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Abstract—This paper deals with the fault tolerance of Triplet 
Networks (TNs). Results based on extensive analysis and 
simulation by fault injection are presented for new schemes. As in 
accordance with technical literature, stuck-at faults are considered 
in the fault model for the training process. Simulation by fault 
injection shows that the TNs are not sensitive to this type of fault 
in the general case; however, an unexcepted failure (leading to 
network convergence to false solutions) can occur when the faults 
are in the negative subnetwork. Analysis for this specific case is 
provided and remedial solutions are proposed (namely the use of 
the loss function with regularized anchor outputs for stuck-at 0 
faults and a modified margin for stuck-at 1/-1 faults). Simulation 
proves that false solutions can be very efficiently avoided by 
utilizing the proposed techniques. Random bit-flip faults are then 
considered in the fault model for the inference process. This paper 
analyzes the error caused by bit-flips on different bit positions in a 
TN with Floating-Point (FP) format and compares it with a fault-
tolerant Stochastic Computing (SC) implementation. Analysis and 
simulation of the TNs confirm that the main degradation is caused 
by bit-flips on the exponent bits. Therefore, protection schemes are 
proposed to handle those errors; they replace least significant bits 
of the FP numbers with parity bits for both single- and multi-bit 
errors. The proposed methods achieve superior performance 
compared to other low-cost fault tolerant schemes found in the 
technical literature by reducing the classification accuracy loss of 
TNs by 96.76% (97.74%) for single-bit (multi-bit errors).  
 

Index Terms— Triplet Network, fault tolerance, stuck-at faults, 
random bit-flips. 
 

I. INTRODUCTION 
RIPLET networks (TNs) are feedforward artificial neural 
networks (ANNs) with three identical weight-sharing 

subnetworks [1]. TNs have been widely used in similarity-
measuring tasks, from initial applications in face recognition 
with Triplet Loss (TL) [2] to various machine learning (ML) 
tasks such as vehicle identification [3] and image retrieval [4]. 
Particularly, due to their unique structure, TNs provide an 
excellent learning performance when there is a paucity of 
training data available, in which case the traditional ANNs 

using a single network (e.g., multi-layer perceptrons (MLPs) or 
convolutional neural networks (CNNs)) often find difficulty in 
establishment and execution. A TN generates feature 
embeddings of the original input data; the outputs of different 
categories are separable in the embedding space and thus, are 
available for the subsequent classification/recognition. As an 
emerging ML scheme, the feature-embedding TN achieves 
better performance than traditional classification/recognition 
methods with a single network branch [1], [5].  

In safety-critical applications, fault tolerance is important for 
hardware implementation of ANNs, because faults occurred in 
the hardware and their erroneous consequences may lead to 
performance degradation and sometimes to a total system 
failure [6], [7], [8]. Traditional fault-tolerant methods usually 
require redundancy [9] and schemes for reliable ANNs mainly 
include: i) introducing redundancy of critical neurons or 
branches [10], [11], ii) changing backpropagation algorithms, 
such as adding penalty terms or modifying the weights [12], and 
iii) training the network by artificially injected faults [13]. 
However, the focus of these methods is often on networks of 
small size and simple structure; the fault tolerance of large-scale 
applications such as TNs has not been sufficiently explored. 
Since the three-subnetwork structure of TNs and their 
capability of similarity-measuring based on limited training 
data may lead to unique problems in the presence of faults, it is 
of paramount importance to investigate the fault tolerance of 
TNs. To the best of the authors’ knowledge, this has not been 
reported in the technical literature. 

This paper focuses on the application of deep metric learning 
classification, whose subnetwork is usually simpler for fault 
injection experiments and theoretical analysis; by sharing a 
similar structure, the methods/conclusions are expected to 
extend to further tasks with TNs. The fault tolerance of TNs 
implemented by MLPs or CNNs as subnetworks are 
comprehensively studied. Two widely used fault models, stuck-
at faults and random bit-flips, are considered for the training 
and inference processes respectively (as also found in [13] and 
[14]); this is based on the consideration that the bit-flips are not 
critical in training as transient faults, while they have a much 
more significant effect during inference as shown in 
simulations. In addition to the analysis and evaluation of the 
impact of faults on the classification performance of TNs, 
efficient protection solutions for both the training and inference 
processes are also proposed. 

The main contributions of this paper are concisely described 
as follows: 

1) By analyzing the fault models in the training process, a 
special case of incorrect convergence has been revealed 
when stuck-at faults are injected into the negative 
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subnetwork of the TN, which can lead to complete 
system failures. 

2) The impact of stuck-at faults in the training process has 
been evaluated by simulations. The special case in the 
negative subnetwork has been also verified. 

3) Solutions have been proposed for the incorrect 
convergence due to a faulty negative subnetwork. The 
effectiveness of the proposed methods has been shown 
by simulations. 

4) Error analysis has been pursued for the random bit-flips 
in the inference process. The feature of floating-point 
(FP) and Stochastic Computing (SC) has also been 
considered and compared. 

5) Simulation has been used to assess the fault tolerance for 
bit-flips in the inference process. Data represented by 
floating-point (FP) format suffer an accuracy loss due to 
extremely large outliers caused by faults on the most 
significant bits. 

6) Protection schemes based on parity bits are proposed for 
both single-bit and multi-bit errors. Simulation has 
shown that the proposed methods achieve excellent 
performance compared with other low-cost fault 
tolerance approaches. 

The rest of the paper is organized as follows. Section II 
outlines preliminaries, such as the structure of TNs and SC. 
Section III introduces the stuck-at faults as the fault model for 
training, and the special case with faults in the negative channel 
is analyzed in detail in Section IV. Section V evaluates the 
impact of faults on training performance for both general and 
special cases. As solutions to mitigate such impact, two 
protection schemes are proposed in Section VI, and their 
performance is verified by simulation. This paper also focuses 
on the inference and bit-flips are introduced as the fault model 
in Section VII. Section VIII provides the error analysis and 
comparisons between FP and SC implementations. In Section 
IX, parity-based fault-tolerant schemes are proposed for both 
single-bit and multi-bit errors; they are evaluated and compared 
with methods found in the technical literature. Finally, the paper 
ends with conclusions in Section X. 

 
II. PRELIMINARIES 

A. Triplet Networks 
A typical Triplet Network (TN) consists of three identical 

weight-sharing subnetworks in training as shown in Figure 1 (a). 
Each subnetwork can be any feedforward network; this paper 
considers both MLP and CNN implementations. As introduced 
previously, TNs have been shown to have an excellent 
performance [5], [15] for classification when there is a paucity 
of training data available. Next, the training and inference 
processes of a TN are introduced. 
1) Training process 

During the training process (Figure 1 (b)), the three 
subnetworks of a TN accept the so-called triplets, including 
anchors, positive samples with the same class, and negative 
samples with different classes, respectively. The model is 
trained by mapping the triplets to an embedding space to 
minimize the distances between the anchor and positive 
samples and maximize the distance between the anchor and 
negative samples. Such feature embeddings are learned by 

iteratively applying optimizers (such as gradient descent) to the 
loss for achieving a high classification performance [1], [5].  

Assume that the subnetworks are 𝑙-layer MLPs (or CNNs), 
and the output of the hidden units in the 𝑟 -th layer can be 
denoted as the following vectors 

𝑦!" = %𝑦!,$" 		𝑦!,%" 		⋯		𝑦!,&!
" (,			anchor subnetwork;

𝑦'" = %𝑦',$" 		𝑦',%" 		⋯		𝑦',&!
" (,			positive subnetwork;

𝑦(" = %𝑦(,$" 		𝑦(,%" 		⋯		𝑦(,&!
" (,			negative subnetwork

(1)  

where 𝑚" is the output dimension of the 𝑟-th layer. In particular, 
the outputs of the last layer are represented as 𝑦!) , 𝑦') , and 𝑦() .  
The similarity is evaluated by the Euclidean distance, which is 
calculated by the positive distance 𝑑* = /𝑦!) − 𝑦')/%, and the 
negative distance 𝑑+ = ‖𝑦!) − 𝑦()‖% . Since the objective of 
training a TN is to minimize the positive distance and maximize 
the negative distance, the following conditions must be satisfied: 

															𝑑* = 2∑ 4𝑦!,," − 𝑦',," 5
%&!

,-$ < 𝜀*; 																										(2)   

															𝑑+ = 2∑ 4𝑦!,," − 𝑦(,," 5
%&!

,-$ > 𝜀+																												(3)   

where 𝜀*  and 𝜀+  are constant margins. Moreover, the loss 
function L usually applies a relaxed constraint that optimizes 

 
(a) 

    
(b) 

    
(c) 

Fig.1. A triplet network: (a) structure; (b) training; (c) inference.  
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the difference between the two distances 𝑑* − 𝑑+  [16]. For 
example, this paper employs the popular Triple loss (TL) [2] 
and the trained model thus satisfies:  

	𝐿./ = 𝑚𝑎𝑥(𝑑* − 𝑑+ +𝑀, 0) ≤ 	𝜀 (4)  
where 𝑀 is the margin and 𝜀 is a non-negative constant as the 
stopping criterion.  

For the application of deep metric learning, an extra 
prediction network maps the embedded data to labels. Since the 
data from the same category has already been clustered in the 
embedding space by the TN, the prediction can be simply 
realized by simpler schemes such as Support Vector Machine, 
logistic regression, or K Nearest Neighbors. This paper uses a 
one-hidden-layer MLP as the prediction network. 
2) Inference process 

The trained model of a TN can map the inputs into an 
embedding space in which samples from different classes can 
be distinguished; it is then used in the inference process to 
classify the test dataset.  

One unknown sample (instead of triplets) is input to the 
network each time; so, only one of the three identical 
subnetworks in the trained model is employed. Let the output 
of the hidden units in the 𝑟 -th layer be denoted as 𝑦" =
%𝑦$"		𝑦%" 		⋯		𝑦&!

" (. The output of the last layer is the feature 
embedding of the given input; the trained prediction network is 
applied for predictions. The inference process of TNs is 
illustrated in Figure 2 (b). 

B. Stochastic computing 
Stochastic computing (SC) is a promising solution to 

implement energy-efficient ANN accelerators [17], [18]. 
Different from conventional arithmetic, SC uses the probability 
of “1”s in a binary bitstream to represent a number. This feature 
permits that the SC design requires less hardware; for example, 
the multiplication in bipolar representation1 can be simply 
realized by an XNOR gate.  

This paper focuses on another advantage of SC, namely fault 
tolerance. Since each bit in the stochastic bitstream has the same 
significance, the SC arithmetic has a better resilience to a bit-
flip error than conventional deterministic implementations [19]. 
In this paper, the SC implementation has been also evaluated as 
an effective fault tolerant approach for TN inference and 
compared with conventional TNs using the FP format. 

 
III. TRAINING PROCESS: STUCK-AT FAULT MODEL 

Since the network parameters are changing at each iteration 
of training, transient faults (such as random bit-flips) barely 
affect the result of the training process. Therefore, stuck-at 
faults are considered as the fault model during the training 
process. This model has been originally defined for permanent 
faults/defects of high/low logic values at physical transistor and 
circuit levels in Very Large Scale Integration (VLSI) [6]; for 
ANNs, the model has also been extended as an abstraction as 
per its impact [14]. As shown in Figure 2, the stuck-at faults in 
ANNs can be divided into two types: stuck-at 0 faults (missing 
the neuron) and stuck-at 1/-1 faults (saturated the neuron).  

• Stuck-at 0 faults: A fault causing a missing neuron 
means that no signal (and data) is generated 
irrespective of the input. As it has been abstracted that 
the output is stuck at an intermediate value [13], the 
intermediate value after the activation function “tanh” 
(which is used in this paper) can be treated as “0”, 
because the outputs are with a zero-mean normal 
distribution. For simplification, the fault causing a 
missing neuron is denoted as “stuck-at 0 faults” [11].  

• Stuck-at 1/-1 faults: In a saturated neuron caused by 
faults the data or control line is held permanently high 
or low [7]. Therefore, it can be mapped to the scenario 
in which outputs of specific neurons are stuck at a 
maximum or a minimum value. Also, as activation 
functions (e.g., “tanh” with an output range of [-1, 1]) 
are applied after every neuron, this model can be 
simplified as stuck-at 1 or -1. 

The execution of the training process in TNs with specific 
faulty neurons can be represented as patterns [13]. As the 
exhaustive testing for all possible fault-injection cases is 
prohibitive, then for simplification purposes, this paper assumes 
that all faults are injected into the same layer and the same 
subnetwork. Hence, the pattern representation is the tuple 𝑄. =
(𝑓, 𝑟, 𝑐, 𝑣), where 𝑓 is the number of faults and 𝑟 denotes the 
layer to be injected (the input layer is not included), 𝑓 < 𝑚"; 𝑐 
is the faulty subnetwork, 𝑐 ∈ {𝑎𝑛𝑐ℎ𝑜𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}; 𝑣 
denotes the type of the corresponding faults, which means the 
faulty units stuck at 𝑣, 𝑣 ∈ {0, 1, −1}. 

IV. IMPACT OF FAULTS ON TRAINING: ANALYSIS  
The over-provisioning of neurons in fully-connected neural 

networks provide an inherent fault-tolerant capability; a limited 
number of faults usually leads to a small accuracy loss or 
graceful degradation. However, stuck-at faults in the negative 
subnetwork of a TN can lead to an unexpected system failure as 
the network converges to a false solution (satisfying the 
constraints of the objective function as mentioned in Section II-
A), so failing in the classification task. A theoretical analysis of 
such false solutions is presented in the following. 

A. Stuck-at 0 faults in output layer 
The incorrect convergence with stuck-at-0 faults in the 

negative subnetwork is rather intuitive when the faults are in the 
output layer of MLPs or the last fully connected layer in CNNs 
(i.e., 𝑟 = 𝑙 ). Due to these faults, a spurious solution can be 
easily achieved in training (so it satisfies the constraints, but it 
is not a valid solution for the classification problem).  

Let 𝐼 be the set of indices of the stuck-at 0 faults and 𝑖 denote 
the index of the faulty neurons, 𝑖 ∈ 𝐼. The false solution only 
needs to map the anchor and positive subnetworks to similar 

                  
     (a)                                                              (b)    

Fig.2. Examples of faulty network (with faults in neuron c). (a) Stuck-at 0 faults, 
missing the neuron; (b) Stuck-at 1 or -1 faults, saturating the neuron.  
 

  
. 

1This paper applies the SC arithmetic in bipolar representation, which 
encodes the values as (2𝑁! − 𝑁)/𝑁, where 𝑁 is the length of the stochastic 
sequence and 𝑁! is the number of “1”s in it. For more explanation of SC, please 
refer to [17], [18]. 
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outputs, while the values of the neurons at the indices of the 
faulty units (𝑦!,,) ) are large enough (the absolute value can be 
close to 1 after 𝑡𝑎𝑛ℎ). Consider that the stuck-at 0 faults are 
injected, making 𝑦(,,) = 𝑣, ; as per (3), the constraint of the 
negative distance in this case is given by  

𝑑+ = X∑ 4𝑦!,,) − 𝑦(,,) 5
%&"

,-$,
,∉1

+ ∑ 4𝑦!,,) − 𝑣,5
%

,∈1

						≥ ∑ Z𝑦!,,) − 𝑣,Z,∈1 > 𝜀+

(6)  

and it can also be satisfied by even only considering the faulty 
terms Z𝑦!,,) − 𝑣,Z, 𝑣, = 0.  

The spurious solution is easy to be achieved; for the anchor 
and positive subnetworks, the weights address the common part 
of their inputs, and the negative subnetwork is ignored. So, the 
training converges at that solution in very few iterations. 

B. Stuck-at 1/-1 faults in output layer 
Let 𝐼 be the set of indices of the stuck-at 1/-1 faults. The 

analysis of false solutions is similar to the case of stuck-at 0 
faults. Consider (6) for 𝑣, = 1 or −1; the constraint of 𝑑+ can 
also be satisfied by only considering the faulty terms Z𝑦!,,) − 𝑣,Z.  

However, it could be worse because the convergence can get 
stuck into the zero-loss situation even before the training starts. 
For all loss functions optimizing the relaxed constraint on 𝑑* −
𝑑+, this leads to a false solution from the start. For example, the 
𝐿./ in (4) can be represented as 

	𝐿./ = 𝑚𝑎𝑥(𝑑* − 𝑑+ +𝑀, 0)

= 𝑚𝑎𝑥
[𝑑* −X∑ 4𝑦!,,) − 𝑦(,,) 5

%&"
,-$,
,∉1

+ ∑ 4𝑦!,,) − 𝑣,5
%

,∈1 +𝑀, 0\

≤ 𝑚𝑎𝑥4𝑑* −∑ Z𝑦!,,) − 𝑣,Z,∈1 +𝑀, 05																								(7)

  

where 𝑣, = 1	or −1. The faulty term leads to a false solution 
with zero-loss if ∑ Z𝑦!,,) − 𝑣,Z,∈1 ≥ 𝑑* +𝑀 . This can be 
achieved under a large number of faults. In practice, the initial 
outputs 𝑣, are usually close to 0 due to weight normalization, 
the margin 𝑀 is usually set to 1 and |𝑑*| < 1; so it is likely that 
the training gets stuck in the zero-loss situation at the beginning.  

C. Stuck-at faults in hidden layers 
The previous false solution (for stuck-at 0/1/-1 faults) can be 

similarly extended to cases when the faults are in the hidden 
layers (i.e., 𝑟 < 𝑙); however, when considering the complexity 
of the forward propagation, a strict representation of constraints 
in each layer cannot be established. Next, we provide a heuristic 
discussion. The propagation between fully-connected layers is 
given by 

																							𝑦3"*$ = 𝜙4∑ 𝑤3,," ∙ 𝑦,", + 𝑏3"5,																								(8)   
where 𝑤3,,"  and 𝑏3"  are the weight and bias; 𝜙 is the activation 
function (“tanh” used in this paper). The propagation between 
convolutional layers can be represented as 

𝑦4,5"*$ = 𝜙4∑ ∑ 𝑦,*4,3*5" ∙ 𝑘,,3" + 𝑏3"6
3-+6

6
,-+6 5 (9)  

where 𝑘,,3"  is the corresponding entry of the 180° rotated 𝑛 × 𝑛 
convolutional kernel 𝐾" (only enabled when 𝑖 ≥ 0 and 𝑗 ≤ 𝑛). 
The pooling layers do not affect fault propagation. Similar to 
the constraints at the output layer, the faulty terms ∑ 4𝑦!,," −,∈1

𝑣,5 can still dominate at the 𝑟-th layer. Such distances in the 
negative subnetwork can transmit to the following layers (so, 
no more concentrated on those faulty indices, but separate to all 
units). However, 𝑡𝑎𝑛ℎ(𝑥)  bounds its inputs to the range 
[−1, 1] , and weakens the dominance of the large distances 
caused by faults. This behavior stacks over multiple layers; so 
when the faults occur in the early layers, the negative distance  
𝑑+ at the spurious solution tends to be smaller. It is possible that 
𝑑+ < 𝜀+  and this spurious solution becomes only a local 
minimum; in this case, the network can sometimes avoid it and 
continue to converge to the global solution (as the behavior in 
the fault-free cases). However, with an increasing number of 
faults, the network is more likely to be stuck at the false solution. 

V. IMPACT OF FAULTS ON TRAINING: EVALUATION 
This section studies the impact of faults on the training of a 

TN and its inherent fault tolerance using simulation. The 
purpose is to investigate the relationship between faults and the 
network’s performance; hence, the classification error is used 
as the criterion. The stuck-at faults are applied as the fault 
models. Diverse scenarios, including the number and positions 
of faults, are considered. Four popular image classification 
datasets (MNIST [20], Fashion-MNIST [21], Cifar-10 [22], and 
SVHN [23]) are used; details of the datasets and their inference 
accuracy in the fault-free case are provided in Table I.  

In the first subsection, the sensitivity of the TN is discussed 
for its anchor and positive subnetworks. The special behavior 
when the faults are in the negative subnetwork is discussed in 
the second subsection. The MLP implementation is used 
initially, and the results for the CNN implementation are 
provided in the last subsection. 

A. Fault tolerance of the anchor/positive subnetwork 
Next, the fault tolerance of TNs is evaluated when the stuck-

at faults are in the anchor or positive subnetworks. The TN 
employs six-layer MLPs as subnetworks. The size and structure 
of the TN are chosen as the one that achieves the lowest 
classification error. The results of each simulation are trained 
for the same 20 epochs and averaged over 200 repeated trials. 

Sensitivity on layer and number of faults: The dimensions 
of the layers (after the input layer) are represented by the vector 
[𝑚$		𝑚%		𝑚7		𝑚8		𝑚9] = [1024		512		256		128		128] . The 
percentage of faulty neurons 𝑡 is varied from 0 to 100%, the 
number of faults in the 𝑟-th layer is 𝑓 = 𝑚" × 𝑡   (rounded). 
Figure 3 shows the simulation results with the pattern 𝑄. =
(𝑓 = 𝑚" × 𝑡	, 𝑟 ∈ {1,⋯ ,5}, 𝑐 ∈ {𝑎𝑛𝑐ℎ𝑜𝑟}, 𝑣 ∈ {0}), 𝑡 ∈ [0, 1]. 

From these results, the optimal network configuration 
(achieving the lowest classification error in the error-free cases) 
shows a very strong resilience, so a no accuracy loss with a 
small number of faults. The performance of the network 
degrades with an increasing number of faults, but only with a 
very large percentage of faulty neurons. The latter layers 

TABLE I 
DETAILS OF DATASETS AND INFERENCE ACCURACY IN FAULT FREE CASE 

Name #Features #Neurons in 
each layer 

Inference accuracy  
(fault-free) 

MNIST  28×28 784-1024-512-
256-256-128 

98.87% 
Fashion-MNIST  28×28 91.22% 

CIFAR-10  32×32 1024-1024-512-
256-256-128 

71.94% 
SVHN  32×32 92.20% 
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generally have better fault tolerance compared with early layers; 
for example, when considering the plots for the output layer 
(layer 5), the accuracy is very close (degradation less than 0.1%) 
to the fault-free case for each dataset even with 90% faulty 
neurons. So, the TN still operates reliably with most neurons 
being stuck-at faults in a single layer. Therefore, as so many 
faults are not likely to happen in practice, the stuck-at faults in 
anchor/positive subnetworks of a TN only lead to trivial effects 
that are compensated by the training process.   

Sensitivity on subnetwork and type of faults: The sensitivity 
of TNs with different types of faults in the anchor and positive 
subnetworks is presented next. For better illustration, the results 
are provided on the assumption that the faults are in the output 
layer and the percentage of faulty neurons is 𝑡 = 90%. Figure 
4 shows the simulation results with the pattern 𝑄. = (𝑓 =
𝑚" × t, r ∈ {5}, c ∈ {anchor, positive}, 𝑣 ∈ {0,1, −1}), 𝑡 =
0.9. In this figure, “ST0” denotes the missing hidden units; 
“ST1” and “ST-1” denote the hidden units that are stuck at the 
maximum or minimum, respectively. The dashed lines in the 
figures are the accuracy in the fault-free case. 

The results show that the anchor subnetwork is more 
sensitive to faults than the positive subnetwork. When 
considering the optimization objective in (2) and (3), the 
outputs of the anchor subnetwork affect both the positive and 
negative distances, while the outputs of the positive subnetwork 
only affect the positive distance. Therefore, it is expected to 
have slightly better fault tolerance in the positive subnetwork. 

The TN has a better resilience to “ST0” faults than “ST1” 
and “ST-1” faults. This means hidden units stuck at extreme 
values usually lead to worse consequences than missing hidden 
units or connection failure. Therefore, we have studied the 
distribution of neuron values (after the activation function tanh) 
during the training process. Due to the data normalization, the 
distribution is approximately Gaussian with more than 92% of 
values concentrated in the range [−0.1, 0.1]. Hence, a possible 
explanation is that being stuck at 0 is closer to the correct values 
of the fault-free cases, which leads to a smaller degradation than 
being stuck at the extreme values (which are rather uncommon 
during normal operation). 

B. Fault tolerance of the negative subnetwork 
The previous analysis suggests that faults in the negative 

subnetwork can lead to fatal system failure due to incorrect 
convergence. This is evaluated in the following; note that this 
behavior may be related to the number of faults and the faulty 
layers. Therefore, the different percentages of faulty neurons in 
each layer (with dimensions [𝑚$		𝑚%		𝑚7		𝑚8		𝑚9] =
[1024		512		256		128		128]) of the negative subnetwork are 
assessed during the training process. It is assumed that the fault 
type is stuck-at 0 faults (stuck-at 1/-1 faults reach a zero-loss 
from the beginning according to Section IV-B). Figure 5 shows 
the simulation results with the pattern 𝑄. = (𝑓 = 𝑚" × 𝑡, 𝑟 ∈
{1,⋯ ,5}, 𝑐 ∈ {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}, 𝑣 ∈ {0}), 𝑡 ∈ [0, 0.05]. 

As per Figure 5, a significant accuracy loss can be caused by 
only a few faults in the negative subnetwork. An accuracy close 
to 10% implies that the model completely fails in classification, 
so it converges to a false solution. This is different from the 
strong resilience of the anchor and positive subnetworks 
discussed in Section IV-A. Such behavior is in line with the 
analysis that the network converges to a spurious solution; the 
accuracy tends to be higher when the erroneous units are in the 
early layers. Especially for dataset “MNIST”, when the faults 
are in the first layer of the negative subnetwork, performance is 
very close to the fault-free case (if the training is prolonged, 
some other cases can also achieve high accuracy). It can be 
confirmed by the analysis that the network can overcome the 
spurious solution and continue the correct convergence; this 
happens when such a false solution becomes not strong enough 
after being weakened by the activation functions.  

 Moreover, the inference accuracy decreases as more faults 
are injected in the negative subnetwork. The network has a 
lower probability to escape from the spurious solution (local 
minimum), so agreeing with the analysis. Especially, when the 
number of faults is large enough (such as 𝑓 > 5%×𝑚"), the 
network tends to be completely stuck at the false solution even 
when the faults are in the early layers. 

C. Fault tolerance with CNN implementation 
The previous simulation results have employed a TN with 

MLPs as subnetworks; this section extends it to CNN 

    
(a)                                                       (b) 

    
(c)                                                       (d) 

Fig.3. Inference accuracy of different percentage of faulty neurons in each layer 
with dataset (a) “MNIST”; (b) “Fashion-MNIST”; (c) “CIFAR-10”; (d) 
“SVHN”. 
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Fig. 4. Inference accuracy of different types of faults into the anchor and positive 
subnetworks with dataset (a) “MNIST”; (b) “Fashion-MNIST”; (c) “CIFAR-
10”; (d) “SVHN”. 
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implementation. Each of these subnetworks consists of three 
convolution layers (with output channels and sizes of 16×24×24 
- 32×16×16 - 64×8×8) and two fully-connected layers; tanh is 
used as the activation function and max pooling is applied. The 
datasets and other configurations in the TN are the same as in 
the MLP-based version. This simulation tests the stuck-at faults 
in the convolutional layers; since CNNs usually share weights 
and computational units between channels, faults are injected 
equally into all channels in the same layer. The dimensions of 
the convolutional layers (each channel) are represented by the 
vector [𝑚$		𝑚%		𝑚7] = [576		256		64]. 

From the results for all datasets, it is confirmed that the CNN-
based version also has strong resilience to the stuck-at faults in 
the anchor or positive subnetworks. As per the simulation 
results, the CNN-based TN is still reliable (degradation less 
than 0.1%) with up to 89.66% of the neurons in a single layer 
with stuck-at faults. Also, the special case when the faults are 
in the negative subnetwork is observed in the CNN 
implementation. Figure 6 shows the simulation results in the 
three convolutional layers with the pattern 𝑄. = (𝑓 = 𝑚" ×
𝑡, 𝑟 ∈ {1,2,3}, 𝑐 ∈ {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}, 𝑣 ∈ {0}), 𝑡 ∈ [0, 0.05]. 

 The conclusions are like for the MLP implementation 
discussed in Section IV. Compared with the results in Figure 5, 
the CNN version performs slightly better; however, the faults 
in the negative subnetworks still lead to a significant accuracy 
loss and it tends to be worse when the erroneous units are in the 
latter layers.  

VI. PROPOSED FAULT TOLERANT METHODS FOR TRAINING 
The previous analysis and simulation results suggest that 

fault tolerant schemes are required for dealing with stuck-at 
faults in the negative subnetwork of TNs. Next, we propose two 
methods to protect the training process from missing or 
saturating neurons (i.e., against stuck-at 0 and stuck-at 1/-1 
faults) respectively. Also, the proposed methods are evaluated 
by simulations to prove their efficacy. 

A.  Regularization to anchor outputs 
From the analysis in Section IV-A, the false solution with 

stuck-at 0 faults occurs when the faulty neurons in the anchor 

and positive subnetworks have large absolute values. In this 
case, the constraint of the negative subnetwork can be simply 
satisfied by the faulty term.  

To prevent an incorrect convergence towards large outputs in 
the anchor or positive terms, an extra penalty term (i.e., the L2-
regularization term on the anchor outputs from different layers) 
must be added to the loss function as 

𝐿 = 𝑚𝑎𝑥(𝑑* − 𝑑+ +𝑀, 0) + 𝜆∑ ∑ 𝑦!,,
3 %&#

,-$
)
3-$ (10)  

where 𝑚3  is the dimension of layer 𝑗  and 𝜆  is the parameter 
determining the influence of the penalty term. This paper 
assumes that faults occur in any layer; however, if the faulty 
layer can be specified, only regularization of the corresponding 
outputs is required. Consider TL as an example only (applicable 
to other functions too). The regularization term can be added to 
either the anchor or the positive subnetworks (their outputs tend 
to be the same due to the objective function). In this paper, the 
regularized anchor outputs affect both positive and negative 
distances, so they can better accelerate convergence. 

The regularization term on the anchor outputs can restrict the 
faulty units from taking a large value, therefore preventing the 
convergence to the false solution. By choosing a proper 
parameter 𝜆, the additional term is negative to the error-free 
case; however, it prevents an unexpected system failure to 
occur when caused by the stuck-at 0 faults in TNs. 

B. Modified margin 
As per the analysis in Section IV-B, measures should be 

taken to prevent training to be in a zero-loss situation from the 
start under stuck-at 1/-1 faults. In this case, let’s consider the 
objective function TL in (7) as the example; the difference 
caused by the faulty terms ∑ Z𝑦!,,) − 𝑣,Z,∈1  must be compensated. 
An intuitive way is to increase the original margin 𝑀; let the 
number of faulty neurons be denoted by 𝑓, so increasing the 
margin by 𝑓 can effectively guarantee that the training starts 
correctly (as the initial outputs 𝑦!,,)  are usually close to 0).  

By the analysis in Section III, convergence can still be in the 
false solution of the subsequent training process; in this case, 
the regularization of the loss function is no longer feasible. A 
possible reason is that the regularized outputs towards 1 or -1 

    
(a)                                                    (b) 

    
(c)                                                    (d) 

Fig. 5. Inference accuracy of different percentages of faulty neurons in the 
negative subnetwork with dataset (a) “MNIST”; (b) “Fashion-MNIST”; (c) 
“CIFAR-10”; (d) “SVHN”. 
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Fig. 6. Inference accuracy of different percentage of faulty neurons in the 
negative subnetwork (CNN version) with dataset (a) “MNIST”; (b) “Fashion-
MNIST”; (c) “CIFAR-10”; (d) “SVHN”. 
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can cause vanishing gradients with bounded activation 
functions. Therefore, the method of further increasing the 
margin is considered; for each faulty term Z𝑦!,,) − 𝑣,Z , the 
maximum error is 2 when 𝑣, = 1 or 𝑣, = −1, −1 ≤ 𝑦!,,) ≤ 1. 
By (7), if the number of faulty neurons is 𝑓 , increasing the 
margin by 2𝑓 can ensure that the convergence does not achieve 
a false solution over the entire training process.  

However, the number of faulty neurons is usually unknown 
in many practical applications. An appropriate margin is critical 
to address the importance of the contributive triplets [24]; 
setting the margin to an arbitrarily large value slows down the 
convergence in the error-free case. Therefore, increasing the 
margin must be thought carefully. We propose to modify the 
margin at the beginning of the training by: 

𝑀: = 𝑀 + 2⌊𝑑+⌋ (11)  
where ⌊𝑑+⌋  denotes the round-down to the largest integer 
smaller than 𝑑+. Note that the margin only changes based on 
the output at the first iteration, and it is fixed in the following 
training process. This value assumes that the initial negative 
distance is smaller than 1 in the error-free cases (valid for all 
applied datasets); thus, it can be an estimate of the number of 
(stuck-at 1 or -1) faults. Consider the widely used process of 
weight initialization; this estimate works for most cases, and it 
can also be modified by the empirical knowledge of different 
applications. In summary, the modified margin 𝑀: is required 
to correctly start the training process and prevent false solutions 
when stuck-at 1/-1 faults are present in the negative subnetwork. 

C. Evaluation  
This subsection provides the simulation results for the 

proposed technique of regularization to anchor outputs 
(modified margin) to avoid false solutions when the stuck-at 0 
(stuck-at 1/-1) faults are in the negative subnetwork. The fault 
injection process and the network configurations are the same 
as those applied in Section V. Simulation has been performed 
for faults that are randomly injected into different layers, so also 
shows the worst case (when faults are in the output layer). 
Consider the MLP implementation as an example with the 

network configuration of Section V-A. Also, the pattern of the 
fault injection simulation is given by 𝑄. = (𝑓 = 𝑚" × 𝑡	, 𝑟 ∈
{5}, 𝑐 ∈ {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}, 𝑣 ∈ {0,1, −1}), 𝑡 ∈ [0, 1].  

The inference accuracy at different percentages of faulty 
neurons is shown in Figure 7. Compared with the previous 
results in Section V, the negative subnetwork is no longer 
sensitive to stuck-at faults. The curves are now like those for 
the anchor/positive subnetworks, so the false solutions can be 
effectively avoided by the proposed approach. More generally, 
the regularization on the anchor outputs for stuck-at 0 faults 
operates very well; increasing large margins for stuck-at 1 or -
1 faults leads to some accuracy loss, but performance is still 
satisfactory. Therefore, the proposed fault-tolerant methods can 
be utilized in TNs to avoid fatal system failures caused by 
stuck-at faults. Also, they can be applied simultaneously to 
protect the network from all other types of stuck-at faults.  

VII. INFERENCE PROCESS: RANDOM BIT-FLIP MODEL 
During the inference process, the fault model is random bit-

flips; these faults are transient in nature, and they have been 
widely accepted as random upset values in memory. Therefore, 
in the fault model, random bit-flips can occur at any of the bits 
by reversing the value (0 to 1, or 1 to 0); since predictions are 
directly determined by the weights stored in memory, bit-flip 
faults are critical in the inference process.  

When more than one random bit-flip occur (mostly caused 
by a radiation particle also known as soft errors), the affected 
memory cells are usually physically close; so, a soft error tends 
to either affect multiple data bits in a single memory word, or 
single data bits in multiple adjacent words [25]. Therefore, two 
scenarios caused by bit-flip faults are considered: 1) single-bit 
error: multiple errors occur but each faulty weight/memory 
word has only one bit flipped; 2) multi-bit error: multiple errors 
occur but they affect the same weight/memory word. 

Next, an analysis is provided for the weights in FP format as 
affected by bit-flips. The implementation with SC is known to 
have inherent resilience to errors; hence, it is also analyzed and 
compared to provide insight into the fault tolerance of FP TNs.  

A. Fault model for FP format 
This paper assumes that the weights of the TNs are in the 

IEEE 754 standard single-precision floating-point format [26], 
i.e., 1 sign bit, 8 exponent bits, and 23 mantissa bits. For single-
bit errors, any one of those bits is flipped to the reversed state. 

Similarly, the execution of the inference process in TNs with 
bit-flip faults can be represented as patterns. The pattern is 
represented by 𝑄1 = (𝑓, 𝑟, 𝑃), where 𝑓 is the number of faults 
and 𝑟  denotes the layer to be injected, 𝑓 < 𝑚" ; the set 𝑃 =
}𝑝$, 𝑝%, ⋯ , 𝑝;~ denotes the position of the corresponding faults, 
so the location of the bit-flip at the 𝑝,-th bit, 𝑝, ∈ {1, 2,⋯ , 32}. 
The decimal value of a floating number is given by 

𝑥 = 	 (−1)< × 2=+$%> × (1 +𝑀 × 2+%7), (12)  
where 𝑆, 𝐸, and 𝑀 are the decimal number represented by the 
sign, exponent, and mantissa bits; so, faults on the sign or 
exponent bits (𝑝, ≤ 9) lead to more significant changes.  

Let 𝑥?  denote the erroneous value represented by a single 
flipped bit of an FP number 𝑥. If the fault occurs in the sign, 
exponent, or mantissa bits, the erroneous value and the absolute 
error are represented as 

    
(a)                                                       (b) 

    
(c)                                                       (d) 

Fig. 7. Inference accuracy of different percentage of faulty neurons with stuck-
at 0 faults (regularization on anchor outputs), and stuck-at 1/-1 faults (modified 
margin): (a) “MNIST”; (b) “Fashion-MNIST”; (c) “CIFAR-10”; (d) “SVHN”. 
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𝑥? = �

−𝑥,																									sign	bit;
2=$𝑥,																							exponent	bits;
@$@*%%&

@*%%&
𝑥,														mantissa	bits;

(13)  

|	𝑥 − 𝑥?| = �

|2𝑥|,																								sign	bit;
|(2=$ − 1)𝑥|,																exponent	bits;
�(@$+$)@
@*%%&

𝑥� ,													mantissa	bits,
(14)  

where 𝐸, = 2, if the 𝑖-th bit (counted from least significant bit 
(LSB) to most significant bit (MSB)) of the exponent flipped 
from 0 to 1; 𝐸, = 2+, if the 𝑖-th bit of the exponent flipped from 
1 to 0. Similarly, 𝑀, = 2, when the 𝑖-th bit of the mantissa is 
flipped from 0 to 1; otherwise 𝑀, = 2+, .	𝑀  is the decimal 
number represented by the mantissa bits in (12); it is concluded 
by (14) such that the error of an FP number is related to its 
absolute value |𝑥|. Therefore, bit-flips in a larger FP number 
lead to a more significant error. 

B. Fault model for SC format 
An SC number has the feature that each bit has the same 

significance, this is an advantage from the perspective of fault 
tolerance. Considering the same pattern of bit-flip fault to the 
inference process as in the FP TNs, the absolute error an 𝑁-bit 
stochastic sequence with bipolar representation is given by  

|	𝑥 − 𝑥?| = 	2𝑁+$. (15)  
The error of an SC number caused by a bit flip relates to only 

the length of the stochastic sequences; hence, it can be treated 
as a constant because the length 𝑁 is a predefined parameter.  

C. Comparison 
To compare the tolerance of FP and SC formats to the bit-flip 

fault in the weights, the corresponding absolute value of the 
erroneous element is required. Even though the weight 
distribution can vary greatly from different applications, they 
usually concentrate within a limited range. For TNs with 
normalized datasets (as used in this paper), the weight 
distributions are approximately normal distributions with zero 
mean and 0.6 variance. To give an intuitive illustration, 
consider an average absolute weight value of 0.5 as an example 
(represented in FP as: sign bit “0”, exponent bits “01111110”, 
and all zeros as mantissa bits). Figure 8 illustrates the absolute 
error caused by one flipped bit on different positions (the x-axis 
is arranged in the order of sign bit: 1; exponent bits: 2-9; 
mantissa bits: 10-32) with FP and SC formats. Different lengths 

of SC sequences are compared and denoted as horizontal lines 
in this figure. 

Figure 8 shows that the errors on the mantissa bits of FP 
numbers are relatively small and decrease exponentially. The 
error when the fault occurs on any position of an SC number is 
also very small. The intersections show that the error at the 
11/13/15/17-th bit is equivalent to an error in SC format with 
16/64/256/1024 bits. One noticeable finding is that a 0 to 1 flip 
in significant exponent bits can lead to extremely large errors 
(such as the 2nd bit in Figure 8). Also considering (14) and (15), 
errors in FP format increase with a larger weight, while the 
errors in SC format remain unchanged.  

The above analysis quantifies the errors in FP and SC formats; 
the FP format suffers significant errors when the faults occur in 
the MSBs (especially a 0 to 1 flip), while the SC format keeps 
a constant small error with faults in any position. However, it 
does not directly show the implications by which the inference 
accuracy of the TN is affected by these errors. The next section 
provides further evaluations of the impact of faults.  

VIII. IMPACT OF FAULTS ON INFERENCE: EVALUATION  
This section deals with simulation as fault injection during 

the inference process of TNs implemented in both FP and SC 
format. The random bit-flip is applied as the fault model; the 
network configurations and the datasets are the same as in the 
previous section. The results of each evaluation are averaged 
over 10000 repeated trials. 

A. TNs with FP format 
For the TNs with FP format, different numbers of faults in 

the TN have been considered during the inference process. Both 
cases of single-bit and multi-bit errors have been assessed. 

Single-bit error: A faulty bit is injected into each weight and 
multiple erroneous weights can be present. Different from 
training, a fixed number of faults is assumed and they are 
randomly injected into all layers. The patterns 𝑄1 of this fault 
injection process is represented as 𝑄1 = (𝑓 ∈ {1,2,⋯ ,10}	, 𝑟 ∈
{1,⋯ ,5}, 𝑃) . With 𝑟 and 𝑃 = }𝑝$, 𝑝%, ⋯ , 𝑝;~  uniformly and 
randomly chosen within the feasible range, faults occur in any 
layer or bit position; the fault-free case 𝑓 = 0 is included for 
comparison. The inference accuracy is plotted in Figure 9 (a).  

The results show the accuracy constantly decreases with the 
number of faulty bits for all datasets, so the inference accuracy 
and the number of faults have a linear relationship. Different 
from the fault injections for the training process, only a few 
weights with single-bit errors lead to an obvious degradation. 
The inference process of TNs is sensitive to random bit flips; 
also, by monitoring the position of the faults in all trials, 97.2% 
of the degradation (defined as an accuracy loss larger than 
0.01%) occurs when the bit-flip (on at least an erroneous weight) 
is on the exponential bits. 

Multi-bit error: This experiment injects a pattern consisting 
of multiple faulty bits into only one weight; this pattern is nearly 
identical to the previous experiment. The only difference is that 
all bit-flips are injected to the same erroneous weight. The 
inference accuracy is shown in Figure 9 (b). 

Similar to the previous case, the accuracy loss is linearly 
proportional to the number of faulty bits and only one erroneous 
weight with multiple bit-flips can lead to significant 
degradation. Thus, the same importance should be attached to 

 
Fig. 8. Comparison of absolute error in FP (32-bits) and SC formats with one 
bit-flip fault for example weight value 0.5.  
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the case of multi-bit error; also, 95.8% of the degradation in all 
the repeated trials involves at least one bit-flip on the 
exponential bits of the erroneous weight. 

B. TNs with SC format 
This section provides the simulation results of fault injection 

in the TN with SC arithmetic during the inference process. The 
design of the SC-based inference network has been described 
in [18]. The goal is to support the analysis for TNs with FP 
format because the SC implementations are generally 
considered tolerant to bit flips. This simulation can also reveal 
the relationship between errors caused by faults and the 
predicted accuracy loss. For the worse cases, multi-bit errors 
are applied in this subsection. 

Sensitivity on sequence length: Different lengths of 
stochastic sequences in SC TNs are utilized in inference. Since 
the bit length is different from the FP format, the fault rate is set 
equivalent to the one used in Section VIII-A (a multi-bit error 
with 10 faulty bits). The pattern of this fault injection can be 
thus represented as 𝑄1 = (𝑓 = $CD

7%
, 𝑟 ∈ {1,⋯ ,5}, 𝑃) , 𝑓  is 

rounded off.  Sequence lengths from 𝑁 = 1024 bits to 𝑁 = 32 
bits are utilized; the results are plotted in Figure 10 (a).  

Sensitivity on the number of faults: The first simulated 
scenario relies on different numbers of faults, but it assumes 
that all faulty bits are of the same weight. The bit length of the 
stochastic sequences is set to 𝑁 = 32; the pattern of this fault 
injection is identical to Section VIII-A as 𝑄1 = (𝑓 ∈
�D
7%
, %D
7%
, ⋯ , $CD

7%
�	 , 𝑟 ∈ {1,⋯ ,5}, 𝑃) . The results are given in 

Figure 10 (b). 
Figure 10 (a) shows an accuracy loss with shorter SC 

sequences; however, the accuracy remains almost unchanged in 
Figure 10 (b) when increasing the number of faulty bits; this 
phenomenon does not relate to different impacts for errors 
(illustrated in Figure 8), but it is caused by the less accurate SC 
arithmetic with shorter sequence lengths. In Figure 8, the SC 
format does not show an immediate improvement over the FP 
format in terms of absolute error, but its inference accuracy 
shows a significant advantage. As a fault-tolerant 
implementation, SC has the feature that all bits share the same 
significance, so bit-flip faults cannot lead to significant changes. 
The impact of errors with the SC format (𝑁 = 32) is similar to 
the mantissa bits of the FP format; while Figure 9 (b) and Figure 
10 (b) show different plots at the same fault rate, the 
degradation is mostly caused by the changes in the exponent 
bits. If the large outliers can be eliminated, the fault tolerance 
of TNs with the FP format can be greatly increased (compared 
to the performance of SC implementations).  

IX. PROPOSED FAULT TOLERANT METHODS FOR INFERENCE 
The previous analysis and simulation by error injection have 

shown the effects of random bit-flip faults on the inference 
process of the TNs; in particular, large outliers in weights are 
caused by flips in the significant bits. This paper focuses on 
low-cost solutions while still retaining satisfactory performance 
and taking advantage of the inherent fault tolerance of the NNs. 
The proposed methods protect the inference process from bit-
flips by inserting parity bits for both single-bit and multi-bit 
errors. Also, related works are discussed, and the proposed 
methods are evaluated to show their efficiency. 

A. Replacing LSB by a parity bit for single-bit errors 
As per the error injection process, the protection of MSBs 

(exponent bits) is of great importance and can greatly reduce 
the loss of accuracy. A single parity check is widely used for 
error detection and thus, it is applied in this paper. A parity bit 
is employed to check the exponent bits (encoded by the XOR 
operation with each bit) as illustrated in Figure 11; therefore, 
the parity bit detects a single-bit error when any of the 
significant bits are changed by faults. Once the bit-flip is 
detected, the corresponding weight is directly set to zero to 
prevent outliers; moreover, the parity bit replaces the LSB of 
the mantissa. This scheme does not require additional memory 
overhead and shows the applicability of the proposed scheme 
because the data format remains unchanged. Setting the weight 
to zero and replacing the mantissa bit can lead to a loss in 
accuracy; this is usually negligible compared to the benefits of 
protecting the MSBs. With normalization and activation 
functions (such as sigmoid or tanh), the weights in NN 
applications usually have small absolute values (nearly close to 
zero); the effect of a changed mantissa bit is verified by the 
analysis in Section VII-A and related literature [27]. For 
example, in Figure 8, the error due to the parity bit (32-th) is at 
a level of 10+>; with large outliers avoided, the degradation 
caused by bit-flip faults is expected to be greatly mitigated and 
evaluation of performance is provided by simulation. 

B. Replacing LSBs by parity bits for multi-bit errors 
The case of multiple faults in one weight is rarer than the 

single case; however, as code-based protection for single-bit 
errors can fail, this paper also proposes a parity-based 
protection method for multi-bit errors. 

The principle in the proposed methods is similar to detecting 
single-bit errors by using parity bits (inserted at the LSBs of the 
mantissa) to detect errors in the exponent bits. However, since 
more than one fault can occur in these bits, more parity bits are 

    
     (a)                                                          (b) 

Fig.9. Inference accuracy of different number of faults injected in the inference 
process (FP implementation) for  (a) single-bit error; (b) multi-bit error. 
 
 

  
 

 
        (a)                                                           (b) 

Fig.10. Simulation results for TNs with SC format. The inference accuracy of  
(a) different SC sequence lengths; (b) different number of faults. 
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required to check each of them (one parity bit encodes an 
exponent bit and 8 bits are required for an exponent in the 
single-precision FP format) as shown in Figure 11. Similarly, if 
a fault is detected, the weight is directly set to zero to prevent 
large outliners. Replacing more LSBs in the mantissa decreases 
the accuracy, but as per the analysis in Section VII-A, such loss 
is still negligible (<0.001% in fault-free cases) compared with 
a possible fatal effect due to these faults; for example, in Figure 
8, the error caused by the 8 parity bits is at a level of 10+9. 
Further evaluation is provided by simulations to verify the 
feasibility of the proposed methods with also a loss in accuracy.  

C. Related works 
Fault tolerance of NNs is required in critical applications and 

different approaches for protecting the model from bit-flip 
faults in weights during inference have been studied; most of 
these methods require some redundancy either spatial or 
temporal [11] or retraining the model by artificial fault injection 
[28]. Traditional single-error correction (SEC) codes can fully 
recover the faulty weights by utilizing 6 additional bits (for the 
32-bit FP format). However, this overhead may not always be 
acceptable, especially for NN applications in hardware/power-
constrained platforms, such as portable devices/systems.  

Therefore, this paper focuses more on solutions for random 
bit-flips with low memory/hardware overheads. The inherent 
resilience of NNs to faults allows the use of low-cost methods 
with satisfactory classification error; for example, [29] 
proposed an optimization technique based on the observation 
that resilience is not homogeneous over the networks; so, the 
weights are adjusted according to a resilience prediction 
criterion. Similar to this paper, the replacement of weights with 
coding bits has been already proposed in the technical literature. 
In [30] an SEC code has been used to replace the 4 LSB in the 
mantissa to protect the sign and exponent bits; in [31] a similar 
idea to using parity bits has been proposed, but all memory bits 
for the weights are protected. However, those code-based 
methods are better suited for single-bit errors, and hence, 
solutions for multi-bit errors have to also be investigated; for 
example, [30] has applied filters to eliminate the large values in 
the weights caused by faults. So different methods are 
compared with the proposed parity-based fault tolerance for 
both single-bit and multi-bit errors.  

D. Evaluation  
The proposed methods and schemes of related works are 

compared with bit-flip faults in the inference of TNs. The MLP 
is used for subnetworks and the configurations are identical to 
those in Section VIII; the results are evaluated by the accuracy 
loss compared with the fault-free cases. The results with no 
fault tolerance are also provided for comparison. 

For the single-bit error evaluation, one bit-flip has been 
simulated for 10 different random weights; the results are 
averaged over 10000 repeated trials and are shown in Table IV. 
The method in [30] has the lowest accuracy loss, because it 
performs full correction by SEC; the proposed method 
eliminates on average 96.76% of accuracy loss caused by faults, 
so better performance than [29] and [31]. Considering that the 
proposed parity-based method is much simpler and replaces 
fewer bits, it can be thought as an effective alternative for TNs.  

For multi-bit errors, 10 bit-flips are applied to one different 
random weight; the results are averaged over 10000 repeated 
trials as shown in Table V. The proposed method eliminates on 
average 97.74% of accuracy loss and again it performs better 
than [29] and the filter in [30]. The replaced bits in the mantissa 
are thus shown to have a marginal effect compared with the 
benefits of fault tolerance. Therefore, if the application is at risk 
from multi-bit errors, the proposed method provides 
comprehensive protection. 

X. CONCLUSION 
This paper has comprehensively studied the fault tolerance 

of Triplet Networks (TNs) under stuck-at faults in training and 
random bit-flips in inference.  

For the training process, the analysis has revealed a special 
case: the stuck-at faults in the negative subnetworks can cause 
incorrect convergence when the loss is dominated by the faulty 
terms; moreover, stuck-at 1/-1 faults can even lead to a zero-
loss situation at the beginning of training. These faults can make 
the network converge to false solutions, so resulting in system 
failure. Simulation results have been provided for evaluating 
the impact of stuck-at faults, by considering different number 
and position of faults and affected subnetworks. It has been 

TABLE IV 
ACCURACY LOSS (%) OF FAULT TOLERANCE METHODS WITH DIFFERENT 

DATASETS FOR 10 SINGLE-BIT ERRORS  

Scheme MNIST Fashion-
MNIST 

CIFAR-
10 SVHN 

Unprotected 3.765 3.157 2.460 2.967 
[29] 0.662 0.582 0.449 0.560 

Code in [30] 0.178 0.146 0.108 0.117 
[31] 0.007 0.005 0.006 0.006 

Proposed method 0.118 0.104 0.089 0.086 

TABLE V 
ACCURACY LOSS (%) OF FAULT TOLERANCE METHODS WITH DIFFERENT 

DATASETS FOR AN MULTI-BIT ERROR WITH 10 FAULTY BITS  

Scheme MNIST Fashion-
MNIST CIFAR-10 SVHN 

Unprotected 2.459 2.611 1.932 2.030 
[29] 0.388 0.301 0.274 0.319 

Filter in [30] 0.068 0.080 0.062 0.074 
Proposed method 0.050 0.056 0.043 0.053 

 
  

 
Fig. 11. Parity-based fault tolerance for bit-flips during inference process for single-bit or multi-bit errors.  
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shown that the anchor and positive subnetworks are not 
sensitive to stuck-at faults. However, several faults in the 
negative subnetworks can lead to invalid training, which has 
confirmed the proposed theory of false solutions. 

Two fault-tolerant methods have been proposed to solve the 
special case in the negative subnetworks. As per the outlined 
analysis, the loss function with regularization on the anchor 
outputs can be applied for stuck-at 0 faults, while the so-called 
modified margin scheme is a viable solution for stuck-at 1/-1 
faults. Simulation has proved their performance and efficacy as 
false solutions can be effectively avoided; therefore, the 
proposed methods can be used for TNs during training to avoid 
a fatal system failure caused by stuck-at faults. 

For the inference process, the theoretical analysis provided 
in this paper has shown that the flips in the exponent bits of the 
floating-point (FP) format lead to very large classification 
errors, while the impact of errors in the stochastic computing 
(SC) format is rather small, independently of the locations of 
the faulty bits. Comparison between the FP and SC formats in 
the analysis has been verified by extensive simulation; it can be 
concluded that the extremely large outliers in erroneous FP 
numbers are the main reason for degradation in accuracy. As 
with no such problem, SC implementations have shown strong 
resilience to random bit-flips; therefore, the fault tolerance of 
FP-based TNs can be improved by eliminating these outliers. 

Two methods have also been proposed for protecting the TN 
from bit-flip faults during inference against both single-bit and 
multi-bit errors; they are based on the use of parity bits to check 
the exponent bits and prevent possible large outliers. These 
approaches lead to a small accuracy loss and they can efficiently 
improve the performance of faulty TNs without introducing 
memory redundancy. Evaluation has been pursued for the 
proposed methods and other approaches in related works. For 
single-bit errors, the proposed scheme performs better than all 
others except for SEC-based full correction (which requires a 
significantly larger memory overhead); for multi-bit errors, the 
proposed scheme achieves the lowest accuracy loss.  
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