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Abstract— Network-on-Chips (NoCs) are the standard on-chip communication fabrics for connecting cores, caches, and
memory controllers in multi/many-core systems. With the increase in communication load introduced by emerging parallel 
computing applications, on-chip communication is becoming more costly than computation in terms of energy consumption. 
This paper contributes to existing research on approximate communication by proposing a slack-aware packet approximation 
technique to reduce the energy consumed by NoCs for sustainable parallel computation. The proposed approximation tech-
nique lowers both the execution time and NoC power consumption by reducing the packet size based on slack. The slack is 
the number of cycles by which a packet can be delayed in the network with no effect on execution time. Thus, low-slack 
packets are considered critical to system performance, and prioritizing these packets during the transmission will significantly 
reduce execution time. The proposed technique includes a slack-aware control policy to identify low-slack packets and accel-
erates these packets using two packet approximation mechanisms, namely, an in-network approximation (INAP) and a net-
work interface approximation (NIAP). INAP mechanism prioritizes low-slack packets during the arbitration phase of the router 
by approximating packets with high-slack. NIAP mechanism reduces the latency of the network links and switch traversals by 
truncating data for the low-slack packets. An approximate network interface and router are implemented to support the pro-
posed technique with lightweight packet approximation hardware for lower power consumption and execution time. Cycle-
accurate simulations using the AxBench and PARSEC benchmark suites show that the proposed approximate communication 
technique achieves reductions of up to 24% in execution time and 38% in energy consumption with 1.1% less accuracy loss 
on average compared to existing approximate communication techniques.
Index Terms— Approximate Communication, Energy Consumption, Network-on-Chips (NoCs)
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1   INTRODUCTION
ETWORK-ON-CHIPS (NoCs) play a critical role in the 
performance of multi/many-core processors. Because 

of the heavy NoC communication loads of current parallel 
computing applications, such as big data and machine learn-
ing applications, the NoC is becoming a serious bottleneck 
affecting both power consumption and execution time [3], [4]. 
Existing research shows that the energy consumed for on-chip 
communication can easily exceed the energy consumed for 
computation in a multicore processor [5]–[10]. Thus, there is 
a need for innovative energy reduction techniques for future 
NoC designs.  

Recent research on approximate communication lever-
ages the error tolerance of applications [11], [12] to reduce 
network latency and dynamic power consumption [4], [13]–
[15]. A typical approximate communication framework 
consists of two components: a quality control method and 
a packet approximation technique [13],  [16],  [17]. The 
quality control methods are implemented in software to en-
sure the result quality by analyzing each application and 
annotating error-resilient variables [16], [17].  The packet ap-
proximation techniques are implemented in the NoC to re-
duce the size of the error-resilient variables before packet 
transmission [4], [15], [18]–[20]. This reduction in the 

amount of transmitted data leads to improvements in NoC 
performance,  including lower dynamic power consumption, 
reduced network latency, and increased network throughput. 
However, reducing the dynamic power consumption alone is 
not sufficient for energy reduction. Since energy is the prod-
uct of power and execution time, the key to energy-efficient 
on-chip communication is to reduce both values using ap-
proximation methods. Most existing works [3], [4], [13]–[20] 
utilize lossy data compression mechanisms to achieve a 
smaller packet size for better NoC performance. However, 
software-based quality control methods have limited ability 
to reduce execution time. Since the software cannot predict 
on-chip communication before execution, the performance-
critical packets, which will significantly impact the execution 
time if delayed during the transmission, cannot be identified
and accelerated during communication. As a result, even 
though a large number of packets are approximated, existing 
techniques [4], [13]–[17], [19] achieve relatively little im-
provement in energy consumption. As shown in Fig. 1, an av-
erage of 95% of the data packets are approximated, but this 
approach reduces the energy consumption by only 8% on av-
erage. 

Another widely used class of energy reduction techniques 
for NoCs is dynamic voltage and frequency scaling (DVFS) 
[21]–[24]. In these techniques, the NoC is first partitioned 
into several voltage/frequency domains. Then, a control pol-
icy is developed to dynamically adjust the supply voltages 
and frequencies of the components of the NoC according to 
the currently observed or predicted network status (e.g., link 
utilization, cache traffic, etc.). Through voltage and frequency 
reduction, the overall power consumption for on-chip com- 
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munication is reduced. However, these reductions in voltage 
and frequency simultaneously lead to greater network latency 
and a longer execution time, resulting in a small overall re-
duction in NoC energy consumption. Thus, to achieve signif-
icant savings in NoC energy consumption, reducing both 
power consumption and execution time is critical. 

In this paper, we propose a slack-aware packet approxi-
mation technique to achieve a reduction in NoC energy con-
sumption for sustainable parallel computing. The slack of a 
packet is defined as the number of cycles by which the packet 
can be delayed in the network with no effect on execution 
time [25]–[27]. Low-slack packets are considered critical to 
system performance, and network latency for these packets 
often results in processor stalls. In comparison, high-slack 
packets can tolerate considerable network latency without 
causing processor stalls. The proposed technique includes a 
slack-aware control policy to identify low-slack packets and 
accelerates these packets to reduce both the NoC power con-
sumption and the execution time of applications using two 
lightweight packet approximation techniques, namely, an in-
network approximation (INAP) mechanism and a network in-
terface approximation (NIAP) mechanism. The NIAP mech-
anism utilizes a lightweight data approximation method (trun-
cation) to reduce the latency of network links and switch tra-
versals for the low-slack packets. The INAP mechanism is de-
signed to reduce the latency of arbitration in the routers for 
low-slack packets by approximating high-slack packets. The 
slack-aware control policy is designed to identify low-slack 
packets and activate the appropriate packet approximation 
mechanism to achieve a lower execution time. To support the 
proposed technique, an approximate network interface and an 
approximate router are implemented. The proposed imple-
mentations reduce the packet size using lightweight data ap-
proximation logic for lower power consumption. The simul-
taneous reduction in both execution time and power con-
sumption leads to lower NoC energy consumption. Specifi-
cally, the contributions of this work are as follows: 
• A slack-aware packet approximation technique is pro-

posed to reduce the energy consumption of NoCs for sus-
tainable parallel computing.

• An approximate router and an approximate network in-
terface are implemented to support the slack-aware con-
trol policy, the INAP mechanism, and the NIAP mecha-
nism to reduce the network latency for the low-slack
packets.

• A detailed performance evaluation is conducted to show
that the proposed technique reduces the execution time
and energy consumption by up to 24% and 38%,

respectively, compared to existing approximate commu-
nication techniques with 1.1% lower accuracy degrada-
tion on average.  

This paper is organized as follows. Section 2 presents the 
background of the proposed slack-aware packet approxima-
tion technique. Section 3 outlines the basic operational prin-
ciples of the proposed technique. The implementation is de-
scribed in detail in Section 4, while Section 5 presents its 
extensive evaluation. Section 6 concludes the manuscript. 

2 BACKGROUND 
2.1 Network-on-Chips (NoCs) 

The increasing scale of data movement in emerging par-
allel computing applications is resulting in heavy NoC com-
munication loads [3], [4]. Moreover, as the numbers of pro-
cessing cores, caches, and on-chip memories in multi/many-
core systems increase, communication is becoming more 
costly than computation in terms of energy consumption [5]–
[10].  

Fig. 2 shows an NoC implemented in a multicore system 
with approximate communication capabilities. The NoC com-
prises network interfaces (NIs) and routers. Each NI contains 
a packet encoder/decoder to convert between request/reply 
packets. Data approximation/recovery modules process the 
data for approximate communication, which will be further 
discussed in Section 2.2. When a cache miss occurs during a 
memory load operation, a read request packet is sent to the 
memory or the shared cache through the NoC. Then, the 
memory or shared cache uses a read reply packet to send the 
required data back to the core. When a cache miss occurs dur-
ing a memory store operation, the data are incorporated into 
a write request packet and sent to the memory or shared cache 
through the NoC. After the memory or shared cache receives 
the data, a write reply is sent back to the core to confirm a 
successful memory write.  

The routers in Fig. 2 transmit a packet in seven steps: 
buffer write, route computation, virtual channel (VC) 

 

Fig. 2. Multicore architecture with an approximate com-
munication NoC. 

Fig. 1. Approximated data packets and energy reduction for 
[16] compared to a NoC with no approximation.
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allocation, switch allocation, buffer read, switch traversal, 
and link traversal. When a packet arrives at the router, the 
packet is first written to the buffer in the input unit during the 
buffer write stage. Then, the route computation logic calcu-
lates the output port for the incoming packet. For VC alloca-
tion, a round-robin arbitrator is used to choose one VC in each 
input unit. Afterward, for switch allocation, a round-robin ar-
bitrator is again used to choose an input unit if more than one 
input unit is requesting to connect to the same output port. 
When a packet wins both arbitrations, that packet is removed 
from the buffer in the input unit (buffer read) and traverses 
the allocated switch and link. 

2.2 Approximate Communication Techniques 
Existing research shows that approximate communica-

tion techniques improve communication performance in mul-
ticore systems while ensuring result quality for parallel com-
puting applications [4], [13]–[16], [19]. Approximate com-
munication techniques trade result quality for lower dynamic 
power consumption, reduced network latency, and increased 
network throughput. The general working process of the cur-
rent approximate communication framework is shown in Fig. 
3. This framework includes a software-based quality control
method and a hardware-based data approximation technique.

The quality control method ensures that the data error in-
troduced by approximate communication can be tolerated by 
each approximate computing application [13], [16], [17]. Ex-
isting methods [4], [14], [15], [17], [20] allow program de-
signers to assign error thresholds to each variable before the 
execution of an application. In [16], [17], software-based 
quality control systems are introduced to automatically deter-
mine the approximation level for each variable while ensuring 
result quality. These methods first identify error-resilient var-
iables and calculate the error tolerances of these variables 
based on the application’s requirements in terms of the result 
quality. Then, the load and store instructions for error-resilient 
variables are replaced with corresponding approximate load 
and store instructions for packet approximation during execu-
tion. These approximate load and store instructions contain 
approximation information, including the approximation 
level for the corresponding variable and the variable type 
(e.g., int or float). Finally, the application with the approxi-
mate load and store instructions is executed on a multicore 
architecture with an approximate communication NoC. Since 
the quality control method identifies the approximable varia-
bles and their approximation levels, in the existing approxi-
mate communication frameworks [4], [13]–[16], [19], the 
number of approximable packets is determined before the ex-
ecution of the application. Because the traffic pattern cannot 
be analyzed and, hence, performance-critical packets cannot 
be identified by the software before the execution, the absence 
of this functionality results in only a small reduction in 

execution time. 
The data approximation module in the NI (Fig. 2) reduces 

the packet size of the read reply and write request according 
to the approximation information during a memory load or 
store operation. The approximated packet carries the approx-
imated data and the approximation information to the desti-
nation node. When the approximated packet reaches the des-
tination node, the packet’s approximated data are recovered 
to their original length according to the approximation infor-
mation by the data recovery module. In existing research, sev-
eral data approximation techniques have been implemented to 
reduce the packet size [4], [13]–[16], [19]. For example, [4] 
and [15] use lossy data compression techniques to approxi-
mate data in the write request or read reply reducing on-chip 
communication. Although existing techniques achieve a re-
duction in dynamic power consumption, a lossy data com-
pression method requires complicated logic to process data, 
incurring considerable overheads in terms of on-chip area and 
static power for data approximation. As a result of the com-
bined effect of the small execution time reduction and the ad-
ditional static power consumed by the data approximation 
logic, the existing methods achieve a low reduction in energy 
consumption compared to a conventional NoC, even with a 
large number of approximated packets. Since on-chip com-
munication can consume a large amount of energy in modern 
multicore processors [5]–[10], it would be of interest to ex-
plore the possibility of developing an approximate communi-
cation technique to address the energy consumption issue. 

2.3 Dynamic Voltage and Frequency Scaling 
(DVFS) 
Dynamic voltage and frequency scaling (DVFS) tech-

niques have been extensively studied for energy-efficient on-
chip communication[21]–[24]. In these techniques, the NoC 
is divided into several voltage/frequency domains. Then a 
control policy for voltage/frequency adjustment is developed. 
The control policy observes the NoC status in each volt-
age/frequency domain and makes voltage/frequency adjust-
ments using various algorithms. For example, in [22], [24], 
prediction methods are presented to proactively adjust the 
voltage and frequency. Although DVFS can achieve a signif-
icant reduction in power consumption, these techniques sim-
ultaneously result in longer network latency and lower net-
work throughput. The increase in network latency results in a 
longer execution time and, thus, higher energy consumption. 
Moreover, because of the heavy NoC communication loads 
imposed during the execution of current parallel computing 
applications, such as big data and machine learning applica-
tions, the performance penalty incurred by reducing the router 
voltage and frequency makes this approach no longer feasible 
in the future multi/many-core systems. 

2.4 Slack 
Slack is widely used in modern microprocessors to meas-

ure the performance criticality of a packet [25]–[27]. The 
packet latency significantly impacts the execution time for re-
quests with low slack. On the other hand, the network latency 
has less effect on the execution time for requests with high 
slack. Fig. 4 shows the cumulative distributions of the diver-
sity in estimated slack for different applications in PARSEC 
[31] and AxBench [12]. The slack is estimated using the

Fig. 3. High-level workflow of the current approximate com-
munication framework. 
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method proposed in [26] for a 4 × 4 2D mesh on-chip network 
and is represented with 6 bits in total for each packet. The two 
most significant bits (MSBs) represent the number of miss-
predecessors, the third MSB represents the L2 cache hit/miss 
status, and the three least significant bits (LSBs) represent the 
number of hops that the packet needs to travel. For example, 
a slack value of 010010 indicates that: (1) the packet has one 
miss-predecessor, (2) the packet is predicted to be an L2 miss, 
and (3) it will take two hops for the packet to reach the desti-
nation. Low-slack packets (with slack values of less than 
011111) account for more than 50% of the total data packets 
for blackscholes (73%), canneal (68%), bodytrack (64%), and 
ferret (53%). Regarding high-slack packets, existing works 
[25]–[27] indicate that although the number of high-slack 
packets is lower than that of low-slack packets, high-slack 
packets tend to be injected within a small amount of time. 
This traffic pattern increases the network latency for low-
slack packets resulting in a longer execution time. Thus, the 
execution time of an approximate computing application can 
be further reduced if the approximate communication tech-
nique can accelerate low-slack packets. 

3 SLACK-AWARE PACKET APPROXIMATION 
3.1 Overview 

The slack-aware packet approximation technique is pro-
posed to reduce the energy consumption of NoCs for sustain-
able parallel computation. The development of the proposed 
technique is based on the following observations. 

Observation 1: Energy is the product of power and execu-
tion time; thus, the proposed packet approximation technique 
needs to reduce both values for energy-efficient on-chip com-
munication.  

Observation 2: Packet approximation is an effective tech-
nique to lower dynamic power consumption by reducing on-
chip communication; however, existing approximation tech-
niques achieve a small reduction in execution time with con-
siderable overheads in terms of on-chip area and static power. 

Observation 3: As shown in Fig. 4, low-slack packets ac-
count for most communication traffic. Since the network la-
tency for these packets directly translates into a longer execu-
tion time, reducing the network latency for low-slack packets 
can shorten the execution time of an application.  

In the proposed technique, two packet approximation 
mechanisms (i.e., NIAP and INAP) and a slack-aware control 
policy are developed to reduce both power dissipation and ex-
ecution time. Specifically, the slack-aware control policy 
identifies low-slack packets and activates appropriate packet 
approximation mechanisms to save execution time. The NIAP 
mechanism approximates low-slack packets before the packet 
encoding process to reduce the latency of network links and 
switch traversals; the INAP mechanism approximates high-
slack packets in the network to prioritize low-slack packets 
during the arbitration process in the router. Fig. 5 shows an 
overview of the proposed packet approximation process. It 
first checks whether the write request or read reply can be ap-
proximated according to the approximation information. 
Then, it chooses one packet approximation mechanism ac-
cording to the slack. To identify low-slack packets, the per-
formance characteristics of both mechanisms are studied, and 
a slack-aware control policy is then developed according to 
the performance characteristics of the two packet approxima-
tion mechanisms.  

To implement the proposed packet approximation tech-
nique, an approximate NI and an approximate router are pro-
posed. The approximate NI processes error-resilient data 
packets according to the approximation level and data type 
for both NIAP and INAP by utilizing a data truncation method 
with low area and static power overheads. The approximate 
NI also includes a slack-aware controller to choose between 
NIAP and INAP for effectively accelerating low-slack pack-
ets. The proposed approximate router prioritizes low-slack 
packets by approximating high-slack packets.  

3.2 Packet Approximation Mechanisms 
3.2.1 Network Interface Approximation (NIAP) 

Mechanism 
The goal of designing the NIAP mechanism is to reduce 

the latency of network links and switch traversals for low-
slack packets. To achieve this, a lightweight data truncation 
method is developed to reduce the data size for approximable 
low-slack packets. The NIAP mechanism truncates data ac-
cording to the given approximation information, including the 
approximation level for the corresponding variable and the 
variable type (e.g., int or float). Table 1 elucidates the rela-
tionship between the data error threshold and the approxima-
tion level for both floating-point and integer data. Eleven ap-
proximation levels ranging from level 0 to level 10 are 

Fig. 4. Cumulative distribution of packets in terms of the es-
timated slack. 

Fig. 5. Overview of the slack-aware packet approximation 
process. 
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supported by the proposed data approximation method. Level 
0 corresponds to data that are transmitted with 100% accu-
racy, while level 10 corresponds to data that can tolerate a 
12.5% relative error. The data error threshold is defined in Eq. 
1, where 𝑎𝑎� is the approximated version of a and Era is the rel-
ative error. 

𝐸𝐸𝑟𝑟𝑟𝑟 = |𝑟𝑟−𝑟𝑟�|
𝑟𝑟

≤ 𝑑𝑑𝑎𝑎𝑑𝑑𝑎𝑎 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑟𝑟ℎ𝑒𝑒𝑜𝑜𝑑𝑑     (1) 

Based on the IEEE 754 standard [28], a single-precision 
floating-point value is defined as shown in Eqs. 2 and 3. 

float =  (−1)S × mantissa × 2exp  (2) 

𝑚𝑚𝑎𝑎𝑚𝑚𝑑𝑑𝑚𝑚𝑟𝑟𝑟𝑟𝑎𝑎 = 20 + ∑ 𝑋𝑋𝑘𝑘2−𝑘𝑘 (𝑋𝑋𝑘𝑘 = 1 𝑒𝑒𝑒𝑒 0)23
𝑘𝑘=1   (3) 

According to Eqs. 2 and 3, the mantissa always starts with a 
one. Thus, the first bit of the mantissa is omitted when a data 
point is represented in the floating-point format based on the 
IEEE 754 standard [28]. It is observed that when c bits (of the 
23-bit mantissa) are protected, the maximum relative error on
this floating-point data value will be ∑ 2−𝑘𝑘23

𝑘𝑘=𝑐𝑐+1  , which is
less than 2-c according to the sum of the geometric sequence
(∑ 𝑎𝑎𝑒𝑒𝑘𝑘−1 = 𝑎𝑎(1 − 𝑒𝑒𝑛𝑛) 1 − 𝑒𝑒⁄𝑛𝑛

𝑘𝑘=1 , where a is the first term, n
is the number of terms, and r is the common ratio in the se-
quence). Therefore, using Eq. 3, we can deduce the following
expression (Eq. 4) for the data error threshold.

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑟𝑟ℎ𝑒𝑒𝑜𝑜𝑑𝑑 =  2−𝑛𝑛(1 ≤ 𝑚𝑚 ≤ 23)  (4) 
In Eq. 4 above, the data error threshold is a number between 
0 and 1, and n is the number of most significant bits (MSBs) 
in the mantissa of this floating-point value. In a floating-point 
data value, the 1-bit sign and the 8-bit exponent (a total of 9 
bits) are also critical bits that must be transmitted. Thus, when 
23 – n bits are truncated, the relative error on the value will 
be less than 2. For example, to satisfy an approximation level 

of 9 for any floating-point value, we can truncate 18 LSBs, 
resulting in a maximum relative error of 3.12%. In this case, 
the NIAP mechanism reduces floating-point data size by 56% 
when the approximation level is 9. 

The representation of a signed integer is illustrated in Eq. 
5, where k is the bit position and Xk is the bit value at position 
k. In a signed integer, the MSB represents the sign, and the
remaining 31 bits represent the value.

𝑚𝑚𝑚𝑚𝑑𝑑 = ∑ 𝑋𝑋𝑘𝑘2𝑘𝑘(𝑋𝑋𝑘𝑘 = 0 𝑒𝑒𝑒𝑒 1)31
𝑘𝑘=0   (5) 

When n bits (of the 31 LSBs) are truncated, the maximum 
error caused by truncation will be ∑ 𝑋𝑋𝑘𝑘2𝑘𝑘(𝑋𝑋𝑘𝑘 = 0 𝑒𝑒𝑒𝑒 1)𝑛𝑛

𝑘𝑘=0 . 
Thus, Eq. 6 is derived to calculate the number of bits (n) to be 
truncated during the approximation process for a given error 
threshold. 

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑑𝑑ℎ𝑒𝑒𝑒𝑒𝑟𝑟ℎ𝑒𝑒𝑜𝑜𝑑𝑑 =  ∑ 𝑋𝑋𝑘𝑘2𝑘𝑘
𝑛𝑛
𝑘𝑘=0

∑ 𝑋𝑋𝑘𝑘2𝑘𝑘31
𝑘𝑘=0

(𝑋𝑋𝑘𝑘 = 0 𝑒𝑒𝑒𝑒 1)      (6) 

For example, suppose that an integer 548320 (hexadecimal 
representation: 0x00085DE0) is to be approximated with ap-
proximation level = 9. According to Eq. 6, 14 LSBs are trun-
cated and the truncated integer in hexadecimal representation 
is 0x00021. In this case, the NIAP mechanism reduces the in-
teger data size by 44% when the approximation level is 9. 

3.2.2 In-Network Approximation (INAP) Mechanism 
The goal of designing the INAP mechanism is to reduce 

the arbitration latency in each router for low-slack packets by 
approximating high-slack packets. To achieve this, a two-step 
packet approximation process is developed.  

1) The NI reorders the bits in an approximable packet ac-
cording to the approximation information before injecting it 
into the network. The bit reordering process separates the data 
into critical bits and approximable bits for integer and float-
ing-point values according to the approximation level. The 
INAP mechanism uses the same process as the NIAP mecha-
nism to calculate the number of approximable LSBs accord-
ing to the approximation level. Different from the NIAP 
mechanism, which discards the approximable LSBs, the 
INAP mechanism places the approximable bits at the end of 
the packet. For example, Fig. 6 shows an example of a data 
reordering process in the NI. The NI places the approximable 
LSBs in the tail flit of an approximable data packet. These 
approximable flits, which are filled with approximable LSBs, 
can be discarded by the router to prioritize the low-slack pack-
ets.  

2) After the approximable packets have been injected into
the network, an approximate router can discard the approxi-
mable tail flits for high-slack packets to accelerate the 

Fig. 7. An example of packet approximation during VC allo-
cation. 

TABLE 1 
Relationship Between the Data Error Threshold and the Ap-

proximation Level. 
Data Error Threshold Approximation Level 

0.125 10 
0.03125 9 
0.0078125 8 
0.001953125 7 
0.000488281 6 
0.00012207 5 
3.05176E-05 4 
3.05176E-05 3 
7.62939E-06 2 
4.76837E-07 1 
0 0 

Fig. 6. Data reordering example. 
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arbitration process for low-slack packets in the router. To 
achieve this, the VC allocation and switch allocation pro-
cesses are modified to prioritize packets with low slack val-
ues. During VC allocation, if a packet has a smaller slack 
value than one or more approximable packets, the VC alloca-
tor drops all approximable flits for the packets that are buff-
ered in the VC. For illustration, Fig. 7 shows an example in 
which the packets in VC 1 and VC 2 are waiting for VC allo-
cation, VC 0 is sending a data packet, and the slack values for 
the packets in VC 1 and VC 2 are 010010 and 011011, respec-
tively. According to round-robin arbitration, the next packet 
to be sent is the data packet with an approximable tail flit in 
VC 1. Since the packet in VC 2 has a lower slack value than 
the approximable packet in VC 1, the VC allocator switches 
to VC 2 after the fourth flit of the approximable packet is fin-
ished. The approximable tail flit in VC 1 is discarded after the 
VC allocator switches to VC 2. In this way, the network la-
tency for the low-slack packet is reduced by one cycle during 
VC allocation. The same design is applied for switch alloca-
tion. When two or more packets are requesting to use the same 
output port, and one packet has a lower slack value than other 
packets, the router drops all approximable flits in front of that 
packet. 

3.2.3 Slack-Aware Control Policy 
The INAP and NIAP mechanisms accelerate low-slack 

packets using a lightweight data approximation method to re-
duce the power consumed during on-chip communication and 
data approximation. To effectively reduce energy consump-
tion, a control policy is needed for identifying low-slack pack-
ets in order to reduce the network latencies that impact the 
execution time.  

The NIAP reduces the packet size at the NI by truncating 
approximable data. When the router forwards an NI-approxi-
mated packet, fewer cycles are needed for switch and link tra-
versal than for the original data packet due to the reduced 
packet length. Since the packet needs to win two arbitrations 
(VC allocation and switch allocation) before traversing the 
switch and link, the time spent waiting for an available port 
cannot be reduced. On the other hand, the INAP reduces the 
wait time for arbitration for packets with low slack values. 

During the execution of a parallel computing application, 
packets with different levels of slack are injected simultane-
ously. To effectively reduce the execution time, finding a suit-
able slack threshold value to define low-slack packets is the 
key. In this case, the NIAP can be used for packets with low 
slack values to reduce the time for switch and link traversal. 
The wait time for arbitration for a packet with a low slack 
value can be further reduced by utilizing the INAP. To suc-
cessfully reduce the wait time for arbitration, the INAP mech-
anism needs the other packets, which are waiting for the arbi-
tration, to be reordered before injection. Considering that 
packets with high slack are injected in large numbers within 
a short period of time [25]–[27], applying INAP to a packet 
with high slack can increase the probability of a low-slack 
packet being prioritized. Thus, the execution time can be sig-
nificantly reduced if low-slack and high-slack packets are ap-
proximated using NIAP and INAP, respectively. 

To determine the slack threshold value to define low-
slack packets, the two approximation mechanisms are each 
applied to an NoC separately, and the stall cycles experienced 
due to the processor waiting for packets are measured. Fig. 8 
shows the relationships between the slack and the processor 
stall cycles observed under the two packet approximation 
mechanisms when the PARSEC benchmarks are executed on 
a multicore system. The NIAP reduces the number of cycles 
needed for switch and link traversal, with limited reduction in 
the number of cycles needed for the arbitration. Thus, for 
packets with high slack values requiring intensive traffic ar-
bitration, the network latency is significantly increased com-
pared to that using the INAP mechanism leading to processor 
stalls. For example, the intense traffic injected by the ferret 
benchmark (Fig. 8(e)) causes significant processor stalls (83 
cycles) during times of high slack (101110) with the NIAP. In 
contrast, the INAP achieves significant improvement when 
the injected packets have high slack values. Since packets 
with high slack values are injected in large numbers within a 
short period of time, the INAP mechanism can effectively re-
duce the network latency by reducing the number of cycles 
needed for the arbitration. For example, the INAP reduces the 
processor stalls to 20 cycles, which is 76% fewer than in the 
case of the NIAP for the ferret benchmark (Fig. 8(e)) under 

Fig. 8. Processor stalls versus NI-predicted slack. 
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high slack (101110). On the other hand, the INAP causes the 
network latency to increase compared to that using the NIAP 
mechanism for packets with low slack values. Since the INAP 
mechanism only reorders the packets, more cycles are needed 
for switch and link traversal, resulting in more processor stalls 
compared to the NIAP. By further analyzing the results, it can 
be seen that when the slack is less than 100000, the NIAP re-
sults in fewer processor stall cycles than the INAP. Thus, the 
slack-aware control policy should select the packet approxi-
mation mechanisms to be applied according to the slack 
threshold. If the slack is less than 100000 (slack threshold 
value), the NIAP is used; otherwise, the INAP mechanism is 
activated. 

4. THE IMPLEMENTATION OF SLACK-AWARE
PACKET APPROXIMATION

4.1 Slack-Aware Approximate Network Interface 
(NI) Design 

Fig. 9 shows the proposed approximate NI design. The ap-
proximate NI includes a slack-aware approximation control-
ler, the data approximation logic consisting of data truncation 
and data reordering mechanisms, and the data recovery logic. 

4.1.1 Data Approximation Logic Design 
The data approximation logic supports the data truncation 

applied in NIAP and the data reordering required by INAP. 
Fig. 10. illustrates the implementation of the proposed design. 

Fig. 10(a) illustrates the data truncation process when the 
NI approximates a floating-point value (NIAP). First, the de-
multiplexer separates the sign bit and exponent bits from the 
floating-point value. Then, the approximation logic truncates 
the LSBs of the mantissa according to the approximation 
level. Afterward, the sign and exponent bits are added to the 
MSBs of the truncated mantissa. Finally, the approximated 
floating-point value and slack value are sent to the packet en-
coder. 

Fig. 10(b) illustrates the data truncation process when the 
NI approximates an integer value (NIAP). First, the data trun-
cation module eliminates the LSBs of the integer value to be 
approximated based on the approximation level. Then, the ap-
proximated integer and slack value are sent to the packet en-
coder. 

When the INAP mechanism is activated, the NI only re-
orders the bits of the request/reply packet according to the ap-
proximation level and data type if the request/reply packet can 

tolerate some level of error. Fig. 10(c) and (d) illustrate the 
first step of the data reordering process for floating-point and 
integer values, respectively. The approximation logic calcu-
lates the number of approximable LSBs according to the ap-
proximation information. The original data, the number of ap-
proximable LSBs, and the slack value are sent to the packet 
encoder. Then, the packet encoder places the calculated num-
ber of approximable LSBs in the last flit of the packet based 
on the calculated number. After data reordering, the packet is 
the same size as the original data packet. The only difference 
is that the approximable LSBs are placed in the tail flit.  

In contrast to the NIAP mechanism (Fig. 10(a) and (b)), 
the INAP mechanism (Fig. 10(c) and (d)) bypasses the regis-
ters to store the truncated data, thus eliminating a cycle 
needed for data approximation at the NI. Moreover, NIAP and 
INAP use the same approximation logic to translate approxi-
mation levels for packet approximation. Thus, the proposed 
implementation saves area and static power compared to 
lossy-compression-based packet approximation techniques 
[4], [15], [16], [19].  

4.1.2 Data Recovery Logic Design 
Fig. 11 shows the data recovery logic for approximated 

packets. The data recovery process consists of three steps. 
First, the demultiplexer separates the approximated data from 
accurate data based on approximation indicators. The approx-
imation indicator for a packet is generated by checking the 
approximation information carried by that packet. If the 

Fig. 9. Slack-aware approximate NI design. 

Fig. 10. Data approximation logic design. 
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approximation level is larger than 0, the approximation indi-
cator is set to 1. Otherwise, the approximation indicator is set 
to 0. Then, the data recovery logic checks the size of each 
approximated data packet. If the packet was approximated us-
ing INAP or NIAP, the packet size would be less than the size 
of a normal data packet. Thus, the logic recovers the data by 
filling in the truncated LSBs with zeros. If the packet size is 
equal to the size of a normal data packet, this indicates that 
the packet was not approximated by the router using the INAP 
mechanism. Therefore, the logic reorders the received data, 
which have not been approximated in the network, according 
to the approximation information. Finally, the recovered data 
are sent to the core or memory. 

4.1.3 Slack-Aware Approximation Controller Design 
The approximation controller is designed to dynamically 

select the appropriate packet approximation mechanism 
based on slack. This controller has two functionalities: slack 
calculation and approximation mechanism selection. For 
slack calculation, the method proposed in [26] is used. In this 
paper, the slack is represented by three sets of bits for each 
packet. The two highest bits represent the number of miss-
predecessors, the third-highest bit represents the L2 cache 
hit/miss status, and the rest of the LSBs represent the number 
of hops that the packet needs to travel, which depends on the 
network topology. The approximation mechanism compares 
the packet slack against the threshold slack value(100000) for 
a 4 × 4 2D mesh topology. If the packet slack is lower than 
the threshold, data truncation (NIAP) is selected to approxi-
mate the data. Otherwise, data reordering (INAP) is selected. 
For larger network topologies (e.g., 8 × 8 2D mesh), the 
length of slack value can be increased to accommodate larger 
numbers of hops. The threshold slack values for these net-
works can be determined using the same method proposed in 
Section 3.2.3. 

4.2 Approximate Router Design 
The approximate router prioritizes packets with low slack 

values by dropping approximable flits during the arbitration 
processes of the VC and switch allocation stages. Thus, the 
VC and switch allocation stages are modified as follows. 
First, a slack comparator is added to the router to identify 
packets with small slack values. Second, the buffer reading 
process is modified to identify and discard approximable flits 
to prioritize the low-slack packets.  

5 EVALUATION 
5.1 EXPERIMENTAL METHODOLOGY 

We evaluate the performance of the proposed slack-
aware packet approximation technique using the GEM5 

simulator [29]. The simulator is modified to support slack-
aware packet approximation. The data approximation logic 
and data recovery logic are implemented in the NI, and the 
router design is modified to support the NIAP, INAP, and the 
slack-aware control policy. The NoC used for evaluation 
shares the same specifications as the NoC in Section 3.2.3. 
Table 2 shows the detailed settings used for the GEM5 simu-
lator. DSENT [30] is used to estimate the power consumption 
of the NoC. The applications in the AxBench [12] and PAR-
SEC [31] benchmark suites are used as workloads. Table 3 
lists the benchmarks used and the evaluation metrics utilized 
to measure the result quality. 

The proposed technique is evaluated by comparing it 
against a state-of-the-art approximate communication frame-
work(ACF) [16], Approx-NoC [4], and AxBA [15] from four 
perspectives: execution time, power consumption, energy 
consumption, and result error. The DVFS [22] and the base-
line (i.e., a NoC without approximation or DVFS) are also 
evaluated for comparison. Since packets are transmitted with 
full accuracy for DVFS and the baseline NoC, these tech-
niques suffer no result error.  

The state-of-the-art ACF technique [16] includes an NI 
packet approximation technique based on frequent patterns 
and data truncation. Approx-NoC [4] includes an approxi-
mated frequent-pattern compression technique. AxBA [15] 
includes a base-delta data approximation technique. To fairly 
compare the performance of these different packet approxi-
mation techniques, all approximate computing applications 
are annotated using the state-of-the-art learning-based quality 
control method [17] with a target result quality of 95%. All 
approximate communication-based techniques are simulated 
with a 1.1 V supply voltage and a 2.0 GHz clock frequency. 
The DVFS technique partitions NoC into sixteen voltage/fre-
quency domains. Each domain contains one router. The 
DVFS supports total of 5 voltage/frequency levels, including 
0.8 V @ 1 GHz, 0.85 V @ 1.25 GHz, 0.9 V @ 1.5 GHz, 1.0V 
@ 1.8 GHz, and 1.1 V @ 2.0 GHz. The controller in each 
domain chooses one voltage/frequency setting according to 
the traffic intensity for each router.  

TABLE 2 
Simulation Environment Setup 

NoC 
Parameters 

Network type: Garnet 2.0 
Topology: 4 × 4 2D mesh 
Data packet size: 5 flits 
Link width: 128 bits 
Routing algorithm: X-Y routing  
Flow control: wormhole switching 

System 
Parameters 

16 on-chip cores  
32 kB L1 instruction cache 
32 kB L1 data cache 
4-way associative
16-bank fully shared 16 MB L2 cache

Approximate 
Communication 
Techniques 

Approximate Communication Frame-
work(ACF) [16]; Approx-NoC [4]; 
AxBA [15]; Slack-Aware (proposed) 

Conventional 
Energy-Saving 
Technique 

DVFS [22] 

Fig. 11. Data recovery logic design. 
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5.2 Execution Time 
Fig. 12 shows the evaluation results for the execution time 

normalized with respect to the baseline. We compare the pro-
posed slack-aware packet approximation technique with ACF, 
Approx-NoC, AxBA, and DVFS. In ACF, Approx-NoC, and 
AxBA, every annotated error-resilient variable is approxi-
mated in the NI. Through the use of a frequent-pattern com-
pression technique, ACF and Approx-NoC achieve smaller 
sizes for error-resilient packets than AxBA. Thus, the ACF 
and Approx-NoC improve the execution time by 2% and 4%, 
respectively, compared to AxBA. The DVFS incurs a longer 
network latency, resulting in a 5% average increase in execu-
tion time compared to the baseline. In contrast, the proposed 
technique achieves a 20% reduction in the execution time on 
average compared to AxBA. Compared to the state-of-the-art 
technique (ACF), the proposed technique improves the exe-
cution time by 17% on average. Compared to DVFS, the pro-
posed technique improves the execution time by 26% on av-
erage. The largest network latency reduction in the experi-
ment is achieved for the ferret benchmark (24% reduction 
compared to ACF). The smallest network latency improve-
ment is obtained for blackscholes (14% reduction compared 
to ACF). The significant improvement in the execution time 
is achieved due to the slack awareness of the proposed tech-
nique. The INAP mechanism significantly reduces the latency 
of arbitration for low-slack packets during transmission. At 
the same time, the NIAP mechanism, similar to ACF, Approx-
NoC, and AxBA, reduces the latency of the link and switch 
traversal for low-slack packets. The combined effect of the 
two packet approximation techniques significantly reduces 
the latency for low-slack packets and the execution time. 

Fig. 13 shows the distributions of the number of injected 
data packets relative to the slack for the ferret and 
blackscholes benchmarks. The ferret benchmark has more 
packets for which the INAP is used (47%) than the 
blackscholes benchmark does (27%). Compared to existing 
techniques, the INAP mechanism further reduces the latency 
for low-slack packets during packet transmission. Because 
more packets are approximated using INAP for the ferret 
benchmark, the latency for low-slack packets in ferret can be 
further reduced, leading to a greater execution time improve-
ment than blackscholes. 

5.3 Power Consumption 
Fig. 14 shows the evaluation results for the power con-

sumption under the approximate communication techniques 
and DVFS, normalized with respect to the baseline. The 
power consumption includes two components: static power 
and dynamic power. The static power is dissipated by leakage 
currents that flow when the NoC is powered on. The dynamic 
power is dissipated when activating or deactivating gates dur-
ing signal transitions. 

Compared to ACF, the proposed slack-aware packet ap-
proximation technique achieves an 18% reduction in power 
consumption on average. The largest power consumption re-
duction in the experiment is achieved for the ferret benchmark 
(25% reduction compared to ACF). The smallest power con-
sumption improvement is obtained for blackscholes (16% re-
duction compared to ACF). The significant improvement in 
power consumption is achieved due to not only the slack 
awareness of the proposed technique but also the lightweight 
packet approximation mechanisms. Compared to ACF, Ap-
prox-NoC, and AxBA, the proposed technique uses a light-
weight data truncation process to approximate data in the 
packets consuming less static power with a similar compres-
sion rate. In contrast, ACF, Approx-NoC, and AxBA use lossy 
data compression, which incurs area and static power over-
heads during approximation. Section 4.5 compares the area 
and static power overheads in detail. Compared to DVFS, the 
proposed method achieves a similar reduction in power con-
sumption on average. However, due to the higher rate of 
packet approximation for several benchmarks, such as ferret 
(82% of the data packets are approximated, according to Fig. 
17), the proposed method achieves 7% more power savings 
than DVFS. This shows that the proposed method is effective 
in saving power. 

5.4 Energy Consumption 
Fig. 15 shows the NoC energy consumption normalized 

with respect to the baseline. Energy consumption is defined 
as the product of power and execution time. Since the pro-
posed slack-aware packet approximation technique achieves 
reductions in both execution time and power consumption, a 
significant reduction in energy consumption is expected. 

Fig. 12. Execution times of the applications under DVFS, Approx-NoC, AxBA, ACF, and Slack-Aware (proposed) compared 
to the baseline. 

 
 
 

 
 

Fig. 13. Injected data packets versus predicted slack. The 
results are normalized with respect to the total injected 
data packets for the corresponding benchmark. 

70%
80%
90%

100%
110%

 fft inversek2j jmeint jpeg kmeans blackscholes vips x264 bodytrack ferret swaptions cannel dedup Average

Ex
ec

ut
io

n 
Ti

m
e 

 

Baseline DVFS Approx-NoC AxBA ACF Slack-Aware

9



SLACK-AWARE PACKET APPROXIMATION FOR  ENERGY-EFFICIENT NETWORK-ON-CHIPS  

Compared to ACF, the proposed technique achieves a 28% 
reduction in energy consumption on average. The largest en-
ergy reduction is achieved for the ferret benchmark (38% re-
duction compared to ACF). The smallest power consumption 
improvement is obtained for blackscholes (25% reduction 
compared to ACF). Compared to DVFS, the proposed tech-
nique achieves a 22% reduction in energy consumption on 
average. This shows that the proposed method is effective in 
reducing NoC energy consumption. 

5.4 Result Quality 
Table 3 provides the metrics for measuring the applica-

tions’ result quality. The result errors for all the benchmarks 
running on an approximate-communication-enabled NoC are 
shown in Fig. 16. The applications have a target result quality 
of 95%, which is equivalent to a tolerable result error of less 
than 5%. This figure shows that ACF achieves a 1.3% result 
error on average, whereas the proposed technique achieves a 
0.2% result error on average. Fig. 17 shows the numbers of 
data packets approximated when different packet approxima-
tion techniques are used. 

The proposed technique approximates 24% fewer data 
packets on average than ACF, Approx-NoC, and AxBA. Since 
the INAP mechanism drops flits based on the slack value, not 
all error-resilient variables are approximated, leading to an 
improvement in the result error. For example, the x264 bench-
mark suffers the least quality loss (0.15%) in the result and 
has the lowest percentage of approximated data packets 
(67%) among the benchmarks. For further illustration, the ac-
curate results for the jpeg benchmark are compared against 
the approximate results obtained using the proposed tech-
nique in Fig. 18. The difference between the two outputs is 
negligible and unrecognizable to the human eye. These results 
indicate that the proposed approximate communication 

technique limits the result error within an acceptable amount. 

5.5 Overhead Analysis 
We implemented the proposed technique with 16 cores us-

ing Verilog to evaluate the area, static power, and latency 
overheads. The proposed technique was synthesized with 32 
nm technology using the Synopsys Design Vision software. 
The synthesis results show that the technique incurs area 
overheads of 1.56 µm2 and 0.4 µm2 for each NI and router, 
respectively. The overall area overhead for a 4 × 4 2D mesh 
is less than 1% of the total NoC area. When the supply voltage 
is 1.1 V, the proposed technique incurs a static power over-
head of 5.6 mW for the whole NoC. Compared to the existing 
approximate communication techniques (e.g., ACF, Approx-
NoC, and AxBA), the proposed packet approximation tech-
nique requires fewer hardware components to reduce the data 
size and recover data in the NI. The synthesis results show 
that the proposed technique reduces the on-chip area by an 
average of 52% and the static power overhead by 64% com-
pared to the existing techniques for data approximation.  

Regarding the latency overhead, we find that data trunca-
tion at the NI requires one cycle. Thus, one cycle is added for 
a write request packet or a read reply packet only when the 
NIAP mechanism is activated. 

 

Fig. 14. NoC power consumption under DVFS, Approx-NoC, AxBA, ACF, and Slack-Aware (proposed) compared to the 
baseline. 

Fig. 15. NoC energy consumption under DVFS, Approx-NoC, AxBA, ACF, and Slack-Aware (proposed) compared to the 
baseline.  

Fig. 16. Result error with a target error of 5% 

Fig. 17. Approximated data packets. 

Fig. 18. Comparison of results for the jpeg benchmark. 
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5.6 Sensitivity Study 
We show the sensitivity of the proposed technique to dif-

ferent network topologies. The number of bits for represent-
ing the slack is increased for the larger network topology due 
to a larger hope count. Thus, the slack threshold used by the 
slack-aware control policy needs to be adjusted as per differ-
ent topologies. Table 4 shows the slack threshold for different 
network topologies when the procedure described in Section 
3.2.3 is used to determine the slack threshold. By comparing 
the thresholds for different topologies, the three MSBs, which 
represent the number of miss-predecessors and L2 cache 
hit/miss status, are the same for different topologies. The 
value for hope count is increased for the larger networks. The 
increase in the value covers the packets with a greater hop 
count in large networks. More importantly, the increase in 
threshold value maintains the ratio between low-slack packets 
and high-slack packets when the proposed technique is ap-
plied to a larger network. This ensures a sufficient number of 
packets being accelerated by both INAP and NIAP in larger 
networks for reductions in execution time and power dissipa-
tion. Therefore, the proposed method is applicable to larger 
network topologies and can maintain substantial energy sav-
ings. 

6 CONCLUSION 
In this work, we propose a slack-aware packet approxima-

tion technique for NoCs to reduce the energy consumption of 
the NoCs for sustainable parallel computing. The proposed 
technique includes a slack-aware control policy and two new 
packet approximation mechanisms, namely, an in-network 
approximation (INAP) mechanism and a network interface 
approximation (NIAP) mechanism. The NIAP mechanism re-
duces the latency of switch and link traversal for low-slack 
packets by reducing the data size at the network interface. The 
INAP mechanism reduces the latency for packets with a low 
slack by prioritizing these packets in the arbitration phases for 
switch allocation and VC allocation. The slack-aware control 
policy identifies low-slack packets in order to achieve a 
shorter execution time. An approximate network interface and 
an approximate router are developed to support the slack-
aware packet approximation technique. The proposed 

technique reduces the power consumption of the NoC while 
improving the execution time and lowering the quality loss 
for applications. Our detailed evaluation shows that the pro-
posed slack-aware packet approximation technique reduces 
the execution time by up to 24% and the energy consumption 
by up to 38% compared to existing approximate communica-
tion techniques with 1.1% lower result error on average. 
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