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Abstract—The proliferation of multi-core and many-core
chips for performance scaling is making the Network-on-Chip
(NoC) occupy a growing amount of silicon area spanning
several metal layers. The NoC is neither immune to hard faults
and transient faults nor unaffected by the adverse increase in
hard faults caused by technology scaling. The ramifications for
the NoC are immense: a single fault in the NoC may paralyze
the working of the entire chip. To this end, we propose a
Permanent Fault Tolerant Router (PFTR) that is capable of
tolerating multiple permanent faults in the pipeline. PFTR is
designed by making architectural modifications to individual
pipeline stages of the baseline NoC router. These architectural
modifications involve adding minimum extra circuitry and
exploiting temporal parallelism to accomplish fault tolerance.
Tolerance of multiple faults is achieved by striking a balance
between three important design factors namely, area overhead,
power overhead and reliability. We use Silicon Protection Fac-
tor [13] (SPF) as the reliability metric to assess the reliability
improvement of the proposed architecture. SPF takes into
account the number of faults required to cause failure and the
area overhead of the additional circuitry to evaluate reliability.
SPF calculation reveals that the proposed PFTR is 11 times
more reliable than the baseline NoC router. Synthesis results
using Cadence Encounter RTL Compiler at 45nm technology
show that the additional circuitry adds an area overhead of
31% and power overhead of 30% with respect to the baseline
NoC router. PFTR provides much better reliability with much
less overhead as compared to other fault tolerant routers such
as BulletProof [13], Vicis [14] and RoCo [15].

Keywords-Network-on-Chip, Router Architecture, Reliabil-
ity, Area, Power, Latency

[. INTRODUCTION

As the feature size keeps scaling down, concerns re-
garding the reliability issues keep amplifying [1], [3], [4]
affecting the functionality and lifetime of future devices and
systems. Devices and circuits are predominantly vulnerable
to two kinds of faults namely, permanent and transient faults.
A permanent fault is a fault that continues to affect the
operation of a circuit from the time of its inception. Common
sources of permanent faults include electro-migration [5],
hot carrier degradation [6], time dependent dielectric break-
down [7] etc. A transient fault is a fault that affects the
operation of a circuit for a smaller period of time typically
in the order of a single clock cycle. Common sources
of transient faults include thermal radiation from cosmic
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rays [8], process variation [9], alpha particles from the
packaging material [10] etc.

NoC [2], [11], [22], [23] is a packet based interconnection
network that facilitates communication between many cores
on a chip. NoC plays an effective role in decoupling the
intra-core computation from the inter-core communication.
Major components of a NoC include routers and links.
Decrease in the feature size is making the NoC increasingly
vulnerable to faults. As the number of cores on a chip
increase, faults in the NoC could have a significant impact
on performance as well as functionality of the entire chip.
Hence, it is of utmost importance to tackle the increasing
reliability concerns in the NoC.

II. CONTRIBUTIONS

This work contributes to the ongoing efforts of designing
fault-tolerant NoCs. In this paper, we deal with the router
architecture and focus on the design of permanent fault
tolerant router pipeline. We tackle transient faults in a
different study. The pipeline of a NoC router is responsible
for the smooth flow of packets from the time of their
arrival at the router to the time of their departure from the
router. Since the pipeline plays such a pivotal role in the
functionality of the router, it is vital to tackle its reliability.

We propose Permanent Fault Tolerant Router (PFTR),
a router architecture that is capable of tolerating multiple
permanent faults in its pipeline. These architectural modifi-
cations involve adding minimum extra circuitry to individual
stages and taking advantage of the temporal parallelism
thereby enabling each pipeline stage to tolerate a single
permanent fault. Assuming that each individual pipeline
stage is affected by only one permanent fault, the PFTR
pipeline will be able to tolerate four permanent faults. The
main contributions of this paper can be summarized as:

o A fault-tolerant router architecture that can tolerate
multiple permanent faults in the routing pipeline.

« Performance analysis involving area, power, latency,
critical path and reliability of the proposed architecture,
and comparison of improvement in reliability with other
proposed fault-tolerant NoC routers such as Bullet-
Proof [13], Vicis [14] and RoCo [15].
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III. RELATED WORK

Various researchers have targeted different fault-tolerance
aspects of NoC [13], [14], [15], [16], [17]. In this section,
we provide a brief overview of the architectures presented
in [13], [14] and [15] as they tackle the issue of permanent
faults affecting a NoC router pipeline.

Constantinides et al. proposed the concept of a Bul-
letProof [13] router that employs N-modular redundancy
(NMR) technique to provide fault tolerance. NMR technique
requires the existence of N copies of the protected compo-
nent. As a result, the silicon area required to fabricate the
protected router increases by N times. Since the area of a
design has a linear relationship with the possible number of
faults, employing redundancy based techniques is not always
efficient.

Fick et al. proposed Vicis [14] methodology that employs
port swapping algorithm to tolerate faults at ports. Further,
they propose to use bypass bus to tolerate faults in crossbar
and low overhead Error Correcting Codes to protect from
faults that can occur in the datapath of the router.

Kim et al. proposed RoCo [15] router, which can be
decomposed into individual row and column components.
Since the row and column components are independent of
each other, a permanent fault in one of the components does
not affect the other component and the router continues to
function with the fault-free component.

PFTR is different from these proposed methodologies in
the aspect that it can tolerate a single permanent fault in
every pipeline stage.

IV. BASELINE NETWORK-ON-CHIP ROUTER

To better describe our proposed PFTR, we first describe
the architecture and the pipeline execution of a baseline NoC
router.

A. Router Architecture

Figure 1 shows the architecture of a generic NoC router.
A router with P input ports and P output ports is comprised
of 1:P demultiplexer, P:1 multiplexer, Routing Computation
(RC) unit, Virtual Channel Allocator (VA), Switch Allocator
(SA) and a Crossbar (XB) [11]. Each input port is comprised
of V virtual channels (VC 1, VC 2, ... VC V), 1:V demul-
tiplexer and V:I multiplexer. Figure 2 shows the pipeline of
a NoC router.

Even though NoC is a packet based communication
network, for efficient router resource utilization, packets are
divided into three kinds of flits (flow control information
units) namely head flit, body flit and tail flit. Head flit of
a packet is responsible for allocating router resources (e.g.,
virtual channel) to the packet. Tail flit is responsible for
de-allocating the router resources allocated for the specific
packet. Body flits typically contain the payload of the packet.
A packet is generally partitioned to have a single head flit,
single or multiple body flits and a single tail flit.
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Figure 2: Generic NoC Router Pipeline

B. Router Pipeline

1) Routing Computation Stage: This is the first stage in
the router pipeline and is active upon arrival of a head flit
into the router. Using the destination information available
in the head flit, the RC unit determines the specific output
port of the current router through which the head flit will
leave. This stage remains idle for body and tail flits.

2) Virtual Channel Allocation Stage: This is the second
stage in the pipeline and is active for head flits. VA uses the
result of RC as an input for performing allocation. Figure 3a
shows the separable design of a two stage VA [12]. In the
first stage, using the result of RC, each input VC that has
a head flit arbitrates for an empty VC at the downstream
router. In the second stage, head flits across different input
VCs that have been allocated the same virtual channel in the
downstream router compete with each other. Head flit of the
input virtual channel that wins the arbitration in second stage
is allocated the specific virtual channel at the downstream
router. This stage remains idle for body and tail flits.

3) Switch Allocation Stage: This is the third stage in the
pipeline and is active for head, body and tail flits. SA grants
flits of an input virtual channel access to the output port of
the crossbar. Figure 3b shows the separable design of a two
stage switch allocator [12]. The first stage decides which
virtual channel of an input port gets to transmit its flit using
the crossbar. The second stage resolves the competition
between virtual channels of different input ports trying to
gain access to the same output port of the crossbar. The
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input virtual channel that wins this stage gets to transmit its
flit through the crossbar in the next cycle.

4) Crossbar Stage: This is the fourth and the final stage
in the pipeline and is active for head, body and tail flits.
Figure 3c shows the generic architecture of a p;xp, crossbar
where, p; is the number of inputs to the crossbar and
Do 1s the number of outputs from the crossbar. The size
of the crossbar determines the number and size of the
multiplexers. The select signals to these multiplexers are
controlled by the switch allocator. Based on the winners in
the switch allocation stage, the multiplexers of the crossbar
are configured accordingly such that the flits from the input
ports travel to their respective output ports of the crossbar.
C. Input Port Architecture

Figure 3d shows the internal architecture of an input port
of a router with four virtual channels [11]. Each virtual
channel is associated with state fields namely ‘G*, ‘R*, ‘O°,
‘P and ‘C‘. ‘G* field indicates the status of the VC in the
current cycle. ‘R field is used to store the result of RC
unit. ‘O° field stores the result of VA that indicates which
virtual channel in the downstream router is the current packet
headed to. ‘P* field indicates the read/write pointers in the
virtual channel and ‘C*‘ field indicates the credit count.

V. PERMANENT FAULT TOLERANT ROUTER (PFTR)

In this section, we consider each individual pipeline stage
independently and describe the affect of a permanent fault
on the stage and propose the fault tolerant methodology for
that stage. Note that in this paper, our concern is focused on
fault tolerance and not on fault detection. We assume that
faults can be detected by using an existing fault detection
mechanism [18]. Also, we only consider faults in different
stages of the router pipeline. Faults in the other components
of a router are studied in [24] and are out of scope of this

paper.
A. Routing Computation Stage

Each input port has its own RC unit. Once a permanent
fault manifests in the RC unit, every computation performed
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by it from that point would result in the calculation of a
faulty output port. Since the execution of remaining stages
is dependent on the result of this stage, the entire pipeline
is affected as a result of permanent fault in this stage.

The architecture of the RC unit is dependent on the
routing protocol employed in the NoC. In this work, we
employ dimension order (XY) routing protocol in the NoC.
XY routing protocol does not require routing tables [25]. To
provide fault tolerance to this stage, we propose to have a
redundant RC unit for each input port. Duplicate RC unit
will be turned on and can be used upon detection of a
permanent fault in the original RC unit.

B. Virtual Channel Allocation Stage

1) First Virtual Channel Allocation Stage: Figure 3a
illustrates that each input VC has a set of p, v : 1 arbiters
where, p, is the number of output ports of the router
and v is the number of VCs in the downstream router.
When an input VC enters the first stage of VA, the v : 1
arbiter corresponding to the output port computed by the
RC unit is used to choose an empty VC from the available
empty VCs at the downstream router connected to that
output port. When a permanent fault manifests in one of
the arbiters associated with an input VC, it will not be
able to arbitrate for a VC at the downstream router for the
corresponding output port whose arbiter is faulty resulting
in the flit (packet) being blocked. To avoid this, we propose
the following.

Each input VC has p, v : 1 arbiters that are identical to the
arbiters of any other input VC. When an arbiter associated
with a VC of a specific input port is affected by a permanent
fault, the complete set of p, v : 1 arbiters is considered faulty
and are not used in future computations. Instead, the affected
VC, requests to use the arbiters of another VC belonging
to the same input port. Since every input VC has identical
set of arbiters, arbiters can be shared (temporal parallelism)
between VCs. Thus, by using another VC’s arbiters, virtual
channel allocation can be performed for the head flit residing
in the affected virtual channel.
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Two scenarios are possible when a VC (VC 1) requests
to use arbiters of another VC (VC 2) belonging to the same
input port.

Scenario 1 - When VC 1 requests to use arbiters of VC
2, if the arbiters of VC 2 are idle, the delay involved in
borrowing these arbiters is the same as the affect on critical
path of VA (Section V.A).

Scenario 2 - When VC 1 requests to use arbiters of VC
2, if VC 2 is non-empty and is in VA stage like VC 1,
in addition to the affect on critical path, there will be an
additional latency of 1 cycle. This is because; the arbiters
of VC 2 first perform allocation for the head flit in VC 2
and on successful allocation, in the next cycle can be used
for allocation for the head flit in VC 1. Since the head flit
in VC 1 had to wait for the arbiters of VC 2, the waiting
induces additional latency.

Scenario 2 arises only if there was an unsuccessful virtual
channel allocation encountered by one of the input VCs in
the previous cycle. This is because; all the flits going to
different VCs of the same input port have the same point
of entry into the router. Two flits cannot enter two different
virtual channels of an input port at the same time. These
flits have to come one after the other thus making the input
virtual channel the flit has entered first trigger the router
pipeline earlier than the other virtual channel where the other
flit has entered in the following cycle.

The unsuccessful virtual channel allocation encountered
by a head flit in an input VC is not a consequence of
the permanent fault but is due to the lack of empty VCs
at the downstream router. This typically happens during
high network traffic rate. The increase in the latency due
to unsuccessful virtual channel allocation is a runtime pa-
rameter that changes based on the flow of traffic. However,
in the presence of a permanent fault, sharing arbiters further
increases the latency by only one more cycle.

2) Modified Input Port Architecture: Figure 4 shows the
architecture of the input port with the new state fields
namely, ‘R2°¢, ‘VF*, ‘ID*, ‘SP* and ‘FSP*‘ added to facilitate
arbiters sharing between virtual channels of an input port.

New Fields
VG State

[e]rTre]ofp[c] ve [in] sp[rsp]

VG2

[6[r[relo[r]c| v ] sp[rsp]
‘VCJ
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Figure 4: Modified Input Port Architecture

Consider a VC (e.g., VC 1) that intends to use the arbiters

of another VC (e.g., VC 2) of the same input port. VC 1
initiates the process by placing its RC result in the ‘R2°
field of the virtual channel (VC 2), its identification in the
‘ID* field of the virtual channel (VC 2) and setting the ‘VF*
(virtual channel flag) field of the virtual channel (VC 2) to
high. This field indicates whether the arbiters associated with
that input VC are active for that specific input VC or are
they being used by a different VC of the same input port.
Once the arbiters of VC 2 have successfully allocated an
empty virtual channel in the downstream router to the head
flitin VC 1, the virtual channel allocator resets the ‘R2¢, ‘ID*
and ‘VF* fields of VC 2. After virtual channel allocation is
done, using the ‘ID‘ field, the appropriate virtual channel‘s
state field is updated by the virtual channel allocator. The
‘SP* (secondary path) and ‘FSP‘ (secondary path flag) fields
are used to provide fault tolerance for switch allocator and
crossbar and will be described later.

3) Second Virtual Channel Allocation Stage: The purpose
of this stage is to resolve conflicts between two different
input VCs being allocated the same VC in the downstream
router. This stage is comprised of a set of arbiters where each
arbiter is associated with a specific VC at the downstream
router. A fault in one of the arbiters in this stage will result in
that specific VC at the downstream router not being allocated
to any of the head flits in the current router. However, this
fault does not lead to the flit (packet) being blocked at the
current router because, the flit (packet) can be allocated
another VC belonging to the required output port in the
downstream router by using the associated non-faulty arbiter.
Thus by utilizing the inherent redundant resources (multiple
VCs), a permanent fault in this stage can be tolerated without
the involvement of any additional circuitry.

C. Switch Allocation Stage

1) First Switch Allocation Stage: The first stage of SA
(Figure 3b) is comprised of p; v : 1 arbiters where, p; is the
number of input ports and v is the number of VCs per input
port. Each input port has an associated v : 1 arbiter. The
responsibility of an arbiter in this stage is to choose a VC
from the associated input port. If the chosen VC eventually
wins the arbitration in second stage, then a flit from this VC
traverses through the crossbar in the next cycle.

Consider the scenario when a permanent fault has mani-
fested in a v : 1 arbiter. Due to the fault, the arbiter cannot
choose a VC from the associated input port and as a result
it cannot participate in the arbitration in second stage and
hence will never win the arbitration. If the VCs of an input
port never win switch allocation, the flits (packet) in the VCs
of that input port will be blocked.

To avoid this, we propose to create a bypass path for
each v : 1 arbiter that can be used to choose a VC when
the arbiter is faulty. When the bypass path is activated, it
always chooses the same input VC as the winner. This can
be accomplished by adding a 2:1 multiplexer that takes the
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output of the arbiter as one input and the identification of
VC (stored in a register) that will always be selected as the
winner using bypass path as the other input. For example,
consider there are v VCs namely VC 1, VC 2 ... VC v.
Let us say that when using the bypass path VC 2 is always
chosen as the winner. So, the inputs to the additional 2:/
multiplexer will be the output of the arbiter and the virtual
channel identification of VC 2.

Once the arbiter is faulty, VC 2 will always be chosen as
winner. If VC 2 is not empty and is in SA stage, flits in VC
2 can traverse through the crossbar if it wins the arbitration
in second stage. If VC 2 is empty and there are flits in other
VCs, then flits from any other VC that belongs to the same
input port as VC 2 can be transferred into VC 2.

When transferring flits from one VC (e.g., VC 1) to
another VC of the same input port (e.g., VC 2), in addition
to the flits, state fields of VC 1 also need to be transferred
into the state fields of VC 2. After the transfer of flits and
state fields is completed, the flits (initially in VC1) now
in VC 2 can traverse through the crossbar when VC 2
wins the arbitration in second stage. Thus, with the help
of transferring and using a bypass path, flits avoid being
blocked and continue to traverse to their destination. Note
that flits can only be transferred between two VCs of the
same input port. Since reading and writing multiple flits
and reading and writing the state fields can be performed
in parallel, the transferring process between two input VCs
incurs an additional latency of only 1 cycle. Figure 5 shows
the modified switch allocator.

We used VC 2 as the default winner when the bypass
path is activated for explanation. Any VC can be used as
the default winner in the event of a fault in the arbiter.
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Figure 5: Modified Switch Allocator

2) Second Switch Allocation Stage: This stage of SA
(Figure 3b) is comprised of p, p; : 1 arbiters where p, is the
number of output ports and p; is the number of input ports.
Each arbiter is associated with an output port. The input VC
that wins the arbitration gets access to the associated output
port of the arbiter. If the arbiter is faulty, then the input VCs

cannot arbitrate for the arbiter‘s associated output port thus
making the output port unreachable.

This situation can be solved by having a secondary path
to reach the output port that is unreachable using the normal
path. For example, consider output ports x and y of a router.
Assume that the arbiter associated with port x is faulty and
there exists a secondary path to reach port x by using the
arbiter associated with output port y. Now, using the fault-
free arbiter associated with port y, flits of any input port can
reach port x. Details regarding the existence of a secondary
path to reach an output port, how an arbiter associated with
one output port helps reach another output port will be
explained in the following sub-section where we describe
the fault tolerant methodology for crossbar.

D. Crossbar Stage

From Figure 3c it can be inferred that each output port
has an associated multiplexer that a flit from any input port
needs to traverse through to reach the aforementioned output
port. A permanent fault in a multiplexer blocks the passage
to its associated output port. Since there is only one path
to reach an output port, flits attempting to reach the output
port associated with the faulty multiplexer cannot reach the
output port and will get blocked.

To provide fault tolerance to the generic crossbar, we
propose to have two paths to reach an output port of the
crossbar. This can be achieved by using additional smaller
sized demultiplexers and multiplexers. Figure 6 shows the
proposed architecture for a 5x5 crossbar. For a 5x5 crossbar,
the additional circuitry is composed of four demultiplexers
(one 1:3 demultiplexer, three 1:2 demultiplexers) and five
2:1 multiplexers. With the help of these additional demulti-
plexers and multiplexers in the protected crossbar there exist
two different paths to reach a specific output port.

Consider for example, out 3 in Figure 6. It can be reached
through either multiplexer M3 or M2. When a fault affects
the corresponding multiplexer (M3) of the out 3, using M2
and configuring the additional demultiplexer (D1) and the
multiplexer (P3) accordingly, flit(s) can still reach out 3. In
addition to the select signals required for the multiplexers
M1, M2, M3, M4 and MS5), the select signals to these
new demultiplexers (D1, D2, D3 and D4) and multiplexers
(P1, P2, P3, P4 and P5) are also controlled by the switch
allocator. In the fault-free scenario, the protected crossbar
behaves just like the baseline crossbar. In the event of a
permanent fault, the secondary path can be used to reach
the appropriate output port.

For an input VC to use the secondary path, it should
arbitrate for a different output port in its SA stage. Assume
M3 is faulty and an input VC needs to transmit flits to out
3. To reach out 3, the input VC needs to go through M2
(secondary path). So, the input VC needs to arbitrate for
access to out 2 to gain access to M2. To make this feasible,
we add a state field named ‘SP* to every input VC. This field
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contains the output port the input VC needs to arbitrate for
in SA stage in order to reach the correct output port.

When the RC unit finishes execution and finds out that the
output port the flits of an input VC need to go is unreachable
using the regular path, it updates the ‘SP‘ (secondary path)
field with the appropriate output port that should be used.
The ‘FSP‘ (secondary path flag) field is set to indicate that
the secondary path needs to be used. In our example of faulty
M3, the ‘SP* field of the input VC is updated to hold the
identification of out 2, thus arbitrating for access to out 2
and reaching out 3 using M2, D1 and P3.

in1
in2
n3

ind
ins

‘—'1:2 demux

M5

outs : '—’2:1 mux

Figure 6: Modified Crossbar

VI. PERFORMANCE ANALYSIS

In this section, we present our performance analysis of
PFTR (Figure 7) with respect to area, power overhead,
latency impact, critical path and reliability. PFTR design can
be applied to a router with any radix in any kind of topology.
We choose a generic 5xS5 router architecture with each input
port consisting of 4 VCs.

A. Synthesis

To study the impact of the proposed architectural modi-
fications, we developed pipeline stages of both the baseline
router and PFTR in Verilog. Using Cadence Encounter RTL
Compiler, we synthesized the baseline and PFTR pipeline
stages at 45nm technology. Based on the synthesis results,
PFTR increases the area and average power (dynamic+static)
consumption by 28% and 29% with respect to that of the
baseline router. To detect faults, we choose to use the fault
detection mechanism proposed in [18]. Incorporating fault
detection mechanism into PFTR results in an area and
average power overhead of 3/% and 30% with respect to
the baseline router. Thus, the area overhead incurred by the
fault detection mechanism is 3%.

1) Critical Path Analysis: To determine the affect on the
critical path, we synthesized individual pipeline stages of
both the baseline and PFTR at varying clock periods. We
identify the critical path of a stage by finding out the specific
clock period that results in zero slack time. Since for the RC
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Figure 7: PFTR Architecture

stage, the RC unit is duplicated, there is negligible impact on
the critical path of this particular stage. However, the critical
paths of VA stage, SA stage and XB stages are increased by
20%, 10% and 25% with respect to the baseline stages.

B. Latency Analysis

In this section, we study the impact on latency caused due
to faults into different pipeline stages. We use GEMS [21],
a cycle accurate simulator to simulate an 8x8 mesh based
NoC with uniform random synthetic traffic. GARNET [20],
integrated into GEMS is used to model the pipeline of the
baseline router. We run two different experiments as part of
our latency analysis.

In the first experiment, we inject uniform random syn-
thetic traffic at various injection rates (0.01, 0.03, 0.05, 0.07
and 0.Ipackets/node/cycle). Each packet is composed of 5
flits and each flit is 16 bytes wide. For each injection rate,
we run the simulation 10 times for a period of 500,000
cycles each and calculate the average latency. The average
latency is calculated as the ratio of total network latency to
the total number of flits received at the end of simulation.
We inject a total of 24 faults into the pipeline stages of 20
randomly chosen routers of the 8x8 NoC. Due to the faults
in the pipeline stages, the respective additional circuitry is
used to finish the execution of that pipeline stage. From the
simulation results, we observe that the latency of the fault
injected NoC has increased by 3% (Figure 8) on average
compared to the fault-free NoC.

In the second experiment, we vary the number of faults
injected (4, 8, 16, 24 and 32) into the NoC. The traffic is
injected at a rate of 0.1packets/node/cycle. Each simulation
is run 10 times for a period of 500,000 cycles each. From the
simulation results, we observe that as the number of faults
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increase from 4 to 32, the increase in the average latency
due to the faults increases from 0.5% to 4.5%.

Latency Analysis
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Figure 8: Impact on Latency

C. Fault Tolerance

In this section, we study the fault tolerance of PFTR in
comparison to the baseline router using Silicon Protection
Factor (SPF) [13], [14], [19] as the reliability metric. SPF
is defined as the ratio of mean number of faults required
to cause a failure and the area overhead incurred due
to additional circuitry. Higher SPF value indicates higher
reliability. SPF is an appropriate metric to evaluate PFTR
because, it takes into account the two important parameters
namely number of faults to cause a failure and the area
overhead required by the protection mechanism. We estimate
the SPF of a 5x5 PFTR with each input port comprised of 4
VCs. We calculate the mean number of faults to cause failure
by calculating an average of the minimum and maximum
number of faults to cause failure.

1) RC Stage: To provide fault tolerance, we propose
to duplicate the RC unit of each input port. Since each
input port has a duplicate RC unit, the router can tolerate
a maximum of 5 faults, where each fault has affected the
functionality of the original RC unit of an input port. On the
other hand, a minimum of 2 faults, one in the original RC
unit and the other in the duplicate RC unit of the same input
port would result in a failure because routing computation
can no longer be performed at that particular input port.

2) VA Stage: For this stage, tolerance is achieved by
borrowing arbiters from a different VC of the same input
port. There are 4 VCs per input port. So, a packet in the VC
of an input port can borrow arbiters from three other VCs
of the same input port. So, the VA can tolerate 3 faults per
input port. Thus, a maximum of 15 faults can be tolerated
in the VA of a 5-input port router. If the arbiters associated
with all the VCs of an input port are faulty, then virtual
channel allocation can no longer be performed for a packet
at that input port and will result in failure. Since there are
4 VCs per input port, the minimum number of faults that
result in failure is 4.

3) SA Stage: In the first stage, a packet in an input VC
uses the arbiter associated with that input port to participate
in the switch allocation. If the arbiter is affected by a fault,

it can use the bypass path. There are 5 arbiters in the first
stage of SA in a 5-input port router. Thus, a maximum of 5
faults, one per arbiter can be tolerated. On the other hand, a
minimum of 2 faults, one in the arbiter of an input port and
the other in the bypass path of the same input port would
result in a failure because switch allocation can no longer be
performed at that particular input port. The fault tolerance
methodology for the second stage is provided by the fault
tolerance methodology of crossbar. Since we considered
faults in the first stage of switch allocation, in the calculation
of SPF we choose to consider faults in the crossbar instead
of faults in the second stage of switch allocation.

4) XB Stage: A packet in an input VC uses the regular
path to reach the output port of a crossbar. If the multiplexer
associated with the regular path is faulty, secondary path can
be used. A fault in the secondary path will result in failure.
Thus a minimum of 2 faults will cause failure. Careful
observation of Figure 6 reveals that the maximum number of
faults that can be tolerated is also 2. For example, if M2 and
M4 (Figure 6) are each affected by a fault, the crossbar can
still remain functional with the help of additional circuitry.
A fault in M1, M3 or M5 or in the additional circuitry will
result in a failure.

D. SPF of the Proposed PFTR

The minimum number of faults to cause the pipeline to
fail is the least of the minimum number of faults to cause
failure in the individual stages of the pipeline calculated
as min{2(RC),4(V A),2(SA),2(X B)}, which is 2 faults.
The maximum number of faults that can be tolerated by the
router pipeline is calculated as the sum of the maximum
faults tolerated by each individual stage, which results in
5(RC)+15(VA)+5(SA)+2(XB) = 27 faults. Note, that
this is the total number of faults that can be tolerated. An
additional fault in any of the pipeline stages would result in
failure. So, the maximum number of faults to cause failure
is, 27 + 1 = 28. Thus, the mean number of faults to cause
failure is (2+28)/2 = 15 faults. The area overhead incurred
by the additional circuitry is 31%. Thus, using the definition,
SPF of PFTR can be calculated as 15/1.31 = 11.

It is evident that the number of VCs has a significant
affect on the SPF value of PFTR. The SPF value of PFTR
increases further beyond 11 if the number of VCs per input
port is increased beyond 4. If the number of VCs per input
port is decreased to 2, the SPF value of PFTR is 7.

Table I shows the area overhead, number of faults to cause
failure and SPF values of existing methodologies namely
BulletProof [13], Vicis [14], and RoCo [15] with respect
to PFTR. We could not compare power values across the
methodologies due to lack of power data in the existing
methodologies. BulletProof evaluates different designs and
calculates their SPF values. We choose a design that incurs
approximately the same area overhead as PFTR for doing
the comparison. The authors of RoCo did not provide the
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area overhead ("N/A”) and the number of faults that can
be tolerated by their design. Based on the RoCo design,
we calculated the mean number of faults to cause failure
as 5.5. Using the definition of SPE, the SPF value of a
design is always smaller than the mean number of faults to
cause failure in the design. Hence, the SPF value of RoCo
is lesser than 5.5. Comparing the SPF values (Table I), we
can conclude that PFTR has a higher SPF value than the
existing methodologies indicating a better reliability.

Table I: Comparing PFTR with other fault tolerant routers

[ Architecture | Area [ # Faults to cause failure [ SPF |

BulletProof 52% 3.15 2.07
Vicis 42% 9.3 6.55
RoCo N/A 5.5 <5.5
PFTR 31% 15 114

VII. CONCLUSION

The focus of this work is to design a permanent fault toler-
ant router pipeline. We considered each individual pipeline
stage of a NoC router, studied the affect of a permanent
fault on that stage and proposed a fault tolerant mechanism
for that stage. The proposed methodology involves adding
minimal extra circuitry to provide a better fault tolerance.
Synthesis results reveal that the additional circuitry results
in an area and power overhead of 31% and 30% with
respect to the baseline router. Silicon Protection Factor based
evaluation shows that the proposed router (PFTR) is 11
times more reliable than the baseline router. PFTR also
provides better reliability at lower overhead as compared
to BulletProof, Vicis and RoCo methodologies.
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