
4102 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Stochastic Dividers for Low Latency
Neural Networks

Shanshan Liu , Member, IEEE, Xiaochen Tang, Member, IEEE, Farzad Niknia , Student Member, IEEE,

Pedro Reviriego , Senior Member, IEEE, Weiqiang Liu , Senior Member, IEEE,

Ahmed Louri, Fellow, IEEE, and Fabrizio Lombardi , Life Fellow, IEEE

Abstract— Due to the low complexity in arithmetic unit design,
stochastic computing (SC) has attracted considerable interest
to implement Artificial Neural Networks (ANNs) for resources-
limited applications, because ANNs must usually perform a large
number of arithmetic operations. To attain a high computation
accuracy in an SC-based ANN, extended stochastic logic is
utilized together with standard SC units and thus, a stochastic
divider is required to perform the conversion between these logic
representations. However, the conventional divider incurs in a
large computation latency, so limits an SC implementation for
ANNs used in applications needing high performance. Therefore,
there is a need to design fast stochastic dividers for SC-based
ANNs. Recent works (e.g., a binary searching and triple modular
redundancy (BS-TMR) based stochastic divider) are targeting
a reduction in computation latency, while keeping the same
accuracy compared with the traditional design. However, this
divider still requires N iterations to deal with 2N -bit stochastic
sequences, and thus the latency increases in proportion to the
sequence length. In this paper, a decimal searching and TMR
(DS-TMR) based stochastic divider is initially proposed to further
reduce the computation latency; it only requires two iterations
to calculate the quotient, so regardless of the sequence length.
Moreover, a trade-off design between accuracy and hardware
is also presented. An SC-based Multi-Layer Perceptron (MLP)
is then considered to show the effectiveness of the proposed
dividers over current designs. Results show that when utilizing
the proposed dividers, the MLP achieves the lowest computation

Manuscript received June 17, 2021; revised August 5, 2021; accepted
August 7, 2021. Date of publication August 17, 2021; date of current version
September 30, 2021. The work of Shanshan Liu, Farzad Niknia, and Fabrizio
Lombardi was supported by the NSF Grant CCF-1953961 and Grant 1812467.
The work of Pedro Reviriego was supported in part by the Spanish
Ministry of Science and Innovation under project ACHILLES
(Grant PID2019-104207RB-I00) and the Go2Edge Network (Grant
RED2018-102585-T), and in part by the Madrid Community Research Agency
under Grant TAPIR-CM P2018/TCS-4496. The work of Weiqiang Liu was
supported by the NSFC under Grant 62022041 and Grant 61871216. The work
of Ahmed Louri was supported by the NSF Grant CCF-1812495 and Grant
1953980. This article was recommended by Associate Editor C. H. Chang.
(Shanshan Liu and Xiaochen Tang contributed equally to this work.)
(Corresponding author: Shanshan Liu.)

Shanshan Liu, Farzad Niknia, and Fabrizio Lombardi are with the Depart-
ment of Electrical and Computer Engineering, Northeastern University,
Boston, MA 02115 USA (e-mail: ssliu@coe.neu.edu).

Xiaochen Tang is with the Department of Electrical and Computer Engi-
neering, Texas A&M University, College Station, TX 77843 USA.

Pedro Reviriego is with the Departamento de Ingeniería Telemática, Uni-
versidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain.

Weiqiang Liu is with the College of Electronic and Information Engineering,
Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

Ahmed Louri is with the Department of Electrical and Computer Engineer-
ing, George Washington University, Washington, DC 20052 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSI.2021.3103926.

Digital Object Identifier 10.1109/TCSI.2021.3103926

latency while keeping the same classification accuracy; although
incurring in an area increase, the overhead due to the proposed
dividers is low over the entire MLP. When using as combined
metric for both hardware design and computation complexity the
product of the implementation area, latency, power and number
of clock cycles, the proposed designs are also shown to be superior
to the SC-based MLPs (at the same level of accuracy) employing
other dividers found in the technical literature as well as the
commonly used 32-bit floating point implementation.

Index Terms— Divider, stochastic computing, decimal search-
ing, artificial neural network.

I. INTRODUCTION

ARTIFICIAL Neural Networks (ANNs) are some of the
most widely used machine learning hardware systems to

perform for example classification tasks over a wide range of
applications [1], [2]. Among ANNs used in todays’ machine
learning, the Multi-Layer Perceptron (MLP) is the simplest
but still powerful type [3]. By increasing the dimension of
the features, the MLP can perform classification for nonlinear
separable data with excellent accuracy. For example, when an
ANN is applied to Internet of Things (IoT) applications, its
training process can be run in a processor, while the inference
process is implemented in dedicated hardware [5]–[8]. Since
ANNs usually deal with large volume of data, the required
hardware may not be acceptable in resource-limited platforms
(even though the implementation of some arithmetic opera-
tions can be improved [9], [10]); thus in this case, a stochastic
computing (SC) design is attractive for implementing the
ANN [11]–[15], because SC arithmetic units have a signifi-
cantly lower complexity (e.g., to perform multiplication, only
one AND gate is needed for the unipolar SC design) [16]–[18].
This feature is also desirable when the ANN is employed in
some safety-critical applications, because an SC design also
provides a high error-tolerance capability, so generating a reli-
able outcome in the presence of errors during the computation
process. Since the SC units target the hardware implementa-
tion, in addition to the conventional ANNs, they can also be
utilized/integrated to implement some low-cost or quantized
ANNs that reduce the network complexity (e.g., reducing the
number of weights, or the number of bits for representing
data) by introducing a small accuracy degradation [19], to fur-
ther reduce the hardware requirements as well as providing
error-tolerance.

However, an SC implementation has disadvantages in terms
of computation accuracy and latency. To improve accuracy,
the input stochastic sequences of the SC units are usually

1549-8328 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6226-2880
https://orcid.org/0000-0002-4062-3638
https://orcid.org/0000-0003-2540-5234
https://orcid.org/0000-0001-8398-8648
https://orcid.org/0000-0003-3152-3245

LIU et al.: STOCHASTIC DIVIDERS FOR LOW LATENCY NEURAL NETWORKS 4103

either uncorrelated, or loosely correlated to each other [20].
Moreover, since SC utilizes the probability of each bit being
“1” in the stochastic sequence to represent a real value,
the result is bounded either in [0, 1] for unipolar computation
and [−1, 1] for bipolar computation; this leads to an accuracy
loss because the real value is computed over the entire real
value field. To overcome this issue, the so-called extended
stochastic logic (ESL) consisting of two stochastic sequences
has been presented in [8]; by taking the quotient of two
sequences, the unipolar (bipolar) range can be extended to
[0, 2N) ((−2N−1, 2N−1)), where 2N is the length of the sto-
chastic sequence. However, the length of a stochastic sequence
may need to be increased to provide an accurate mapping from
the real value; therefore, a trade-off can be made between
computation latency and accuracy, as most SC units require
2N clock cycles.

A stochastic divider is utilized to perform the conversion
between the standard (traditional) SC units and the ESL; the
divider is the most complex SC arithmetic unit and requires
a rather long computation process (the required number of
clock cycles must be significantly larger than 2N) to reach a
stable state and provide a correct result, because a negative
feedback exists in the traditional design (the detailed structure
will be reviewed in the next section). Therefore, arithmetic
SC design has focused on improving the computation latency
of the divider. For example, a binary searching method (also
referred to as stepped velocity) has been utilized to calculate
the quotient by progressive precision [17]; it reduces the
required number of clock cycles, but introduces an accuracy
loss. It has been improved by utilizing a triple modular redun-
dancy (TMR) structure [11] to further reduce the latency and
keep the accuracy the same as the conventional divider. How-
ever, existing dividers based on binary searching still require N
iterations to complete the computation process, so incurring in
a latency proportional to the length of the stochastic sequences
(i.e., 2N). An alternative solution is to design several parallel
sequences as input of the divider [21], but this is only suitable
for specific sequences (e.g., low-discrepancy sequences like
Sobol [21]), rather than the most widely used linear feed-
back shift register (LFSR)-based sequences. Since Sobol-based
sequences cannot provide an accurate computation for some
SC units (e.g., the Finite State Machine (FSM)-based units)
required to implement an ANN, such divider is not suitable for
SC-based ANNs (in which the FSM-based activation functions
must be utilized). The correlation property of input sequences
can also be utilized to reduce area and power of the divider
with a highly accurate outcome [22], [23]; however, such
divider requires correlated inputs which is not the case for
other units of an SC-based ANN implementation, and the area
overhead is also not of primary importance because the divider
accounts for a small fraction in the entire system (even though
it significantly affects the length of the critical computation
path). Therefore, there is a need for a low latency stochastic
divider for implementing SC-based ANNs.

This paper focuses on the reduction of the latency of SC
dividers using a novel decimal searching algorithm, and thus
it benefits SC-based ANNs in terms of hardware metrics like
computation latency. This novel divider only requires only two
iterations regardless of the length of the stochastic sequences,
so it significantly reduces the computation latency compared

with existing dividers while at architectural level, it permits
a constant output flow for pipelining; moreover, it provides
the same accuracy of SC-based ANNs as existing dividers.
A trade-off divider design between different figures of merit
is also presented. It is shown that this divider accounts for a
small hardware complexity in an SC-based ANN (at the same
accuracy of SC schemes); therefore, a small increase in the
hardware area of the proposed dividers results in significant
reductions in latency and power. When the combined metric of
the product of area, latency, power and number of clock cycles
(so by considering both hardware design and computational
complexity) is used in the evaluation, the SC-based ANNs
utilizing the proposed dividers have the best performance
among those with all dividers found in the technical literature.

The rest of this paper is organized as follows. In Section II,
the basic SC units are reviewed; the existing stochastic dividers
are also presented. Section III initially presents the proposed
decimal searching algorithm; it is then employed to design the
first proposed divider. The trade-off design between accuracy
and hardware for the divider is also discussed in this section.
These proposed schemes are evaluated and compared with
existing stochastic dividers in Section IV. Section V considers
the Multi-Layer Perceptron as an application to analyze the
effectiveness of the proposed divider for implementing an
SC-based ANN. Finally, the paper ends in Section VI with
the conclusion.

II. PRELIMINARIES

A. Stochastic Computing

Stochastic sequences are represented by bit-streams of logic
“1” and “0”; arithmetic operations in stochastic comput-
ing (SC) are commonly performed in a unipolar range of
[0, 1] or a bipolar range of [−1, 1]. Define p as the probability
of each bit being “1” in the stochastic sequence x ; the
numerical value for x is equal to p (2·p-1) in unipolar (bipolar)
representation. Since in this paper, SC is studied to implement
Artificial Neural Networks (ANNs) in which both negative and
positive values are computed, the bipolar representation will
be considered next.

1) Stochastic Number Generator: The probability p (cor-
responding to a numerical value) is encoded to a stochastic
sequence by utilizing a stochastic number generator (SNG);
the SNG is shown in Figure 1. In an SNG, pseudorandom
numbers from 0 to 2N -1 are generated by the random number
generator (RNG) first and then compared with the N-bit binary
representation of p·2N ; a “1” is generated if the pseudorandom
number is larger, and “0” otherwise. After a period of 2N , the
stochastic sequence for p is obtained as per the comparison
results; the positions of “1” and “0” are usually considered to
be uniformly distributed. The RNG is usually implemented by
a linear feedback shift register (LFSR) [17]. Recent works have
shown that low-discrepancy sequences (like Sobol sequences)
provide a better computation accuracy for some combinational
and integrator-based SC units [21]; however, they have poor
performance for some SC units based on a Finite State
Machine (e.g., some SC activation functions used in an ANN).

2) Probability Estimator: A probability estimator (PE, also
referred to as the probability to digital converter) is utilized

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

4104 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Fig. 1. Stochastic number generator: prob is the N -bit binary representation
of p(x)·2N ; x is the stochastic bit.

Fig. 2. Probability estimator: (a) simple PE; (b) PE with negative feedback
loop (CE (U/D) is the enable signal (up/down control signal) of the Up/Down
Counter, i.e., prob increases by 1 when CE = 1 and C/D = 1 and decreases
by 1 when CE = 1 and U/D = 0).

to convert the stochastic sequences back to the probabilities,
and thus the digital values. A PE is simply configured as
shown in Figure 2 (a) [18]; it includes a counter to count
the number of “1” in the stochastic sequence (i.e., for the
N-bit binary representation of p·2N). There are also some
more complex structures for designing the PE; for example an
SNG is introduced in addition to the counter and a negative
feedback loop is present [17] (Figure 2 (b)); this PE generates
an output for each input bit, but it requires a large number
of clock cycles to reach a stable state and generate the final
result.

3) Extended Stochastic Logic: Since real numbers are
encoded to probabilities to implement SC and arithmetic
operations are performed within a limited range, a computation
accuracy degradation is likely introduced; this is an inherent
drawback of SC. However, this problem can be resolved
by employing the extended stochastic logic (ESL) [8]; two
stochastic sequences are utilized in ESL and the quotient
of their probabilities represents the real number. Therefore,
the computation range can be extended from [−1, 1] to
(−2N−1, 2N−1). For example, an ESL sequence x with
a value of 2 can be represented by p (x) = P(x1)

P(x2)
=

0.6
0.3 = 2. When ESL units are utilized, the size of the circuits
is nearly doubled compared to the standard SC units; for
example, the SC multiplier and adder in both versions are
illustrated in Figures 3 and 4 respectively. In standard SC,
an XNOR gate performs the multiplication operation in the
bipolar representation (Figure 3 (a)); when ESL is utilized,
the product result p(z) of two stochastic sequences x and
y with the corresponding probabilities p(x) and p(y) must
be calculated by Eq. (1), i.e., two XNOR gates are required
(Figure 3 (b)).

p (x) · p (y) = P (x1)

P (x2)
· P (y1)

P (y2)
= P (z1)

P (z2)
= p (z) (1)

Different from the standard stochastic multiplication
between two stochastic sequences that can be performed in
the interval of [−1, 1], addition results may exceed the range
and thus must be scaled. A standard stochastic adder can be
built as illustrated in Figure 4 (a). In the ESL version, the sum
of x and y is obtained by Eq. (2), and the structure of the adder

Fig. 3. A bipolar stochastic multiplier: (a) standard version, (b) ESL version.

Fig. 4. A bipolar stochastic adder: (a) standard version, (b) ESL version.

is illustrated in Figure 4 (b).

p (x) + p (y) = P (x1)

P (x2)
+ P (y1)

P (y2)

= P (x1) · P (y2) + P (x2) · P (y1)

P (x2) · P (y2) + 0

= P (z1)

P (z2)
= p (z) (2)

B. Stochastic Dividers

The division is the most challenging operation among
basic SC arithmetic operations; it is needed to perform the
conversion between the standard SC and the ESL results. The
conventional stochastic divider and existing binary searching-
based stochastic dividers are reviewed next.

1) Conventional Stochastic Divider: Figure 5 illustrates a
conventional bipolar divider. The feedback is constructed as
per the comparison between the values of p(x) · p(y) and
p(x)2 · p(y)

p(x) ; so, there are three multipliers (i.e., XNOR gates)
in the divider circuit. The probability of the counter is initially
set to 0 (in the bipolar representation), and the quotient is
calculated once the feedback is stable. However, using existing
divider designs the convergence process always requires a
significant number of stochastic bits. Especially when the
inputs have a small probability, the comparison result in the
feedback is the same for many bits, so the counter always
keeps its current value (i.e., not increasing/decreasing), making
the convergence slow. Therefore, a stochastic divider based
on binary searching has been designed in [17] to improve the
convergence process; this design has been improved in terms
of accuracy by introducing a triple modular redundancy (TMR)
structure [11]. These dividers based on binary searching will
be discussed next.

2) Binary Searching-Based Stochastic Dividers: In the
binary searching-based divider, the initial probability in the
counter is also set to 0 in the bipolar presentation (i.e., “1”
on the most significant bit and “0” on the other bits); its
increase/decrease step starts with 2N−2 (N is the width of the

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: STOCHASTIC DIVIDERS FOR LOW LATENCY NEURAL NETWORKS 4105

Fig. 5. A conventional bipolar stochastic divider.

Fig. 6. The binary search and TMR-based bipolar stochastic divider of [11].

counter) and then scales by a factor of two at each iteration,
until it reaches 1. For example, if the counter has 8 bits,
the probability starts with “10000000” and increases/decreases
with a step of “01000000” at the second search iteration,
“00100000” at the third iteration, and so on. This algorithm
significantly increases the convergence speed, because the
possible range of the quotient is determined on a half-by-half
fashion, rather than one-by-one.

The binary searching-based divider has been improved
in [11] to further decrease the computation latency. The divider
of [11] is shown in Figure 6; its operation includes two phases:
the computation phase and the stabilization phase. In the
computation phase, the quotient is first estimated by utilizing
the binary search algorithm, but with a shortened number of
stochastic bits in each searching step. Since the small number
of stochastic bits introduce fluctuation errors, a triple modular
redundancy (TMR) structure is utilized for generating three
different and independent stochastic sequences with the same
probability for each input; then the majority voting outcome
is considered as the correct result to mask fluctuation errors.
The quotient estimated in the computation phase is then refined
in the stabilization phase; the divider enables two redundant
blocks of the TMR structure and works in a conventional
fashion to further calculate the quotient. As per the results
of [11], the binary searching-based divider with TMR can
significantly improve the convergence speed without accuracy
degradation; this is made possible by selecting an appropriate
number of stochastic bits for each phase. However, it still
takes N iterations to obtain the quotient in the computation
phase, so it introduces a computation latency proportional to
the length of SC sequences.

III. PROPOSED STOCHASTIC DIVIDER DESIGN

A. Decimal Searching Algorithm

The method to calculate the quotient of two stochastic
sequences with progressive precision has been employed in
the divider of [11] based on binary searching and TMR
(BS-TMR); as discussed previously, this divider refines the
precision of the calculated result by comparing it with the
center value of the possible range in each iteration (i.e.,
setting 1 for each bit of the N-bit binary sequence as base
value for comparison, from the most significant to the lowest

Algorithm 1 Decimal Searching
1: Split the entire decimal value range into M +1 intervals;
2: Set the largest value of the 1st to M th intervals as the

initial base value for each of M blocks;
3: for i = 1 to t–1 (where t is the number of search

iterations)
4: Compare the input with the base value in each

block to locate the correct interval;
5: Further split the located interval into M + 1

refined intervals (i.e., with one more decimal bit);
6: Update the base value of each block as per the

refined intervals;
7: end
8: Compare the input with the base value in each block to

identify the correct interval;
9: Output the base value of the located block as the final

result;

Fig. 7. Illustration of utilizing the decimal searching-based algorithm to find
the quotient of 0.800/0.910.

significant bits). Although the BS-TMR-based divider
improves computation, it still requires N iterations in the
computation phase, incurring in a significant computation
latency when N is large. To further reduce the computation
latency, a faster searching algorithm, referred to as the decimal
searching algorithm, is presented and employed to design
new stochastic dividers (that will be discussed in the next
subsections).

The so-called “decimal searching” refers to the process for
determining the decimal version of a stochastic value with
one decimal bit per search iteration. As given by Algorithm 1,
M identical blocks operate in parallel to determine the possible
value for a decimal bit, and then reaching the correct result
after several iterations. The number of blocks M (with dif-
ferent base values) and the required number of iterations can
be designed by considering the data resolution. For example,
if N (the number of bits in the binary representation for a
bipolar stochastic value) is equal to 10, the data resolution
should be 1

210 ·2 ≈ 0.002. In this case, M is given by nine, so
that the bipolar range of [−1, +1] is divided in ten intervals.
Thus, a resolution of 0.2 is achieved in the first iteration,
0.02 in the second iteration, and 0.002 in the third iteration.
This is explained in detail by considering the example shown
in Figure 7; in Figure 7 with N = 10 and M = 9, the base
value for each block is initially given by {−0.8, −0.6, −0.4,

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

4106 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

…, 0.6, 0.8} (i.e., ten intervals of [−1, 1]). In the first iteration,
the quotient of two stochastic values is found by comparing the
base values stored in each block in parallel; the block generates
“1” as comparison result if the quotient is equal to or larger
than the associated base value, and “0” otherwise. This allows
the correct interval to be determined by locating the first “0” in
the nine outcomes or by the last block if all outcomes are “1”
(as per Figure 7); then the base value in each block is updated
by splitting the determined interval into ten refined intervals
(i.e., {0.82, 0.84, 0.86, …, 0.96, 0.98}) and the searching is
executed in the second iteration. As per Figure 7, the final
result with the same data resolution of the input (i.e., 0.002) is
obtained after three iterations. It is also of interest to calculate
the result with a smaller number of TMR blocks (that however
cannot attain the smallest data resolution), achieving a trade-
off between computation accuracy and circuit size. This will
be discussed in the following sections.

B. Proposed Stochastic Divider

A stochastic divider is designed as per the decimal searching
algorithm (referred to as the decimal searching and TMR
(DS-TMR)-based divider); the circuit includes the following
elements:

– M TMR blocks, that perform the comparison between
the temporary estimated quotient and the interval corre-
sponding to each block.

– A probability generator (Prob_generator) block, which
generates the base probability for each TMR block.

– A decoder, that locates the correct interval for the quotient
as per the results of the TMR blocks.

– A probability adjustment (Prob_adjustment) block, that
updates the probability in the probability generator block
according to the results of the decoder.

To achieve the smallest computation resolution (i.e., 1
2N · 2)

and provide a high accuracy, the value of M can be given by
round (

t
√

2N) – 1 and t (the number of iterations required)
as 3; for example when N = 10, M is equal to 9, and
the computation resolution of the divider after three search
iterations is 0.002 as discussed previously. Note that for
different values of N , t is set to 3 and then the value of M is
determined; for precision, the configuration with these values
of M and t can be appropriately adjusted, i.e. for example,
by setting a larger M with a smaller t , or a smaller M with
a larger t . In this paper, the first configuration (with t as a
constant equal to 3) is utilized as example when discussing
the proposed design in more detail, because as introduced
previously at architectural level, it permits a constant output
flow for pipelining. Moreover, it is also of interest to consider a
smaller value for M when keeping the same value for t ; even
if an accuracy loss is introduced, the hardware is reduced,
so saving area. The divider with different number of TMR
blocks is evaluated and analyzed in Section IV.

The proposed DS-TMR-based divider requires a small and
constant number of iterations (i.e., t) to obtain the quotient, so
it significantly reduces the computation latency needed by the
conventional or the binary searching-based dividers. Its design
and operations are treated in detail next by taking N = 10 as
an example.

In the case of N = 10, the number of TMR blocks M can be
set to nine (i.e., the value range is split into ten intervals); this

enables the estimated quotient to have the smallest resolution
(i.e., 0.002) after three iterations. Figure 8 shows the proposed
divider for this case; the TMR blocks have the same structure
as found in the BS-TMR-based divider shown in Figure 6.
In each TMR, three independent stochastic sequences are
generated for the same probability to reduce the fluctuation
errors. The voting result indicates that this probability should
be increased or decreased in the next search iteration to reach
the correct result. The probabilities set for each TMR block
(i.e., the probabilities in each iteration shown in Figure 7)
are generated by the Prob_generator block in Figure 8. In the
example of Figure 7, the outcomes of the TMR blocks (i.e.,
TMR_out in Figure 8 are “111111111” in the first iteration;
they are then provided as input to the decoder and decoded as
“1001”, which indicates that the ninth TMR block generates
the correct interval. Next, the Prob_adjustment block is utilized
to refine the probability generated in the Prob_generator block
in the next search iteration as per the output of the decoder
(i.e., Dec_out in Figure 8).

Algorithm 2 illustrates the process of generating the quo-
tient by using the proposed DS-TMR-based divider; like the
BS-TMR-based divider, two phases (computation and stabi-
lization) are required. In the computation phase, three inde-
pendent sequences for the same probability are utilized to
reduce the fluctuation errors in each TMR block, thus only
the partial bits of the input sequences (i.e., generated in clk1
periods) are utilized. As discussed previously, the entire range
of [−1, 1] is split into M +1 intervals during the first iteration
of the computation phase and the boundary value of each
interval is set as the initial base value for the three N-bit
counters in each TMR block (i.e., step 1 in Algorithm 2).
Then, the counters start increasing/decreasing the base value
to iteratively approach the inputs by capturing the difference
between the current quotient sequence (i.e., related to the
inputs) and the predicted quotient sequence (i.e., related to the
base value/ interval) in clk1 periods; if the updated probability
(i.e., approaching the current quotient) is equal to or larger
than the base probability, the comparator (Comp) block flags
it out, i.e. it generates a 1, and 0 otherwise. A majority voting
is performed on the three outcomes of the comparator blocks
(i.e., obtained by utilizing three independent sequences) to
determine if the interval is covered (i.e., the result of the
TMR block is 1 if the interval is covered, and 0 otherwise).
Therefore, at the end of the first search iteration, a decoder
block decodes the TMR results to identify the correct interval
(i.e., step 17 in Algorithm 2) by locating the first 0 in the
M outcomes, or by the last interval if all outcomes are “1”
(as discussed in Section III-A). Once the correct interval is
determined, it is further split into M + 1 intervals and the
same steps (as in the first iteration) are performed again for the
second iteration; this process is repeated by using the refined
intervals in the third iteration.

Subsequently, some additional bits (i.e., generated in clk2
periods) are utilized in the conventional fashion to further
adjust the result in the stabilization phase; this is performed by
utilizing a single version of the first TMR block and disabling
the other two (redundant) versions and all other TMR blocks.
Note that when the number of TMR blocks M is smaller than
round (

t√
2N) – 1, the stabilization phase is also helpful to

refine the estimated result. The number of bits required in

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: STOCHASTIC DIVIDERS FOR LOW LATENCY NEURAL NETWORKS 4107

Fig. 8. Design of the proposed divider (N = 10, M = 9).

each phase (i.e., the values of clk1 and clk2) can be carefully
selected to achieve a high computation accuracy. Overall,
compared with the BS-TMR-based divider that requires N
iterations, the proposed divider only requires three iterations
(two iterations are crucial as discussed in Section III.D),
therefore it is independent of the value of N and taking an
advantage in terms of a substantial reduction in computation
latency when N is large.

C. Trade-Off Stochastic Design

Although the penalty of the proposed stochastic divider
in terms of area is not a primary issue for an SC-based
ANN implementation (i.e., the divider is utilized only during
the mapping between the input layer and the first hidden
layer), it is of interest to consider a trade-off design to reduce
power while incurring in a slight decrease in accuracy or
increase in latency. A possible solution is to reduce the number
of TMR blocks, such that the obtained result is estimated
with an inexact data solution. An alternative solution is to
utilize single modules (SM) to replace the TMR blocks; by
employing the proposed decimal searching-based algorithm,
this divider (referred to as the DS-based divider) reduces the
circuit size but with a slight accuracy loss; thus, it is attractive
for applications in which the ANN can tolerate results with a
small deviation from the correct value.

Since fluctuation errors that may occur in some cases,
cannot be avoided without voting in the DS-based divider
(and causing an accuracy loss), some of the single copies can
be utilized in the TMR fashion by introducing an additional
iteration to perform the comparison again when fluctuation
errors are detected. The operational process is explained in
detail by considering N = 10 as an example again.

When the trade-off design is implemented, the
DS-TMR-based divider (as Figure 8) is modified as shown in
Figure 9 and the calculation process is given by Algorithm 3.
Similar to the calculation process of the DS-TMR-based
divider, the DS-based divider determines the correct interval
in each search iteration (i.e., steps 1 to 8 in Algorithm 3);
however in this case, only a single copy of each TMR block
is required and two voters are kept for the back-up TMR
structure. Once the fluctuation errors occur, the output of the
nine single modules (i.e., SM blocks in Figure 9) may not
consist of several “1” following by several “0”. For example,
the comparison results of “111000000” in the example of
Figure 7 can be “101000000” if a fluctuation error occurs in
the second single module. In this case, the modules related
to the first “10” are checked again by utilizing the first
six SM modules as two TMR blocks (i.e., steps 9 to 19 in
Algorithm 3); if the two comparison results are still “10”,
the fluctuation errors may have occurred in the original third
module (i.e., causing “100000000” to become “101000000”),
otherwise in the second module (i.e., causing “111000000”
to become “101000000”). Subsequently, the correct interval
is identified as per the updated comparison result. Therefore,
at most twice the number of search iterations required by the
DS-TMR-based divider will be needed for the computation
phase in this alternative scheme (i.e., adding one more
iteration during each search step), but the size of the circuit
is significantly reduced. Finally, the estimated quotient is
refined in the stabilization phase that is the same as in the
DS-TMR-based divider (i.e., step 27 in Algorithm 3).

However, if more than one stochastic sequence is affected
by fluctuation errors, the correct interval cannot be located;
this is a problem for all dividers based on progressive preci-
sion searching (i.e., the BS-TMR-based divider, the proposed

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

4108 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Fig. 9. Design of the proposed divider with trade-off (N = 10, M = 9).

DS-TMR-based and DS-based dividers). Assume that there
are two sequences affected by fluctuation errors; the proposed
DS-TMR-based divider fails only when they affect the same
TMR block, while the BS-TMR-based divider and the pro-
posed DS-based divider surely fail. Therefore, the trade-
off design introduces an accuracy loss in some cases when
compared with the DS-TMR-based divider; this is evaluated
in the next section.

D. Discussion

As introduced previously, the proposed divider achieves
the smallest (or nearly the smallest) computation resolution
in the last search iteration of the computation phase (e.g.,
in the third iteration when N = 10, M = 9 and t = 3 for
the previous example); this search process is required for
determining at most one additional “1” occurrence in the
stochastic sequence. Therefore, when utilizing a small number
of bits, it is difficult to capture this small difference (e.g.,
only a “1”) and in some cases, it can even push the result
into an incorrect data interval, so making the third search
iteration counterproductive for approaching the accurate result.
Moreover, since the stabilization phase is also utilized to
finely tune the computation result, the third search iteration
in the computation phase can be saved to further improve the
computation process. Therefore, when the proposed divider is
designed by achieving the smallest (or nearly the smallest)
computation resolution, only the first t-1 iterations in the
computation phase are utilized (i.e., the last iteration (steps
21 to 23 in Algorithm 2 and steps 24 to 26 in Algorithm 3)
can be saved), followed immediately by the stabilization phase.

It is of interest to mention that this observation is also
applicable to the BS-TMR-based divider [11]; its last few
iterations in the computation phase, which are used to identify
a small change in the number of “1” in the stochastic sequence,
do not contribute to approach the accurate computation result.
This will be verified in the following section when evaluating
the convergence process of the divider.

IV. EVALUATION

A. Computation Accuracy

The computation accuracy achieved by the proposed
dividers is first analyzed by considering the example of

Fig. 10. Quotient for 0.800/0.910 estimated by different stochastic dividers
(the green line and the red line are almost overlapped because their values
are similar).

y = 0.800, x = 0.910 and N = 10; M = 9 TMR
(SM) blocks are designed in the proposed DS-TMR-based
(DS-based) divider to achieve the data resolution as dis-
cussed previously and thus, two iterations are utilized in the
computation phase. The conventional divider [17] and the
BS-TMR-based divider [11] are also implemented and the gen-
erated results are compared. As per the experiments results
in [11], 2048 (512) bits are selected in the computation
(stabilization) phase of the BS-TMR-based divider to achieve
an accurate result, i.e. 205 clock cycles are required in each
iteration of the binary searching process, and 512 clock cycles
are required during the refined searching in the conventional
fashion. Therefore, this configuration is also selected for
the proposed two dividers. The convergence processes of
the different dividers are compared in Figure 10; since the
BS-TMR-based and the proposed dividers search the result in
multiple parallel modules (i.e., 3, 27 and 9 respectively) in the
computation phase, the results tracked in the first module are
utilized to show the convergence process of these dividers.

As per Figure 10, all dividers tend to finally reach the
accurate quotient, but the convergence times are different.
The conventional divider incurs in the longest convergence
process while the proposed dividers are fastest, followed
by the BS-TMR-based divider; this is consistent with the

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: STOCHASTIC DIVIDERS FOR LOW LATENCY NEURAL NETWORKS 4109

Algorithm 2 Calculation Process of the Proposed DS-TMR-
Based Divider∗

Input: Stochastic bits x and y;
Output: Quotient Result_out (the probability for y/x);
signal Div_done;
{Computation phase}
{Generate initial base values for the counters in
M TMR blocks}

1: Base_prob = round(i ·(2N /(M + 1)));
2: prob’ = Base_prob;

{Estimate the quotient in 1st iteration; each requires
clk1 periods}
{Calculation in each TMR block}
3: for i = 1 : clk1
4: q(i) = SNG(Base_prob);
5: CE(i) = XOR(xy(i), XNOR(x2(i), q(i));
6: UD(i) = xy(i);
7: if CE(i) = 1 and UD(i) = 1
8: prob’ increases by 1, or keeps the same value

when reaches the upper boundary;
9: elseif CE(i) = 1 and UD(i) = 0

10: prob’ decreases by 1, or keeps the same value
when reaches the lower boundary;

11: else
12: prob’ = prob’;
13: end
14: Comp_out = 1 if prob’ ≥ Base_prob and 0

otherwise;
15: end
16: Perform majority voting among Comp_out to obtain

TMR_out;
{Find the correct interval as per the results of TMR blocks}
17: Dec_out = number of “1” in Comp_out + 1,

or “1001” when exceeds M;
{Refine the found interval; perform 2nd iteration}
18: Base_interval = round(i ·(2N /(M + 1)2));
19: Base_prob = Base_prob + Base_interval;
20: Repeat steps 2 to 17;
{Refine the found interval; perform 3rd iteration}
21: Base_interval = round(i ·(2N /(M + 1)3));
22: Base_prob = Base_prob + Base_interval;
23: Repeat steps 2 to 17;
{Stablization phase}
{Refine the estimated quotient by using single version in the
first TMR block (disable all others) with clk2 periods}
24: prob’(1) = Base_prob (Dec_out);
25: for i = 1 : clk2
26: Repeat steps 4 to 14;
27: end
28: Result_out = Comp_out;
29: Div_done = 1;∗Signals are illustrated in Figure 8.

analysis presented in the previous section, because the pro-
posed dividers only take a small number of search iterations.
For each module of the BS-TMR-based and the proposed
dividers, a base probability is set in the first search iteration

Algorithm 3 Calculation Process of the Proposed DS-Based
Divider∗

Input: Stochastic bits x and y;
Output: Quotient Result_out (the probability for y/x);
signal Div_done;
{Computation phase}

{Generate initial base values for the counters in
M TMR blocks}

1: Base_prob = round(i ·(2N /(M + 1)));
2: prob’ = Base_prob;

{Estimate the quotient in 1st iteration; each requires
clk1 periods}

{Calculation in each SM block}
3: for i = 1 : clk1
4: Perform the same steps 4 to 14 in Algorithm 2;
5: end
6: if Comp_out = “000…0” or “111…1” or “1…10…0”
7: Two voter blocks are disabled;
8: Dec_out = number of “1” in Comp_out + 1,

or “1001” when exceeds M;
9: else

{A fluctuation error is detected; the first six SM blocks are
used as two TMR blocks to compute the result again in the
2nd iteration}
10: Error_pos = two positions for the first “10” in Dec_out;
11: prob’(1:3) = Base_prob(Error_pos(1));
12: prob’(4:6) = Base_prob(Error_pos(2));
13: Repeat steps 3 to 5;
14: Perform majority voting among Comp_out(1:6) to

obtain TMR_out;
15: if TMR_out = “10”
16: The correct interval is found as Error_pos(2);
17: else
18: The correct interval is found as Error_pos(2)+2 or

as the last interval when it exceeds M;
19: end
20: end
{Refine the found interval; perform 2nd or up to 4th

iterations}
21: Base_interval = round(i ·(2N /(M + 1)2));
22: Base_prob = Base_prob + Base_interval;
23: Repeat steps 2 to 20;
{Refine the found interval; perform 3rd or up to 6th

iterations}
24: Base_interval = round(i ·(2N /(M + 1)2));
25: Base_prob = Base_prob + Base_interval;
26: Repeat steps 2 to 20;
{Stablization phase}
{Refine the estimated quotient by using one SM block
(disable all others) with clk2 periods}
27: Perform the same steps 24 to 29 in Algorithm 2;
∗Signals are illustrated in Figure 9.

and its changing direction (i.e., increasing or decreasing) for
the next iterations can be identified by the partial bits of the
stochastic sequence. Therefore, the plots for these dividers
have a stepped shape, starting with the initial base probability

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

4110 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Fig. 11. Accuracy of different stochastic dividers with data resolution of 210

(conventional, BS-TMR-based, proposed DS-TMR and DS -based dividers
require 46,341, 9,214, 4,300 and 4,738 (on average as per Table I) SC bits,
respectively).

set in the corresponding module (i.e., 0 in the conventional and
BS-TMR-based divider and −0.8 in the proposed dividers).

In the second experiment, the accuracy in terms of Mean
Square Error (MSE) is evaluated by testing a larger number
of random data pairs within the range of [−1, 1] as inputs
of the divider (i.e., so for both the divisor and dividend);
since it has been found that the results for 10,000 trials were
consistent with those with 100,000 trials, 10,000 data pairs
are selected in the next experiments. Results for different
stochastic dividers are compared in Figure 11; all dividers can
finally achieve an MSE of 10−3.4, except for the proposed
DS-based divider that is slightly worse because it is more
vulnerable to fluctuation errors (as discussed previously). It is
also of interest to study the accuracy of SC dividers for
different input values. As indicated in [24], the accuracy of
some SC circuits (e.g., the multiplier) is lower when the
inputs are around 0.5 for the unipolar representation (i.e.,
nearly centered in the possible value range), and thus, around
0 for the bipolar computation; this is also the case for the SC
dividers (in which the basic units are also multipliers) as per
our simulation results (given in Figure 12). The improvement
in the computation accuracy of SC arithmetic units in such
value ranges is left for future work.

In terms of convergence, the conventional divider requires
the largest number of SC bits to reach a stable state (i.e.,
215.5 = 46341), while the other dividers are significantly faster.
To achieve the same MSE as the conventional dividers, 819
(1638) bits in each search iteration of the computation phase
and 1024 bits in the stabilization phase are required by the
BS-TMR-based divider (the proposed DS-TMR-based
divider), i.e., 9214 (4300) SC bits in total. Therefore,
the proposed DS-TMR-based divider only requires 9.3%
(46.7%) clock cycles compared to the conventional divider
(the BS-TMR-based divider), providing a faster convergence.
As for the proposed DS-based divider, its convergence
process presented in Figure 11 is for the worst case (i.e., four
search iterations in total in the computation phase); however
as per the distribution of the required number of search
iterations among the 10,000 data pairs (given in Table I),
the DS-based divider requires on average 4738 clock cycles

TABLE I

DISTRIBUTION OF THE NUMBER OF ITERATIONS REQUIRED
BY THE PROPOSED DS-BASED DIVIDER

TABLE II

MSE OF THE PROPOSED DIVIDERS WITH DIFFERENT
NUMBER OF BLOCKS M

in total. Therefore, compared with the conventional divider
(BS-TMR-based divider), the DS-based divider requires
on average 10.22% (51.4%) clock cycles. Note that the
BS-TMR-based divider does not significantly reduce the MSE
after approximately 212.3 bits; therefore, this indicates that
the last few search iterations in the computation phase do not
significantly affect the calculation as discussed previously.
Note that if the dividers are connected to other SC units
for subsequent computation in a given application (e.g.,
the case studied in Section V), the stochastic sequence
can be represented by the last 2N bits in the conventional
divider and by the 2N bits starting at the beginning of the
stabilization phase of the BS-TMR-based divider and the
proposed dividers, because the changes of MSE within these
SC bits of all dividers are extremely low.

In addition to the case of M = 9, the accuracy of the
proposed dividers with different number of blocks is also
evaluated and compared; in particular, M = 3, 5 and 7 are
considered for the DS-TMR-based divider and M = 7 is
considered for the DS-based divider (that requires at least
6 blocks for two back-up TMRs). Table II presents the MSE
results for different cases. As per Table II, the proposed
dividers with a smaller number of TMR blocks tend to provide
a larger MSE, because when the number of intervals decreases,
the computation result is roughly estimated (with an inexact
data resolution). The proposed dividers with M = 7 and
9 are considered in the evaluation for hardware overhead next,
because all of them have good MSE results (i.e., <10−3).

In the third experiment, the accuracy and the required
number of SC bits are measured in the case of different
data resolutions (including 2N = 28, 29, 210, 211 and 212).
The configuration for the two phases of the BS-TMR-based
divider and the proposed dividers are also proportionally
scaled. Figure 13 presents the average MSE results for
10,000 random data pairs and the number of SC bits required
by different stochastic dividers to achieve such an accuracy,
respectively. Compared with the conventional divider, both
the BS-TMR-based divider and the proposed DS-TMR-based
divider achieve the same MSE, but they significantly reduce
the number of clock cycles (i.e., requiring a smaller number
of SC bits); thus, the dividers with the progressive precision

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: STOCHASTIC DIVIDERS FOR LOW LATENCY NEURAL NETWORKS 4111

Fig. 12. MSE of different stochastic dividers for different input values: a) Conventional divider [17]; b) BS-TMR divider [11]; c) Proposed DS-TMR divider;
d) Proposed DS divider.

Fig. 13. Accuracy (left y axis) and corresponding number of SC bits (right
y axis) for different stochastic dividers with different data resolutions.

are more attractive due to the fast computation process. In this
case, the proposed DS-TMR-based divider is a better choice,
because it has the same accuracy as the exiting BS-TMR-based
divider in all cases, but it reduces the number of clock cycles,
and therefore the computation latency.

TABLE III

SYNTHESIS RESULTS OF DIFFERENT STOCHASTIC DIVIDERS

Since the proposed DS-TMR-based divider has the fastest
convergence speed, it is of interest to evaluate the accuracy that
the other dividers can achieve once the DS-TMR-based divider
completes the computation. Results are presented in Figure 14;
the proposed DS-TMR-based divider provides a significantly
smaller MSE than other dividers and such advantageous fea-
ture increases for a larger N .

B. Hardware

To evaluate and compare the hardware of different designs,
dividers with N = 10 have been implemented in HDL and
mapped to the ASAP 7 nm library (with typical corners) [25]
using the Synopsis Design Compiler. The synthesis tool has

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

4112 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

Fig. 14. MSE of different stochastic dividers when the proposed
DS-TMR-based divider completes the computation process.

been set to area, delay and power optimization (with the
default toggle rate of 0.5) in the circuitry to obtain the results
for these metrics. Table III presents the synthesis results for
different dividers, including the area of the circuity, the latency
and power dissipation (including dynamic and static pow-
ers) to calculate the final result. Note that for the proposed
DS-based divider, the average number of required bits as per
Table I is considered in this evaluation; the proposed dividers
with different numbers of blocks that can achieve similar
accuracy, are also considered. Since the blocks operate in
parallel, the value of M does not affect the number of clock
cycles required by the dividers (that account for the bulk of
the computation operations); thus the latency results for the
dividers with M = 7 and M = 9 have an extremely small
difference (due to the decoder that is utilized only once during
each search iteration), and this is not evidenced in Table III
due to the unit. As per Table III, the conventional divider
incurs in the smallest area, but it introduces a significant
latency; the BS-TMR-based divider reduces the latency by
88.1% and power by 34.4%, at the cost of 3.2 times the
additional area. As for the proposed dividers, the DS-TMR-
based divider requires 3 to 4 times the additional area and
1.1 to 1.3 times in additional power over the BS-TMR-based
divider, but it further reduces the latency by an additional
62.4%; while the proposed DS-based divider requires 1.3 to
2.1 times of additional area over the BS-TMR-based divider,
but it reduces the latency by 59.4% and the power dissipation
by 15.3% to 40.0%.

Overall, the proposed stochastic dividers operate signifi-
cantly faster than existing dividers at the cost of area and
in some cases power; however, this is not a primary issue
when the implementation of an SC-based ANN is considered
because it accounts for a small fraction of the entire implemen-
tation, so the impact of the increased area is rather low. The
overhead of applying a divider in an SC-based Multi-Layer
Perceptron is evaluated in the next section.

V. APPLICATION: SC-BASED MULTI-LAYER PERCEPTRON

As introduced previously, due to its low complexity and
error tolerance, SC is extremely attractive for hardware imple-
mentation of different types of ANNs (especially complex

Fig. 15. A Multi-layer perceptron: (a) its structure; (b) one neuron
computation in the hidden or output layer.

networks) that include a very large number of arithmetic
operations [11]–[15]. For example, a widely used ANN to
perform classification tasks is the Multi-Layer Perceptron
(MLP, shown in Figure 15 (a)); it has one input layer, at least
one hidden layer and one output layer. In general, to predict
the class for an input element, its valid features are normalized
and then used as values for the neurons; by performing the
mapping between neurons in neighbor layers (this process is
given in Figure 15 (b)), the output neurons are finally obtained
to predict the class. The calculation performed in each neuron
in the hidden and the output layers is given by Eq. (3), where
wi

j,i+1 denotes the weight of the j th neuron in the i th layer
(that has m neurons), bi is the so-called bias of this layer, and
� is the activation function to active the calculation result
(e.g., tanh, ReLU and variants such as the clamped ReLU are
widely used).

Neuroni+1 = �
(∑m

j=1
wi

j,i+1 · Neuron j + bi
)

(3)

Since ANNs require a large number of neurons and thus,
executing many arithmetic operations for neural computation,
SC units are very attractive in terms of hardware imple-
mentation to replace traditional circuits and save hardware.
Recently, an efficient SC framework for MLPs, that uses a
hybrid structure of the traditional SC and ESL units, has
been introduced in [11]; for mapping between neurons in the
input layer and the first hidden layer, ESL units are utilized
for a better computation accuracy, because addition among
multiple multiplication results can exceed the traditional SC
computation range of [−1, 1]. ESL units can be employed
in each layer of the network; however, the accuracy may
not be further increased [11], while the size of the entire
circuits is nearly doubled as discussed previously. Therefore,
traditional SC units are used for the other layers. In such a
hybrid SC-based MLP, in addition to the multiplier, adder and
activation function units (as per Eq. (3)), a divider is also
required to perform the conversion between the conventional
stochastic and the ESL sequences. The divider affects the
critical computation path in the MLP implementation, but
it is employed only during the mapping between the input
and the first hidden layer; therefore, its performance in terms
of reduced latency is of primary importance. The hardware
overhead of the divider is not such a critical metric, because a
low latency stochastic divider is useful to overcome the latency
disadvantage of an SC-based ANN.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: STOCHASTIC DIVIDERS FOR LOW LATENCY NEURAL NETWORKS 4113

Next, such an MLP is implemented and the effectiveness of
the proposed dividers is evaluated by utilizing three widely
used multi-classification datasets (all have ten classes): the
MNIST dataset [26], the Fashion-MNIST dataset [27] and the
SVHN dataset [28]. The traditional 32-bit floating point (FP)-
based MLP is also implemented for comparison. The MLP
models for different datasets that have been pre-trained in the
FP version in Matlab by using the 10-fold cross-validation
method, are as follows.

• For the MNIST dataset, the MLP model has four layers
(i.e., two hidden layers), in which the clamped ReLU is
used as activation function for each hidden layer and tanh
is used for the output layer; the number of neurons in each
layer is 784, 256, 128 and 10, respectively.

• For the Fashion-MNIST dataset, the MLP model has five
layers (i.e., three hidden layers), in which the clamped
ReLU is used as activation function for each hidden layer
and tanh is used for the output layer; the number of
neurons in each layer is 784, 256, 128, 128 and 10,
respectively.

• For the SVHN dataset (that is processed by converting
RGB into grayscale images to reduce the data size; five
left and right pixels of each image are removed to reduce
the distraction), the MLP model has five layers (i.e., three
hidden layers), in which the clamped ReLU is used as
activation function for each hidden layer and tanh is used
for the output layer; the number of neurons in each layer
is 704, 512, 512, 512 and 10, respectively.

Next, these models are used to evaluate the performance
of different ANN implementations in terms of classification
accuracy on the testing set and the hardware for performing
the classification for one sample (i.e., the inference process).

The SC activation functions (i.e., the tanh and the clamped
ReLU) are implemented as per the designs presented in [11].
Note that in the SC-based MLP implementation, the model
parameters (i.e., the weights and bias) are converted to SC
values prior to storing them in memory; once the weights are
read out, they can be directly used as input to the stochastic
number generators (as probability), i.e., to generate stochastic
sequences. Therefore, the weight precision is the same as
the SC computation resolution, which is 0.002 when N =
10 for this case study. For the weights related to neurons
in the first/input layer (i.e., used for ESL units), they are
converted to quotients prior to SC value conversion if their
absolute value is larger than 1; an additional bit is required
as the most significant position of the data representation to
indicate whether the stored value is used for the numerator
stochastic sequence, or the denominator sequence in the ESL
units. For the weights related to the neurons in the other layers
(i.e., used for the conventional SC units), they are bounded
as 1 or -1 prior to converting to SC values, if their absolute
value is larger than 1. Therefore, in the SC implementation,
the memory used to store the parameters can also be reduced
compared to the FP version, because only N+1 bits (N usually
takes a value between 8 and 20 in the works found in the
technical literature [11], [21]) are used to represent one data
instead of 32 bits (when the IEEE 754 format is used for the
FP numbers [29]).

Table IV presents the classification accuracy of the
FP-based MLP, as well as the SC-based MLP with different

TABLE IV

CLASSIFICATION ACCURACY FOR THE FLOATING POINT-BASED MLP
AND SC-BASED MLP WITH DIFFERENT DIVIDERS

dividers; compared to the SC-based MLPs with existing
dividers, the MLP with the proposed dividers achieves the
same accuracy when M = 9, while the DS divider with
M = 7 (so, a trade-off design) introduces a loss of at most
0.9% in accuracy. Even though all SC-based MLPs slightly
reduce the accuracy compared to the FP-based version, this
can be addressed by training the model by also utilizing
an SC design and/or techniques that specifically address
accuracy in SC designs, as introduced previously; this is
not further investigated as it is outside of the scope of this
paper (which mostly addresses the computational latency of an
SC design).

The hardware design of the MLP in different schemes
is implemented in HDL and the overhead is also evaluated
by conducting the same synthesis method as the one in the
evaluation for the dividers; the clock frequency of the circuits
is set to 200 MHz as an example for evaluating the hardware
overhead (higher clock frequency can also be selected, but
it has no impact on the qualitative comparison results). The
area, latency and power dissipation (including dynamic and
static powers) of the FP-based MLP and the SC-based MLP
with different dividers are compared in Table V; as per these
results, the SC-based MLPs significantly reduce the area
compared with the FP-based MLP (i.e., by 45.9% to 57.3%
for the considered datasets) due to the low complexity of the
SC-based computation units. The latency and power dissipa-
tion to perform the calculation and then classification for one
data sample depends on the number of clock cycles; thus,
the latency/power required for the SC-based MLP depends on
the number N as well as the effectiveness of the divider (as it
is in the critical path). As discussed previously, the stochastic
sequence can be represented by the last 2N bits in the con-
ventional divider and by the 2N bits starting at the beginning
of the stabilization phase of the BS-TMR-based divider and
the proposed dividers, no additional SC bits are required
for the units following the divider, because the stabilization
phase of the BS-TMR-based and the proposed dividers exactly
utilize 1024 bits. Therefore, the SC-based MLPs require the
same number of clock cycles as the employed dividers in all
cases.

To evaluate all MLPs, a combined figure of merit is used
in this paper: this is given by the product of area, latency,
power, and number of clock cycles (PALPC). PALPC accounts
not only for the hardware design (so inclusive of the divider
circuit), but also for the total computation complexity (given
by the number of clock cycles) needed for the classification
task using a specific dataset.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

4114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 68, NO. 10, OCTOBER 2021

TABLE V

SYNTHESIS RESULTS OF THE FLOATING POINT-BASED MLP AND SC-BASED MLP WITH DIFFERENT DIVIDERS
(THE SMALLEST OVERHEAD IN DIFFERENT METRIC IS MARKED IN BOLD)

Since the divider is utilized during the computation for
only the input layer, the SC implementation is more effi-
cient than the FP implementation in terms of latency/power
when the MLP has a larger number of hidden layers and
neurons. This has been verified by the datasets considered
in this paper; as per Table V, the relative latency/power
required for the SC-based MLP over the FP-based MLP for
the MNIST datasets tends to be lower than the Fashion-
MNIN dataset (followed by the SVHN dataset) when using
the same design. The results in Table V also confirm that the
advantage of the proposed SC dividers; when compared with
existing designs using the conventional divider (BS-TMR-
based divider), the SC-based MLP with the proposed dividers
increases the area but significantly reduces the required num-
ber of clock cycles, so achieving 98.9% to 99.3% (70.7%
to 75.5%) saving in terms of PALPC. Moreover, compared
with the FP-based MLP, the SC-based MLP with the pro-
posed designs also provides a better PALPC (with 94.9%
to 98.1% saving). This trend becomes more obvious as the
MLP complexity increases, because the latency/power required
for the MLP mostly depends on both the circuit complexity
and the number of required clock cycles to perform the
classification task. When the network is more complex or
larger, the SC circuits are significantly simpler than the FP
circuits; moreover, the number of clock cycles required for
classification in the SC-based MLP is fixed (it depends on the
divider with a complexity that is network independent), while
in the FP-based MLP it increases (so, with a complexity that
is network dependent).

The results of Table V have verified that even though
the proposed SC dividers incur in an increase in area over
current dividers (as per Table III), the impact on the entire
area overhead of an SC-based ANN is rather low, while their
benefits in terms of delay and power reduction (thus reflected
also in the PALPC) are significant. Overall, the proposed
SC dividers make the SC implementation more attractive for
the ANN (e.g., MLP), especially for more complex ANNs,

because they provide a significant advantage in terms of
all considered figures of merit (i.e., the PALPC) and only
introduce a very small classification accuracy loss. Moreover,
it is important to note that the delay and power consumption
tend to accumulate for each classification in an ANN, so the
advantage of the proposed SC dividers is critical at the system
level.

VI. CONCLUSION

This paper has proposed novel designs for the divider
to significantly reduce the latency encountered in stochastic
computations (SC) as mostly related to ANN implementations.
This circuit has a significant ramification through the entire
operation of an SC-based MLP because it significantly affects
its entire performance, so inclusive of power dissipation and
computation complexity (given by the number of cycles for
performing a classification task using ANNs for a dataset).
Initially, a decimal searching algorithm has been first presented
for calculating the quotient of a divider with progressive pre-
cision. This algorithm has then been employed to design two
fast stochastic dividers for use in low latency stochastic Arti-
ficial Neural Networks (ANNs). Initially, a decimal searching
and TMR (DS-TMR)-based divider has been proposed; this
divider only requires two iterations to perform the searching
algorithm, so independent of the stochastic sequence length;
this advantage leads to a significant low computation latency
compared with existing dividers. However, some additional
area and power dissipation are introduced by the TMR blocks.
Therefore, a DS-based divider that utilizes single modules
instead of TMR blocks, has also been presented; such divider
achieves a considerable trade-off between area/power and
latency, however it introduces a slight computation accuracy
loss, so providing an alternative option for different applica-
tions.

The divider is utilized in an SC-based ANN to perform
conversion between the extended stochastic logic and the
standard SC units; it accounts for a small fraction of the

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: STOCHASTIC DIVIDERS FOR LOW LATENCY NEURAL NETWORKS 4115

area, but it significantly affects the critical computation path.
Even though the proposed dividers incur in an increase in
area over existing dividers, such overhead has a miniscule
impact on the entire SC-based ANN implementation, because
ANN designs using the proposed dividers show substantial
benefits in terms of significant reductions in delay and power
for the entire network (while retaining the same accuracy
as current SC-based ANNs). An SC-based Multi-Layer Per-
ceptron (MLP) has then been analyzed as an application to
evaluate the effectiveness of the proposed stochastic dividers;
results have shown that the MLP with the proposed dividers
require the lowest hardware overhead (with more than 98.9%
(70.7%) saving in the PALPC compared to the MLP with the
conventional (BS-TMR-based) divider), while achieving the
same classification accuracy (or incurring in a loss of up to
0.9% when a trade-off design is employed). The traditional
implementation of MLP using 32-bit floating point (FP) is also
evaluated and compared to show the advantage/disadvantage
of the SC design; results show that the SC-based MLP reduces
the PALPC by over 94.9%; moreover, the saving in terms
of delay and power at the system level (i.e., the number
of clock cycles is involved) tend to accumulate for each
classification operation; therefore, the proposed designs are
more attractive for SC-based ANNs used in high-speed and
resource-constrained applications. Finally, it is also of interest
to evaluate the advantages/disadvantages of SC-based ANNs
with other types of ANNs and utilize/integrate an SC imple-
mentation in them; these topics are left for future work.

ACKNOWLEDGMENT

The authors would like to thank Dr. Jie Han and Dr. Yidong
Liu from the University of Alberta, Canada, and Dr. Wei Tang
from New Mexico State University, USA for their support and
help for this work.

REFERENCES

[1] S. Das, A. Dey, A. Pal, and N. Roy, “Applications of artificial intelli-
gence in machine learning: Review and prospect,” Int. J. Comput. Appl.,
vol. 115, no. 9, pp. 31–41, Apr. 2015.

[2] O. P. Patel, N. Bharill, A. Tiwari, and M. Prasad, “A novel quantum-
inspired fuzzy based neural network for data classification,” IEEE Trans.
Emerg. Topics Comput., vol. 9, no. 2, pp. 1031–1044, Apr. 2021.

[3] S. S. Haykin, Neural Networks and Learning Machines.
Upper Saddle River, NJ, USA: Pearson, 2009.

[4] F. A. Aoudia and J. Hoydis, “Towards hardware implementation
of neural network-based communication algorithms,” in Proc. IEEE
20th Int. Workshop Signal Process. Adv. Wireless Commun. (SPAWC),
Jul. 2019, pp. 1–5.

[5] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of
FPGA, CPU, GPU, and ASIC,” in Proc. Int. Conf. Field-Program.
Technol. (FPT), Dec. 2016, pp. 77–84.

[6] Y. Lu, K. Xie, G. Xu, H. Dong, C. Li, and T. Li, “MTFC: A multi-GPU
training framework for Cube-CNN-based hyperspectral image classifica-
tion,” IEEE Trans. Emerg. Topics Comput., early access, Aug. 17, 2020,
doi: 10.1109/TETC.2020.3016978.

[7] H. Zheng and A. Louri, “Agile: A learning-enabled power and
performance-efficient network-on-chip design,” IEEE Trans. Emerg.
Topics Comput., early access, Jun. 18, 2020, doi: 10.1109/TETC.
2020.3003496.

[8] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rossellè,
“A new stochastic computing methodology for efficient neural network
implementation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 3,
pp. 551–564, Mar. 2016.

[9] H. Kaul, M. Anders, S. Mathew, S. Kim, and R. Krishnamurthy,
“Optimized fused floating-point many-term dot-product hardware for
machine learning accelerators,” in Proc. IEEE 26th Symp. Comput.
Arithmetic (ARITH), Jun. 2019, pp. 84–87.

[10] H. Kim, M. S. Kim, A. A. Del Barrio, and N. Bagherzadeh, “A cost-
efficient iterative truncated logarithmic multiplication for convolutional
neural networks,” in Proc. IEEE 26th Symp. Comput. Arithmetic
(ARITH), Jun. 2019, pp. 108–111.

[11] Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A stochastic
computational multi-layer perceptron with backward propagation,” IEEE
Trans. Comput., vol. 67, no. 9, pp. 1273–1286, Sep. 2018.

[12] A. Ren et al., “SC-DCNN: highly-scalable deep convolutional neural
network using stochastic computing,” in Proc. 22nd Int. Conf. Archit.
Support Program. Lang. Operating Syst., 2017, pp. 405–418.

[13] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“VLSI implementation of deep neural network using integral stochastic
computing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25,
no. 10, pp. 2688–2699, Oct. 2017.

[14] Y. Liu, Y. Wang, F. Lombardi, and J. Han, “An energy-efficient
online-learning stochastic computational deep belief network,” IEEE
J. Emerg. Sel. Topics Circuits Syst., vol. 8, no. 3, pp. 454–465,
Sep. 2018.

[15] Y. Liu, L. Liu, F. Lombardi, and J. Han, “An energy-efficient and
noise-tolerant recurrent neural network using stochastic computing,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27, no. 9,
pp. 2213–2221, Sep. 2019.

[16] B. R. Gaines, “Stochastic computing systems,” in Advances in
Information Systems Science. Boston, MA, USA: Springer, 1969,
pp. 37–172.

[17] B. D. Brown and H. C. Card, “Stochastic neural computation I: Compu-
tational elements,” IEEE Trans. Comput., vol. 50, no. 9, pp. 891–905,
Sep. 2001.

[18] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,”
ACM Trans. Embedded Comput. Syst., vol. 12, no. 2s, pp. 1–19,
May 2013.

[19] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 6869–6898, 2017.

[20] J. H. Anderson, Y. H. Azumi, and S. Yamashita, “Effect of LFSR
seeding, scrambling and feedback polynomial on stochastic comput-
ing accuracy,” IEEE Design, Autom. Test Eur. Conf. Exhib. (DATE),
pp. 1550–1555, 2016.

[21] S. Liu and J. Han, “Toward energy-efficient stochastic circuits using
parallel Sobol sequences,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 26, no. 7, pp. 1326–1339, Jul. 2018.

[22] T.-H. Chen and J. P. Hayes, “Design of division circuits for stochastic
computing,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2016, pp. 116–121.

[23] S.-I. Chu, “New divider design for stochastic computing,” IEEE Trans.
Circuits Syst. II, Exp. Briefs, vol. 67, no. 1, pp. 147–151, Jan. 2020.

[24] T. J. Baker and J. P. Hayes, “The hypergeometric distribution as a more
accurate model for stochastic computing,” in Proc. IEEE Design, Autom.
Test Eur. Conf. Exhib. (DATE), Mar. 2020, pp. 592–597.

[25] (2021). ASAP, ASAP: Arizona State Predictive PDK. [Online]. Available:
http://asap.asu.edu/asap/

[26] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[27] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,” 2017,
arXiv:1708.07747. [Online]. Available: http://arxiv.org/abs/1708.07747

[28] Y. Netzer et al., “Reading digits in natural images with unsupervised
feature learning,” in Proc. NIPS Workshop Deep Learning. Unsupervised
Feature Learn., 2011, pp. 1–9.

[29] W. Kahan, “IEEE standard 754 for binary floating-point arithmetic,”
Lect. Notes Status IEEE, vol. 754, no. 1776, p. 11, May 1996.

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:33:46 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TETC.2020.3016978
http://dx.doi.org/10.1109/TETC.2020.3003496
http://dx.doi.org/10.1109/TETC.2020.3003496

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

