g1, g2, g3 and
g4). The 3-bit select signal gives us a total combination of
eight input vectors. However, since it is a 5:1 multiplexer,
we only need five input vectors out of the total eight possi-
ble combinations. When we execute the critical gate identi-
fication algorithm on this circuit, the algorithm evaluates
the circuit a total of 20 ([number of input vectors * number of
gates] ¼ 5 * 4 ¼ 20) times. Among these 20 executions of
the circuit, the algorithm revealed that the output value
computed by flipping the output of a random gate
matched the original fault-free output value seven times.
This gives the 5:1 multiplexer a logical masking value of
7/20 ¼ 35 percent. The algorithm also gave as output the
list of gates sorted according to their criticality values. The
order of the gates in the list is g4, g3, g2 and g1. Note that,
g1 and g2 have the same logical masking value. We ranked
g2 higher than g1 for the sake of explanation. The discus-
sion holds even if g1 is ranked higher than g2. Using the
same approach, we execute the critical gate identification
algorithm and calculate the masking and the sorted list of
gates according to their criticality values for the compara-
tor, four input arbiter, 20 input arbiter and five input arbi-
ter circuits respectively.

In the interest of achieving the right balance between the
area overhead incurred as a result of sizing the gates and the
soft error tolerance achieved, we chose to take the two most
critical gates of the mentioned circuits and harden them.
Also, since a 5:1 multiplexer has an inherently high logical
masking value (35 percent) and a soft error in the crossbar

TABLE 1
Critical Gate Identification Algorithm

function Critical_Gate_Identification (circuit)
begin

list_input_vector(input vectors of the circuit
list_gates(gates of the circuit

/* Set the criticality of all gates to 0 */
for G in 1 to num_gates_circuit
begin

list_gates[G].criticality(0
end

/* Set the value of the counter to 0 */
counter(0

/* For each input vector */
for vec in 1 to num_input_vectors
begin

Apply input vector list_input_vector[vec] to circuit
Compute the output of the circuit
Output1(circuit(list_input_vector[vec])
for G in 1 to num_gates_circuit
begin

Flip output of gate list_gates[G]
Compute the output of the circuit with flipped value
of list_gates[G]
Output2(circuit(list_input_vector[vec])
if (Output1 != Output2)
begin

/* Increase the gate’s criticality */
list_gates[G].criticality++

end
else
begin

/* Increment counter */
counter(counter+1

end
Correct the output of the gate list_gates[G]

end
end
/* Calculate masking of the circuit */
M = [counter/(num_input_vectors*num_gates_circuit)]*100

/* Sort list_gates according to criticality of gates */
SORT (list_gates, Descending)

end

POLURI AND LOURI: SHIELD: A RELIABLE NETWORK-ON-CHIP ROUTER ARCHITECTURE FOR CHIP MULTIPROCESSORS 3065

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

stage is not as severe as a soft error in the remaining three
pipeline stages, we do not perform hardening of any gates in
the crossbar. In other words, a soft error in crossbar will not
result in entire packet being misdirected and hence, we do
not perform hardening in crossbar. Therefore, the size of the
top two ranked gates of the comparator (comp), four input
arbiter (arb4), 20 input arbiter (arb20) and the couple of five
input arbiters (arb5) are increased by three times. After the
top two ranked gates of all the mentioned components are
hardened, we execute the critical gate identification algo-
rithm again on all the components to estimate their updated
logical masking values. The logical masking of the entire
pipeline (LMpipeline) can be calculated as

LMpipeline ¼ LMcomp � LMarb4 � LMarb20

�LMarb5 � LMarb5 � LM5:1mux:
(4)

As mentioned in Section 5.1.1, we assume that all output
ports of a router have equal probability of encountering a
packet. This assumption led to the observation that all the
input vectors of each pipeline stage have equal probability.
Using this assumption, we calculated the average masking
of each component in the pipeline stages. Therefore, the
average masking calculated for each component is indepen-
dent of all the other components. Since the probabilities

are independent, logical masking of the entire pipeline is
calculated as the product of logical masking (probability) of
every component in the pipeline.

We calculate the logical masking of the baseline pipeline
(LMbaseline) as well as the hardened pipeline (LMhardened)
based on Equation (4). We introduce a metric called Soft
Error Tolerance Improvement Factor (SEIF), which is defined
as the ratio of LMhardened with LMbaseline:

SEIF ¼ LMhardened

LMbaseline
: (5)

Based on the definition of logical masking, we can
deduce that the higher the logical masking value, the better
is the tolerance to soft errors. So, from the definition of SEIF,
a value of SEIF greater than 1 indicates improvement in soft
error tolerance compared to the baseline pipeline. With the
use of selective hardening, the value of SEIF is 3, indicating
that due to hardening certain critical gates, the soft error
tolerance of the hardened pipeline has increased by a factor
of 3. This improvement achieved via selective hardening
incurred an area overhead of approximately 3 percent in
comparison to the baseline router.

Fig. 7. Component details of a Shield router.

Fig. 8. Path of a flit through the router pipeline. Fig. 9. 5:1 multiplexer realized as a combination of 4 2:1 multiplexers.

3066 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

Table 2 presents the comparison between Shield and
existing soft error techniques presented in [39], [40]. It
can be deduced from the table that the higher area and
power overhead of the Shield architecture is due to its
ability to tolerate hard errors in addition to the soft errors,
whereas the other two architectures can tolerate only soft
errors.

6.2 Reliability Improvement for Hard Errors

To quantify the reliability improvement of Shield in com-
parison to the baseline unprotected router with respect to
hard faults, we use Mean Time to Failure and Silicon Protec-
tion Factor (SPF) [35] metrics.

To estimate the MTTF of Shield, we calculate the FIT of
the baseline circuitry and the correction circuitry using the
architectural level reliability-modeling framework pro-
posed in [56]. The reliability framework proposes to calcu-
late the FIT of a circuit based on an approach called as
Failure in time of Reference Circuit (FORC). This approach
allows the designers to estimate the failure rate of a circuit
without delving into low level details regarding the circuit
implementation and the specific technology involved. This
framework provides mathematical equations to calculate
the failure rate of a circuit due to TDDB. The reason for spe-
cifically choosing TDDB fault mechanism comes from the
fact that, it has no recovery effect on digital circuits unlike
other fault mechanisms such as electromigration and nega-
tive bias temperature instability [56] and also as technology
continues to scale down, it will evolve into one of the major
causes for hard faults [57].

Using the provided mathematical equations, we esti-
mate the FIT of the RC, VA, SA and XB stages of a five-
input, five-output port router with each input port

comprised of four VCs. We estimate the MTTF of the base-
line router taking into account the FIT values of the four
stages of the pipeline. Then, we also estimate the FIT of the
correction circuitry involved in providing protection from
hard faults to the pipeline stages. We estimate the MTTF of
a Shield router taking into account the FIT values of the
four stages of the pipeline as well as the FIT values of
the correction circuitry. Comparing the MTTF values of a
Shield router and a baseline unprotected router reveals
that, Shield’s MTTF value is six times the MTTF value of
the baseline unprotected router. This indicates that the
Shield’s reliability value has increased by 500 percent in
comparison to the baseline router. The details of this analy-
sis have been presented in [33].

To compare Shield with existing fault tolerant router
architectures such as BulletProof [35], Vicis [36] and
RoCo [37] from a hard fault viewpoint, we use SPF as a
metric. SPF is defined as the ratio of mean number of faults
to cause failure and the area overhead incurred by the
additional circuitry. This definition suggests that, higher
SPF value indicates better reliability. Figs. 10a, 10b and 10c
compare the area overhead, mean number of faults to
cause failure and the Silicon Protection Factor value of Bul-
letProof, Vicis, RoCo and Shield architectures. Based on
these figures, we can deduce that, between the fault toler-
ant router architectures, Shield has the second lowest area
overhead compared to the baseline router and has the
highest mean number of faults to cause failure which
resulted in a higher SPF value. Thus, we conclude that, the
higher SPF value of Shield indicates that it provides better
reliability at lower cost. The analysis regarding the mean
number of faults to cause failure of Shield has been pre-
sented in detail in [33].

TABLE 2
Comparison of Shield Architecture with Other Existing Soft Error Tolerant Architectures

Architecture Hard
Faults

Soft
Errors

Operation level
in System stack

Reliability Area Power

Shield Yes Yes Circuit-level 2 soft errors per RC,
VA and SA stages

34 percent 31 percent

Allocation
Comparator [39]

No Yes Architecture-level 2 soft errors per RC,
VA and SA stages

1.2 percent 1.7 percent

Information
Redundancy [40]

No Yes Architecture-level 2 soft errors per RC,
VA and SA stages

9 percent 3 percent

Fig. 10. Comparison of fault tolerant router architectures. (a) Area overhead. (b) Mean number of faults to cause failure. (c) Silicon protection factor.

POLURI AND LOURI: SHIELD: A RELIABLE NETWORK-ON-CHIP ROUTER ARCHITECTURE FOR CHIP MULTIPROCESSORS 3067

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

7 PERFORMANCE ANALYSIS OF SHIELD: AREA,
POWER AND CRITICAL PATH

To evaluate the impact of the correction circuitry on area,
power and critical path we developed the baseline and the
Shield (Fig. 7) versions of a five-input port, five-output port
router with each input port consisting four VCs, where each
channel can hold a total of four 32-bit flits, in Verilog and syn-
thesized using Cadence Encounter RTL compiler at 45 nm
technology. We also took into account the resized gates and
their overhead. Synthesis results reveal that Shield incurs an
area overhead of 34 percent (Fig. 10a) and total power over-
head of 31 percent with respect to the baseline router.

To find the accurate effect on critical path due to the correc-
tion circuitry, we repeated the synthesis process of both the
baseline and the modified pipeline stages at varying clock
period values to identify the respective clock periods that
result in zero slack time. Synthesis results reveal that the criti-
cal paths of VA, SA and XB stages have increased by 20, 10
and 25 percent due to the correction circuitry. However, the
increase in the critical path of the RC stage is negligible
because of employing spatial redundancy. These increased
values also take into account the increase in critical path due
to selective hardening used to improve soft error tolerance.
Since the clock period should be long enough to accommodate
all computations, the clock period of Shield is increased by
25 percent in comparison to the baseline unprotected router.

8 LATENCY ANALYSIS OF SHIELD

To study the impact on latency, we simulate two configura-
tions of NoC comprised of Shield routers using GEM5 [58]

simulator. The basic four-stage pipeline within a router is
simulated using GARNET [59]. We modified the generic
router’s pipeline to implement Shield’s pipeline.

The first configuration is a 4 � 4 mesh-based NoC on
which we inject uniform random and tornado synthetic traf-
fic patterns at varying injection rates (0.03, 0.05, 0.07 and 0.1
packets/node/cycle) and executing the simulation for 10
million cycles. Each simulation is run 10 times and the aver-
age value is calculated. The ideal way to simulate faults is
to inject faults according to the actual FIT values deduced
in [33]. However, the FIT values are very small and the
applications need to run for a very long time to be able to
inject faults using the FIT values. To accelerate the simula-
tions, we injected a fault into the pipeline stage of a router
after 1 million cycles of its operation. For example, in a
router, if both routing computation unit and virtual channel
allocator have operated for at least 1 million cycles, we inject
one fault in the routing computation unit and one fault in
the virtual channel allocator. Thus, the router is functioning
in the presence of two faults.

Fig. 11 shows the latency of a NoC comprised of Shield
routers in the presence of faults in comparison to a NoC
comprised of baseline routers with no faults while executing
uniform random and tornado traffic patterns. Note that
Shield does not incur any additional latency in the absence
of hard faults. Therefore, we compare latency of Shield (in
the presence of faults) with the baseline router (in the
absence of faults). The average increase in latency for uni-
form random traffic and tornado traffic patterns has been
observed to be 13 and 10 percent respectively.

The second configuration is a 8 � 8 mesh-based NoC on
which we executed SPLASH-2 [60] and PARSEC [61] bench-
marks. Here, to accelerate the simulations, we injected a
fault into the pipeline stage of a router after 10 million cycles
of its operation. Figs. 12 and 13 show the latency of a NoC
comprised of Shield routers in the presence of faults in com-
parison to a NoC comprised of baseline routers with no
faults while executing SPLASH-2 and PARSEC benchmarks
respectively. Note that Shield does not incur any additional
latency in the absence of hard faults. Therefore, we compare
latency of Shield (in the presence of faults) with the baseline
router (in the absence of faults). The average increase in
latency for SPLASH-2 and PARSEC is 13 and 10 percent
respectively.

9 CONCLUSION

In this work, we presented Shield, an NoC router architec-
ture capable of tolerating both hard and soft errors in the

Fig. 11. 4x4 NoC with Shield using synthetic traffic.

Fig. 12. 8 � 8 NoC with Shield routers using SPLASH-2.

Fig. 13. 8 � 8 NoC with Shield routers using PARSEC.

3068 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

routing pipeline. Using architectural modifications, we
showed that each pipeline stage of Shield could tolerate at
least one hard fault. Assuming each pipeline stage is
affected by only one hard fault, Shield can tolerate at least
four hard faults in the pipeline. Using circuit level modifica-
tions we improve Shield’s vulnerability to soft errors. We
introduced a newmetric called Soft Error Improvement Fac-
tor and using this metric, we showed that the soft error tol-
erance of Shield is three times compared to the baseline
unprotected router. From the perspective of hard faults,
using MTTF metric, we showed that Shield is six times
more reliable than a baseline unprotected router and with
the help of Silicon Protection Factor, we proved that Shield
is at least 1.5 times more reliable than existing fault tolerant
router architectures. We conducted hardware synthesis and
observed that Shield incurs an area and power overhead of
34 and 31 percent respectively in comparison to the baseline
unprotected router. Overall evaluation of results show that,
Shield achieves a right balance between reliability improve-
ment achieved and the overhead incurred.

ACKNOWLEDGMENTS

This work was supported by NSF awards 1547034, 1547035,
1547036, 1600820.

REFERENCES

[1] S. Borkar, “Design challenges of technology scaling,” IEEE Micro,
vol. 19, no. 4, pp. 23–29, Jul./Aug. 1999.

[2] S. Borkar, “Thousand core chips: a technology perspective,” in
Proc. IEEE Design Autom. Conf., 2007 pp. 746–749.

[3] W. J. Dally and B. Towles, “Route packets, not wires: On-chip
interconnection networks,” in Proc. IEEE Design Autom. Conf.,
2001, pp. 684–689.

[4] L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” IEEE Comput., vol. 35, no. 1, pp. 70–78, Jan. 2002.

[5] S. Kumar, A. Jantsch, J. P. Soininen, M. Forsell, M. Millberg,
J. Oberg, K. Tiensyrja, and A. Hemani, “A network on chip archi-
tecture and design methodology,” in Proc. IEEE Comput. Soc.
Annu. Symp. VLSI, 2002, pp. 105–112.

[6] R. Ho, K. W. Mai, and M. A. Horowitz, “The future of wires,”
Proc. IEEE, vol. 89, no. 4, pp. 490–504, Apr. 2001.

[7] International Technology Roadmap for Semiconductors, 2011.
[8] A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Mill-

berg, and D. Lindqvist, “Network on chip: An architecture for
billion transistor era,” in Proc. IEEE NorChip Conf., vol. 31, 2000,
pp. 166–173.

[9] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks. San Mateo, CA, USA: Morgan Kaufmann, 2003.

[10] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz,
D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman,
Y. Hoskote, and N. Borkar, “An 80-Tile 1.28TFLOPS network-on-
chip in 65nm CMOS,” in Proc. IEEE Int. Solid State Circuits Conf.,
2007, pp. 98–589.

[11] D. Park, R. Das, C. Nicopoulos, J. Kim, V. Narayanan, R. Iyer, and
C. R. Das, “Design of a dynamic priority-based fast path architec-
ture for on-chip networks,” in Proc. IEEE Symp. High Perform.
Interconnects, 2007, pp. 15–20.

[12] A. Kumar, L. S. Peh, P. Kundu, and N. K. Jha, “Express Virtual
Channels: Towards the Ideal Interconnection Fabric,” in Proc. Int.
Symp. Comput. Archit., 2007, pp. 150–161.

[13] D. Park, S. Eachempati, R. Das, A. K. Mishra, Y. Xie, V. Narayanan,
and C. R. Das, “MIRA: A multi-layer on chip interconnect router
architecture,” in Proc. Int. Symp. Comput. Archit., 2008, pp. 251–261.

[14] A. K. Kodi, A. Sarathy, and A. Louri, “Adaptive channel buffers in
on-chip interconnection networks—A power and performance ana-
lysis,” IEEE Trans. Comput., vol. 57, no. 9, pp. 1169–1181, Sep. 2008.

[15] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das, “Aergia: Exploit-
ing packet latency slack in on-chip networks,” in Proc. Int. Symp.
Comput. Archit., 2010, pp. 106–116.

[16] L. Chen and T. M. Pinkston, “NoRD: Node-router decoupling for
effective power-gating on on-chip routers,” in Proc. IEEE/ACM
Int. Symp. Microarchit., 2012, pp. 270–281.

[17] S. Borkar, “Designing reliable systems from unreliable compo-
nents: The challenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10–16, Nov./Dec. 2005.

[18] M. Pirretti, G. M. Link, R. R. Brooks, V. Narayanan, M. Kandemir,
and M. J. Irwin, “Fault tolerant algorithms for network-on-chip
interconnect,” in Proc. IEEE Annu. Symp. VLSI, 2004, pp. 46–51.

[19] S. Oussalah and F. Nebel, “On the oxide thickness dependence of
the time-dependent-dielectric breakdown,” in Proc. IEEE Electron
Devices Meeting, 1999, pp. 42–45.

[20] C. E. Blat, E. H. Nicollian, and E. H. Poindexter, “Mechanism of
negative-bias-temperature instability,” J. Appl. Phys., vol. 69, no. 3,
pp. 1712–1720, 1991.

[21] G. V. Groeseneken, “Hot carrier degradation and ESD in submi-
crometer CMOS technologies: How do they interact?” IEEE Trans.
Device Mater. Rel., vol. 1, no. 1, pp. 23–32, Mar. 2001.

[22] R. Barsky and I. A. Wagner, “Electromigration-dependent
parametric yield estimation,” in Proc. IEEE Int. Conf. Electron., Cir-
cuits Syst., 2004, pp. 121–124.

[23] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors
in dynamic memories,” IEEE Trans. Electron Devices, vol. ED-26,
no. 1, pp. 2–9, Jan. 1979.

[24] G. A. Sai-Halasz, M. R. Wordeman, and R. H. Dennard, “Alpha-
particle-induced soft error rate in VLSI circuits,” IEEE Trans. Elec-
tron Devices, vol. ED-29, no. 4, pp. 725–731, Apr. 1982.

[25] J. F. Ziegler, “Terrestrial cosmic ray intensities,” IBM J. Res.
Develop., vol. 42, no. 1, pp. 117–140, 1998.

[26] K. J. Kuhn, “Reducing variation in advanced logic technologies:
Approaches to process and design for manufacturability of nano-
scale CMOS,” in Proc. IEEE Electron Devices Meeting, 2007,
pp. 471–474.

[27] D. Bertozzi, L. Benini, and G. De Micheli, “Error control schemes
for on-chip communication links: the energy-reliability tradeoff,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24,
no. 6, pp. 818–831, Jun. 2005.

[28] D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and
D. Blauww, “A highly resilient routing algorithm for fault-
tolerant NOCs,” in Proc. Conf. Design, Autom. Test Eur., 2009,
pp. 21–26.

[29] A. DeOrio, L. S. Peh, and V. Bertacco, “Ariadne: Agnostic recon-
figuration in a disconnected network environment,” in Proc. Int.
Conf. Parallel Archit. Compilation Tech., 2011, pp. 298–309.

[30] S. Lin, J. Shi and H. Chen, “Designing cost-effective network-on-
chip by dual-channel access mechanism,” J. Syst. Eng. Electron.,
vol. 22, no. 4, pp. 557–564, 2011.

[31] D. DiTomaso, A. K. Kodi, and A. Louri, “QORE: A fault-tolerant
network-on-chip architecture with power-efficient quad function
channel (QFC) buffers,” in Proc. Int. Symp. High-Perform. Comput.
Archit., 2014, pp. 320–331.

[32] P. Poluri and A. Louri, “Tackling permanent faults in the net-
work-on-chip router pipeline,” in Proc. Int. Symp. Comput. Archit.
High Perform. Comput., 2013, pp. 49–56.

[33] P. Poluri and A. Louri, “An improved router design for reliable
on-chip networks,” in Proc. IEEE Int. Parallel Distrib. Process.
Symp., 2014, pp. 283–292.

[34] L. S. Peh and W. J. Dally, “A delay model and speculative archi-
tecture for pipelined routers,” in Proc. Int. Symp. High-Perform.
Comput. Archit., 2001, pp. 255–256.

[35] K. Constantinides, S. Plaza, J. Blome, B. Zhang, V. Bertacco, S.
Mahlke, T. Austin, and M. Orshansky, “Bulletproof: A defect-tol-
erant CMP switch architecture,” in Proc. Int. Symp. High-Perform.
Comput. Archit., 2006, pp. 5–16.

[36] D. Fick, A. DeOrio, J. Hu, V. Bertacco, D. Blaauw, and D.
Sylvester, “Vicis: A reliable network for unreliable silicon,” in
Proc. IEEE Design Autom. Conf., 2009, pp. 812–817.

[37] J. Kim, C. Nicopoulos, D. Park, V. Narayanan, M. S. Yousif, and C.
R. Das, “A gracefully degrading and energy-efficient modular
router architecture for on-chip networks,” in Proc. Int. Symp. Com-
put. Archit., 2006, pp. 4–15.

[38] M. Koibuchi, H. Matsutani, H. Amano, and T. M. Pinkston, “A
lightweight fault-tolerant mechanism for network-on-chip,” in
Proc. IEEE/ACM Int. Symp. Netw.-on-Chip, 2008, pp. 13–22.

[39] D. Park, C. Nicopoulos, J. Kim, V. Narayanan, and C.R. Das,
“Exploring fault-tolerant network-on-chip architectures,” in Proc.
IEEE Int. Conf. Dependable Syst. Netw., 2006, pp. 93–104.

POLURI AND LOURI: SHIELD: A RELIABLE NETWORK-ON-CHIP ROUTER ARCHITECTURE FOR CHIP MULTIPROCESSORS 3069

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

[40] Q. Yu, M. Zhang, and P. Ampadu, “Exploiting inherent informa-
tion redundancy to manage transient errors in NoC routing arbi-
tration,” in Proc. IEEE/ACM Int. Symp. Netw.-on-Chip, 2011,
pp. 105–112.

[41] M. Ali, M. Welzl and S. Hessler, “A fault tolerant mechanism for
handling permanent and transient failures in a network on chip,”
in Proc. Int. Conf. Inf. Technol., 2007, pp. 1027–1032.

[42] M. Ali, M. Welzl, S. Hessler, and S. Hellebrand, “An efficient fault
tolerant mechanism to deal with permanent and transient failures
in a network on chip,” Int. J. High Perform. Syst. Archit., vol. 1,
no. 2, pp. 113–123, 2007.

[43] C. Feng, Z. Lu, A. Jantsch, M. Zhang, and Z. Xing, “Addressing
transient and permanent faults in NoC with efficient fault-tolerant
deflection router,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 21, no. 6, pp. 1053–1066, Jun. 2013.

[44] M. Srinivasan, T. Theocharides, V. Narayanan, M. J. Irwin,
L. Benini, and G. De Micheli, “Analysis of error recovery schemes
for networks on chips,” IEEE Design Test Comput., vol. 22, no. 5,
pp. 434–442, Sep./Oct. 2005.

[45] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson, “On latching
probability of particle induced transients in combinational
networks,” in Proc. Int. Symp. Fault-Tolerant Comput., 1994,
pp. 340–349.

[46] L. W. Massengill, A. E. Baranski, D. O. Van Nort, J. Meng, and
B. L. Bhuva, “Analysis of single-event effects in combinational
logic-simulation of the AM2901 bitslice processor,” IEEE Trans.
Nucl. Sci., vol. 47, no. 6, pp. 2609–2615, Dec. 2000.

[47] K. Mohanram and N. A. Touba, “Cost-effective approach for
reducing soft error failure rate in logic circuits,” in Proc. Int. Test
Conf., 2003, pp. 893–901.

[48] Q. Zhou and K. Mohanram, “Cost-effective radiation hardening
technique for combinational logic,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, 2004, pp. 100–106.

[49] P. Shivakumar, M. Kistler, S. W. Kecker, D. Burger, and L. Alvisis,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proc. IEEE Int. Conf. Dependable Syst.
Netw., 2002, pp. 389–398.

[50] Q. Zhou and K. Mohanram, “Gate sizing to radiation harden com-
binational logic,” IEEE Trans. Comput. Aided Design Integr. Circuits
Syst., vol. 25, no. 1, pp. 155–166, Jan. 2006.

[51] V. Srinivasan, A. L. Sternberg, A. R. Duncan, W. H. Robinson, B. L.
Bhuva, and L. W. Massengill, “Single-event mitigation in combi-
national logic using targeted data path hardening,” IEEE Trans.
Nucl. Sci., vol. 52, no. 6, pp. 2516–2523, Dec. 2005.

[52] D. J. Palframan, N. S. Kim, and M. H. Lipasti, “Precision-Aware
Soft Error Protection for GPUs,” in Proc. IEEE Int. Symp. High Per-
form. Comput. Archit., 2014, pp. 49–59.

[53] R. R. Rao, D. Blaauw, and D. Sylvester, “Soft error reduction in
combinational logic using gate resizing and FlipFlop selection,”
in Proc. Int. Conf. Comput.-Aided Design, 2006, pp. 502–509.

[54] I. Polian and J. P. Hayes, “Selective hardening: Toward cost-effec-
tive error tolerance,” IEEE Design Test Comput., vol. 28, no. 3,
pp. 54–63, May/Jun. 2011.

[55] S. N. Pagliarini, G. G. dos Santos, L. A. de B Naviner, and J. F.
Naviner, “Exploring the feasibility of selective hardening for com-
binational logic,” Microelectron. Rel., vol. 52, no. 9, pp. 1843–1847,
2012.

[56] J. Shin, V. Zyuban, Z. Hu, J. A. Rivers, and P. Bose, “A framework
for architecture-level lifetime reliability modeling,” in Proc. IEEE/
IFIP Conf. Dependable Syst. Netw., 2007, pp. 534–543.

[57] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The impact of
technology scaling on lifetime reliability,” in Proc. IEEE Int. Conf.
Dependable Syst. Netw., 2004, pp. 177–186.

[58] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
gem5 simulator,” ACM SIGARCH Computer Archit. News, vol. 39,
pp. 1–7, 2011.

[59] N. Agarwal, T. Krishna, L. S. Peh, and N. K. Jha, “GARNET: A
detailed on-chip network model inside a full-system simulator,”
in Proc. Perform. Anal. Syst. Softw., 2009, pp. 33–42.

[60] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological con-
siderations,” in Proc. Int. Symp. Comput. Archit., 1995, pp. 24–36.

[61] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC bench-
mark suite: Characterization and architectural implementations,”
in Proc. Int. Conf. Parallel Archit. Compilation Tech., 2008, pp. 72–81.

Pavan Poluri received the bachelor’s and mas-
ter’s degrees in the field of computer science in
2007 and 2009 respectively. He is currently
working toward the PhD degree at the High Per-
formance Computing Architectures and Technol-
ogies Lab, The University of Arizona. His
research interests include computer architecture,
network-on-chip, reliability, and modeling and
simulation. He is currently a student member of
the IEEE.

Ahmed Louri received the PhD degree in com-
puter engineering from the University of Southern
California in 1988. He is currently a full professor of
electrical and computer engineering at the Univer-
sity of Arizona, and the director of the High Perfor-
mance Computing Architectures and Technologies
Laboratory (www.ece.arizona.edu/�hpcat). His
research interests include computer architecture,
networks-on-chip, parallel processing, power-
aware parallel architectures, and optical intercon-
nection networks. He is a fellow of the IEEE and a
member of theOSA.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

3070 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 10, OCTOBER 2016

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 14:07:48 UTC from IEEE Xplore. Restrictions apply.

www.ece.arizona.edu/~hpcat
www.ece.arizona.edu/~hpcat

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

