
Fault Tolerant Triplet Networks for Training and InferenceFault Tolerant Triplet Networks for Training and Inference
This paper was downloaded from TechRxiv (https://www.techrxiv.org).

LICENSE

CC BY 4.0

SUBMISSION DATE / POSTED DATE

30-09-2022 / 05-10-2022

CITATION

Wang, Ziheng; Niknia, Farzad; Liu, Shanshan; Reviriego, Pedro; Louri, Ahmed; Lombardi, Fabrizio (2022):
Fault Tolerant Triplet Networks for Training and Inference. TechRxiv. Preprint.
https://doi.org/10.36227/techrxiv.21251904.v1

DOI

10.36227/techrxiv.21251904.v1

https://www.techrxiv.org
https://creativecommons.org/licenses/by/4.0/
https://dx.doi.org/10.36227/techrxiv.21251904.v1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Abstract—This paper deals with the fault tolerance of Triplet
Networks (TNs). Results based on extensive analysis and
simulation by fault injection are presented for new schemes. As in
accordance with technical literature, stuck-at faults are considered
in the fault model for the training process. Simulation by fault
injection shows that the TNs are not sensitive to this type of fault
in the general case; however, an unexcepted failure (leading to
network convergence to false solutions) can occur when the faults
are in the negative subnetwork. Analysis for this specific case is
provided and remedial solutions are proposed (namely the use of
the loss function with regularized anchor outputs for stuck-at 0
faults and a modified margin for stuck-at 1/-1 faults). Simulation
proves that false solutions can be very efficiently avoided by
utilizing the proposed techniques. Random bit-flip faults are then
considered in the fault model for the inference process. This paper
analyzes the error caused by bit-flips on different bit positions in a
TN with Floating-Point (FP) format and compares it with a fault-
tolerant Stochastic Computing (SC) implementation. Analysis and
simulation of the TNs confirm that the main degradation is caused
by bit-flips on the exponent bits. Therefore, protection schemes are
proposed to handle those errors; they replace least significant bits
of the FP numbers with parity bits for both single- and multi-bit
errors. The proposed methods achieve superior performance
compared to other low-cost fault tolerant schemes found in the
technical literature by reducing the classification accuracy loss of
TNs by 96.76% (97.74%) for single-bit (multi-bit errors).

Index Terms— Triplet Network, fault tolerance, stuck-at faults,
random bit-flips.

I. INTRODUCTION
RIPLET networks (TNs) are feedforward artificial neural
networks (ANNs) with three identical weight-sharing

subnetworks [1]. TNs have been widely used in similarity-
measuring tasks, from initial applications in face recognition
with Triplet Loss (TL) [2] to various machine learning (ML)
tasks such as vehicle identification [3] and image retrieval [4].
Particularly, due to their unique structure, TNs provide an
excellent learning performance when there is a paucity of
training data available, in which case the traditional ANNs

using a single network (e.g., multi-layer perceptrons (MLPs) or
convolutional neural networks (CNNs)) often find difficulty in
establishment and execution. A TN generates feature
embeddings of the original input data; the outputs of different
categories are separable in the embedding space and thus, are
available for the subsequent classification/recognition. As an
emerging ML scheme, the feature-embedding TN achieves
better performance than traditional classification/recognition
methods with a single network branch [1], [5].

In safety-critical applications, fault tolerance is important for
hardware implementation of ANNs, because faults occurred in
the hardware and their erroneous consequences may lead to
performance degradation and sometimes to a total system
failure [6], [7], [8]. Traditional fault-tolerant methods usually
require redundancy [9] and schemes for reliable ANNs mainly
include: i) introducing redundancy of critical neurons or
branches [10], [11], ii) changing backpropagation algorithms,
such as adding penalty terms or modifying the weights [12], and
iii) training the network by artificially injected faults [13].
However, the focus of these methods is often on networks of
small size and simple structure; the fault tolerance of large-scale
applications such as TNs has not been sufficiently explored.
Since the three-subnetwork structure of TNs and their
capability of similarity-measuring based on limited training
data may lead to unique problems in the presence of faults, it is
of paramount importance to investigate the fault tolerance of
TNs. To the best of the authors’ knowledge, this has not been
reported in the technical literature.

This paper focuses on the application of deep metric learning
classification, whose subnetwork is usually simpler for fault
injection experiments and theoretical analysis; by sharing a
similar structure, the methods/conclusions are expected to
extend to further tasks with TNs. The fault tolerance of TNs
implemented by MLPs or CNNs as subnetworks are
comprehensively studied. Two widely used fault models, stuck-
at faults and random bit-flips, are considered for the training
and inference processes respectively (as also found in [13] and
[14]); this is based on the consideration that the bit-flips are not
critical in training as transient faults, while they have a much
more significant effect during inference as shown in
simulations. In addition to the analysis and evaluation of the
impact of faults on the classification performance of TNs,
efficient protection solutions for both the training and inference
processes are also proposed.

The main contributions of this paper are concisely described
as follows:

1) By analyzing the fault models in the training process, a
special case of incorrect convergence has been revealed
when stuck-at faults are injected into the negative

Ziheng Wang, Student Member, IEEE, Farzad Niknia, Student Member, IEEE, Shanshan Liu, Member, IEEE,
Pedro Reviriego, Senior Member, IEEE, Ahmed Louri, Fellow, IEEE and Fabrizio Lombardi, Life Fellow, IEEE

Fault Tolerant Triplet Networks for Training
and Inference

T

Ziheng Wang, Farzad Niknia and Fabrizio Lombardi are with Department of

Electrical and Computer Engineering, Northeastern University, MA 02115, USA
(email: wang.zihe@northeastern.edu, niknia.f@northeastern.edu,
lombardi@ece.neu.edu).

Shanshan Liu is with Klipsch School of Electrical and Computer Engineering,
New Mexico State University, NM 88001, USA (email: ssliu@nmsu.edu).

Pedro Reviriego is with the Departamento de Ingeniería de Sistemas
Telemáticos, Universidad Politécnica de Madrid, 28040 Madrid, Spain (email:
pedro.reviriego@upm.es).

Ahmed Louri is with the Department of Electrical and Computer Engineering,
George Washington University, DC 20052, USA (email: louri@gwu.edu).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

subnetwork of the TN, which can lead to complete
system failures.

2) The impact of stuck-at faults in the training process has
been evaluated by simulations. The special case in the
negative subnetwork has been also verified.

3) Solutions have been proposed for the incorrect
convergence due to a faulty negative subnetwork. The
effectiveness of the proposed methods has been shown
by simulations.

4) Error analysis has been pursued for the random bit-flips
in the inference process. The feature of floating-point
(FP) and Stochastic Computing (SC) has also been
considered and compared.

5) Simulation has been used to assess the fault tolerance for
bit-flips in the inference process. Data represented by
floating-point (FP) format suffer an accuracy loss due to
extremely large outliers caused by faults on the most
significant bits.

6) Protection schemes based on parity bits are proposed for
both single-bit and multi-bit errors. Simulation has
shown that the proposed methods achieve excellent
performance compared with other low-cost fault
tolerance approaches.

The rest of the paper is organized as follows. Section II
outlines preliminaries, such as the structure of TNs and SC.
Section III introduces the stuck-at faults as the fault model for
training, and the special case with faults in the negative channel
is analyzed in detail in Section IV. Section V evaluates the
impact of faults on training performance for both general and
special cases. As solutions to mitigate such impact, two
protection schemes are proposed in Section VI, and their
performance is verified by simulation. This paper also focuses
on the inference and bit-flips are introduced as the fault model
in Section VII. Section VIII provides the error analysis and
comparisons between FP and SC implementations. In Section
IX, parity-based fault-tolerant schemes are proposed for both
single-bit and multi-bit errors; they are evaluated and compared
with methods found in the technical literature. Finally, the paper
ends with conclusions in Section X.

II. PRELIMINARIES

A. Triplet Networks
A typical Triplet Network (TN) consists of three identical

weight-sharing subnetworks in training as shown in Figure 1 (a).
Each subnetwork can be any feedforward network; this paper
considers both MLP and CNN implementations. As introduced
previously, TNs have been shown to have an excellent
performance [5], [15] for classification when there is a paucity
of training data available. Next, the training and inference
processes of a TN are introduced.
1) Training process

During the training process (Figure 1 (b)), the three
subnetworks of a TN accept the so-called triplets, including
anchors, positive samples with the same class, and negative
samples with different classes, respectively. The model is
trained by mapping the triplets to an embedding space to
minimize the distances between the anchor and positive
samples and maximize the distance between the anchor and
negative samples. Such feature embeddings are learned by

iteratively applying optimizers (such as gradient descent) to the
loss for achieving a high classification performance [1], [5].

Assume that the subnetworks are 𝑙-layer MLPs (or CNNs),
and the output of the hidden units in the 𝑟 -th layer can be
denoted as the following vectors

𝑦!" = %𝑦!,$" 		𝑦!,%" 		⋯		𝑦!,&!
" (,			anchor subnetwork;

𝑦'" = %𝑦',$" 		𝑦',%" 		⋯		𝑦',&!
" (,			positive subnetwork;

𝑦(" = %𝑦(,$" 		𝑦(,%" 		⋯		𝑦(,&!
" (,			negative subnetwork

(1)

where 𝑚" is the output dimension of the 𝑟-th layer. In particular,
the outputs of the last layer are represented as 𝑦!) , 𝑦') , and 𝑦() .
The similarity is evaluated by the Euclidean distance, which is
calculated by the positive distance 𝑑* = /𝑦!) − 𝑦')/%, and the
negative distance 𝑑+ = ‖𝑦!) − 𝑦()‖% . Since the objective of
training a TN is to minimize the positive distance and maximize
the negative distance, the following conditions must be satisfied:

															𝑑* = 2∑ 4𝑦!,," − 𝑦',," 5
%&!

,-$ < 𝜀*; 																										(2)

															𝑑+ = 2∑ 4𝑦!,," − 𝑦(,," 5
%&!

,-$ > 𝜀+																												(3)

where 𝜀* and 𝜀+ are constant margins. Moreover, the loss
function L usually applies a relaxed constraint that optimizes

(a)

(b)

(c)

Fig.1. A triplet network: (a) structure; (b) training; (c) inference.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

the difference between the two distances 𝑑* − 𝑑+ [16]. For
example, this paper employs the popular Triple loss (TL) [2]
and the trained model thus satisfies:

	𝐿./ = 𝑚𝑎𝑥(𝑑* − 𝑑+ +𝑀, 0) ≤ 	𝜀 (4)
where 𝑀 is the margin and 𝜀 is a non-negative constant as the
stopping criterion.

For the application of deep metric learning, an extra
prediction network maps the embedded data to labels. Since the
data from the same category has already been clustered in the
embedding space by the TN, the prediction can be simply
realized by simpler schemes such as Support Vector Machine,
logistic regression, or K Nearest Neighbors. This paper uses a
one-hidden-layer MLP as the prediction network.
2) Inference process

The trained model of a TN can map the inputs into an
embedding space in which samples from different classes can
be distinguished; it is then used in the inference process to
classify the test dataset.

One unknown sample (instead of triplets) is input to the
network each time; so, only one of the three identical
subnetworks in the trained model is employed. Let the output
of the hidden units in the 𝑟 -th layer be denoted as 𝑦" =
%𝑦$"		𝑦%" 		⋯		𝑦&!

" (. The output of the last layer is the feature
embedding of the given input; the trained prediction network is
applied for predictions. The inference process of TNs is
illustrated in Figure 2 (b).

B. Stochastic computing
Stochastic computing (SC) is a promising solution to

implement energy-efficient ANN accelerators [17], [18].
Different from conventional arithmetic, SC uses the probability
of “1”s in a binary bitstream to represent a number. This feature
permits that the SC design requires less hardware; for example,
the multiplication in bipolar representation1 can be simply
realized by an XNOR gate.

This paper focuses on another advantage of SC, namely fault
tolerance. Since each bit in the stochastic bitstream has the same
significance, the SC arithmetic has a better resilience to a bit-
flip error than conventional deterministic implementations [19].
In this paper, the SC implementation has been also evaluated as
an effective fault tolerant approach for TN inference and
compared with conventional TNs using the FP format.

III. TRAINING PROCESS: STUCK-AT FAULT MODEL

Since the network parameters are changing at each iteration
of training, transient faults (such as random bit-flips) barely
affect the result of the training process. Therefore, stuck-at
faults are considered as the fault model during the training
process. This model has been originally defined for permanent
faults/defects of high/low logic values at physical transistor and
circuit levels in Very Large Scale Integration (VLSI) [6]; for
ANNs, the model has also been extended as an abstraction as
per its impact [14]. As shown in Figure 2, the stuck-at faults in
ANNs can be divided into two types: stuck-at 0 faults (missing
the neuron) and stuck-at 1/-1 faults (saturated the neuron).

• Stuck-at 0 faults: A fault causing a missing neuron
means that no signal (and data) is generated
irrespective of the input. As it has been abstracted that
the output is stuck at an intermediate value [13], the
intermediate value after the activation function “tanh”
(which is used in this paper) can be treated as “0”,
because the outputs are with a zero-mean normal
distribution. For simplification, the fault causing a
missing neuron is denoted as “stuck-at 0 faults” [11].

• Stuck-at 1/-1 faults: In a saturated neuron caused by
faults the data or control line is held permanently high
or low [7]. Therefore, it can be mapped to the scenario
in which outputs of specific neurons are stuck at a
maximum or a minimum value. Also, as activation
functions (e.g., “tanh” with an output range of [-1, 1])
are applied after every neuron, this model can be
simplified as stuck-at 1 or -1.

The execution of the training process in TNs with specific
faulty neurons can be represented as patterns [13]. As the
exhaustive testing for all possible fault-injection cases is
prohibitive, then for simplification purposes, this paper assumes
that all faults are injected into the same layer and the same
subnetwork. Hence, the pattern representation is the tuple 𝑄. =
(𝑓, 𝑟, 𝑐, 𝑣), where 𝑓 is the number of faults and 𝑟 denotes the
layer to be injected (the input layer is not included), 𝑓 < 𝑚"; 𝑐
is the faulty subnetwork, 𝑐 ∈ {𝑎𝑛𝑐ℎ𝑜𝑟, 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒, 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}; 𝑣
denotes the type of the corresponding faults, which means the
faulty units stuck at 𝑣, 𝑣 ∈ {0, 1, −1}.

IV. IMPACT OF FAULTS ON TRAINING: ANALYSIS
The over-provisioning of neurons in fully-connected neural

networks provide an inherent fault-tolerant capability; a limited
number of faults usually leads to a small accuracy loss or
graceful degradation. However, stuck-at faults in the negative
subnetwork of a TN can lead to an unexpected system failure as
the network converges to a false solution (satisfying the
constraints of the objective function as mentioned in Section II-
A), so failing in the classification task. A theoretical analysis of
such false solutions is presented in the following.

A. Stuck-at 0 faults in output layer
The incorrect convergence with stuck-at-0 faults in the

negative subnetwork is rather intuitive when the faults are in the
output layer of MLPs or the last fully connected layer in CNNs
(i.e., 𝑟 = 𝑙). Due to these faults, a spurious solution can be
easily achieved in training (so it satisfies the constraints, but it
is not a valid solution for the classification problem).

Let 𝐼 be the set of indices of the stuck-at 0 faults and 𝑖 denote
the index of the faulty neurons, 𝑖 ∈ 𝐼. The false solution only
needs to map the anchor and positive subnetworks to similar

 (a) (b)

Fig.2. Examples of faulty network (with faults in neuron c). (a) Stuck-at 0 faults,
missing the neuron; (b) Stuck-at 1 or -1 faults, saturating the neuron.

.

1This paper applies the SC arithmetic in bipolar representation, which
encodes the values as (2𝑁! − 𝑁)/𝑁, where 𝑁 is the length of the stochastic
sequence and 𝑁! is the number of “1”s in it. For more explanation of SC, please
refer to [17], [18].

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

outputs, while the values of the neurons at the indices of the
faulty units (𝑦!,,)) are large enough (the absolute value can be
close to 1 after 𝑡𝑎𝑛ℎ). Consider that the stuck-at 0 faults are
injected, making 𝑦(,,) = 𝑣, ; as per (3), the constraint of the
negative distance in this case is given by

𝑑+ = X∑ 4𝑦!,,) − 𝑦(,,) 5
%&"

,-$,
,∉1

+ ∑ 4𝑦!,,) − 𝑣,5
%

,∈1

						≥ ∑ Z𝑦!,,) − 𝑣,Z,∈1 > 𝜀+

(6)

and it can also be satisfied by even only considering the faulty
terms Z𝑦!,,) − 𝑣,Z, 𝑣, = 0.

The spurious solution is easy to be achieved; for the anchor
and positive subnetworks, the weights address the common part
of their inputs, and the negative subnetwork is ignored. So, the
training converges at that solution in very few iterations.

B. Stuck-at 1/-1 faults in output layer
Let 𝐼 be the set of indices of the stuck-at 1/-1 faults. The

analysis of false solutions is similar to the case of stuck-at 0
faults. Consider (6) for 𝑣, = 1 or −1; the constraint of 𝑑+ can
also be satisfied by only considering the faulty terms Z𝑦!,,) − 𝑣,Z.

However, it could be worse because the convergence can get
stuck into the zero-loss situation even before the training starts.
For all loss functions optimizing the relaxed constraint on 𝑑* −
𝑑+, this leads to a false solution from the start. For example, the
𝐿./ in (4) can be represented as

	𝐿./ = 𝑚𝑎𝑥(𝑑* − 𝑑+ +𝑀, 0)

= 𝑚𝑎𝑥
[𝑑* −X∑ 4𝑦!,,) − 𝑦(,,) 5

%&"
,-$,
,∉1

+ ∑ 4𝑦!,,) − 𝑣,5
%

,∈1 +𝑀, 0\

≤ 𝑚𝑎𝑥4𝑑* −∑ Z𝑦!,,) − 𝑣,Z,∈1 +𝑀, 05																								(7)

where 𝑣, = 1	or −1. The faulty term leads to a false solution
with zero-loss if ∑ Z𝑦!,,) − 𝑣,Z,∈1 ≥ 𝑑* +𝑀 . This can be
achieved under a large number of faults. In practice, the initial
outputs 𝑣, are usually close to 0 due to weight normalization,
the margin 𝑀 is usually set to 1 and |𝑑*| < 1; so it is likely that
the training gets stuck in the zero-loss situation at the beginning.

C. Stuck-at faults in hidden layers
The previous false solution (for stuck-at 0/1/-1 faults) can be

similarly extended to cases when the faults are in the hidden
layers (i.e., 𝑟 < 𝑙); however, when considering the complexity
of the forward propagation, a strict representation of constraints
in each layer cannot be established. Next, we provide a heuristic
discussion. The propagation between fully-connected layers is
given by

																							𝑦3"*$ = 𝜙4∑ 𝑤3,," ∙ 𝑦,", + 𝑏3"5,																								(8)
where 𝑤3,," and 𝑏3" are the weight and bias; 𝜙 is the activation
function (“tanh” used in this paper). The propagation between
convolutional layers can be represented as

𝑦4,5"*$ = 𝜙4∑ ∑ 𝑦,*4,3*5" ∙ 𝑘,,3" + 𝑏3"6
3-+6

6
,-+6 5 (9)

where 𝑘,,3" is the corresponding entry of the 180° rotated 𝑛 × 𝑛
convolutional kernel 𝐾" (only enabled when 𝑖 ≥ 0 and 𝑗 ≤ 𝑛).
The pooling layers do not affect fault propagation. Similar to
the constraints at the output layer, the faulty terms ∑ 4𝑦!,," −,∈1

𝑣,5 can still dominate at the 𝑟-th layer. Such distances in the
negative subnetwork can transmit to the following layers (so,
no more concentrated on those faulty indices, but separate to all
units). However, 𝑡𝑎𝑛ℎ(𝑥) bounds its inputs to the range
[−1, 1] , and weakens the dominance of the large distances
caused by faults. This behavior stacks over multiple layers; so
when the faults occur in the early layers, the negative distance
𝑑+ at the spurious solution tends to be smaller. It is possible that
𝑑+ < 𝜀+ and this spurious solution becomes only a local
minimum; in this case, the network can sometimes avoid it and
continue to converge to the global solution (as the behavior in
the fault-free cases). However, with an increasing number of
faults, the network is more likely to be stuck at the false solution.

V. IMPACT OF FAULTS ON TRAINING: EVALUATION
This section studies the impact of faults on the training of a

TN and its inherent fault tolerance using simulation. The
purpose is to investigate the relationship between faults and the
network’s performance; hence, the classification error is used
as the criterion. The stuck-at faults are applied as the fault
models. Diverse scenarios, including the number and positions
of faults, are considered. Four popular image classification
datasets (MNIST [20], Fashion-MNIST [21], Cifar-10 [22], and
SVHN [23]) are used; details of the datasets and their inference
accuracy in the fault-free case are provided in Table I.

In the first subsection, the sensitivity of the TN is discussed
for its anchor and positive subnetworks. The special behavior
when the faults are in the negative subnetwork is discussed in
the second subsection. The MLP implementation is used
initially, and the results for the CNN implementation are
provided in the last subsection.

A. Fault tolerance of the anchor/positive subnetwork
Next, the fault tolerance of TNs is evaluated when the stuck-

at faults are in the anchor or positive subnetworks. The TN
employs six-layer MLPs as subnetworks. The size and structure
of the TN are chosen as the one that achieves the lowest
classification error. The results of each simulation are trained
for the same 20 epochs and averaged over 200 repeated trials.

Sensitivity on layer and number of faults: The dimensions
of the layers (after the input layer) are represented by the vector
[𝑚$		𝑚%		𝑚7		𝑚8		𝑚9] = [1024		512		256		128		128] . The
percentage of faulty neurons 𝑡 is varied from 0 to 100%, the
number of faults in the 𝑟-th layer is 𝑓 = 𝑚" × 𝑡 (rounded).
Figure 3 shows the simulation results with the pattern 𝑄. =
(𝑓 = 𝑚" × 𝑡	, 𝑟 ∈ {1,⋯ ,5}, 𝑐 ∈ {𝑎𝑛𝑐ℎ𝑜𝑟}, 𝑣 ∈ {0}), 𝑡 ∈ [0, 1].

From these results, the optimal network configuration
(achieving the lowest classification error in the error-free cases)
shows a very strong resilience, so a no accuracy loss with a
small number of faults. The performance of the network
degrades with an increasing number of faults, but only with a
very large percentage of faulty neurons. The latter layers

TABLE I
DETAILS OF DATASETS AND INFERENCE ACCURACY IN FAULT FREE CASE

Name #Features #Neurons in
each layer

Inference accuracy
(fault-free)

MNIST 28×28 784-1024-512-
256-256-128

98.87%
Fashion-MNIST 28×28 91.22%

CIFAR-10 32×32 1024-1024-512-
256-256-128

71.94%
SVHN 32×32 92.20%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

generally have better fault tolerance compared with early layers;
for example, when considering the plots for the output layer
(layer 5), the accuracy is very close (degradation less than 0.1%)
to the fault-free case for each dataset even with 90% faulty
neurons. So, the TN still operates reliably with most neurons
being stuck-at faults in a single layer. Therefore, as so many
faults are not likely to happen in practice, the stuck-at faults in
anchor/positive subnetworks of a TN only lead to trivial effects
that are compensated by the training process.

Sensitivity on subnetwork and type of faults: The sensitivity
of TNs with different types of faults in the anchor and positive
subnetworks is presented next. For better illustration, the results
are provided on the assumption that the faults are in the output
layer and the percentage of faulty neurons is 𝑡 = 90%. Figure
4 shows the simulation results with the pattern 𝑄. = (𝑓 =
𝑚" × t, r ∈ {5}, c ∈ {anchor, positive}, 𝑣 ∈ {0,1, −1}), 𝑡 =
0.9. In this figure, “ST0” denotes the missing hidden units;
“ST1” and “ST-1” denote the hidden units that are stuck at the
maximum or minimum, respectively. The dashed lines in the
figures are the accuracy in the fault-free case.

The results show that the anchor subnetwork is more
sensitive to faults than the positive subnetwork. When
considering the optimization objective in (2) and (3), the
outputs of the anchor subnetwork affect both the positive and
negative distances, while the outputs of the positive subnetwork
only affect the positive distance. Therefore, it is expected to
have slightly better fault tolerance in the positive subnetwork.

The TN has a better resilience to “ST0” faults than “ST1”
and “ST-1” faults. This means hidden units stuck at extreme
values usually lead to worse consequences than missing hidden
units or connection failure. Therefore, we have studied the
distribution of neuron values (after the activation function tanh)
during the training process. Due to the data normalization, the
distribution is approximately Gaussian with more than 92% of
values concentrated in the range [−0.1, 0.1]. Hence, a possible
explanation is that being stuck at 0 is closer to the correct values
of the fault-free cases, which leads to a smaller degradation than
being stuck at the extreme values (which are rather uncommon
during normal operation).

B. Fault tolerance of the negative subnetwork
The previous analysis suggests that faults in the negative

subnetwork can lead to fatal system failure due to incorrect
convergence. This is evaluated in the following; note that this
behavior may be related to the number of faults and the faulty
layers. Therefore, the different percentages of faulty neurons in
each layer (with dimensions [𝑚$		𝑚%		𝑚7		𝑚8		𝑚9] =
[1024		512		256		128		128]) of the negative subnetwork are
assessed during the training process. It is assumed that the fault
type is stuck-at 0 faults (stuck-at 1/-1 faults reach a zero-loss
from the beginning according to Section IV-B). Figure 5 shows
the simulation results with the pattern 𝑄. = (𝑓 = 𝑚" × 𝑡, 𝑟 ∈
{1,⋯ ,5}, 𝑐 ∈ {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}, 𝑣 ∈ {0}), 𝑡 ∈ [0, 0.05].

As per Figure 5, a significant accuracy loss can be caused by
only a few faults in the negative subnetwork. An accuracy close
to 10% implies that the model completely fails in classification,
so it converges to a false solution. This is different from the
strong resilience of the anchor and positive subnetworks
discussed in Section IV-A. Such behavior is in line with the
analysis that the network converges to a spurious solution; the
accuracy tends to be higher when the erroneous units are in the
early layers. Especially for dataset “MNIST”, when the faults
are in the first layer of the negative subnetwork, performance is
very close to the fault-free case (if the training is prolonged,
some other cases can also achieve high accuracy). It can be
confirmed by the analysis that the network can overcome the
spurious solution and continue the correct convergence; this
happens when such a false solution becomes not strong enough
after being weakened by the activation functions.

 Moreover, the inference accuracy decreases as more faults
are injected in the negative subnetwork. The network has a
lower probability to escape from the spurious solution (local
minimum), so agreeing with the analysis. Especially, when the
number of faults is large enough (such as 𝑓 > 5%×𝑚"), the
network tends to be completely stuck at the false solution even
when the faults are in the early layers.

C. Fault tolerance with CNN implementation
The previous simulation results have employed a TN with

MLPs as subnetworks; this section extends it to CNN

(a) (b)

(c) (d)

Fig.3. Inference accuracy of different percentage of faulty neurons in each layer
with dataset (a) “MNIST”; (b) “Fashion-MNIST”; (c) “CIFAR-10”; (d)
“SVHN”.

(a) (b)

(c) (d)

Fig. 4. Inference accuracy of different types of faults into the anchor and positive
subnetworks with dataset (a) “MNIST”; (b) “Fashion-MNIST”; (c) “CIFAR-
10”; (d) “SVHN”.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

implementation. Each of these subnetworks consists of three
convolution layers (with output channels and sizes of 16×24×24
- 32×16×16 - 64×8×8) and two fully-connected layers; tanh is
used as the activation function and max pooling is applied. The
datasets and other configurations in the TN are the same as in
the MLP-based version. This simulation tests the stuck-at faults
in the convolutional layers; since CNNs usually share weights
and computational units between channels, faults are injected
equally into all channels in the same layer. The dimensions of
the convolutional layers (each channel) are represented by the
vector [𝑚$		𝑚%		𝑚7] = [576		256		64].

From the results for all datasets, it is confirmed that the CNN-
based version also has strong resilience to the stuck-at faults in
the anchor or positive subnetworks. As per the simulation
results, the CNN-based TN is still reliable (degradation less
than 0.1%) with up to 89.66% of the neurons in a single layer
with stuck-at faults. Also, the special case when the faults are
in the negative subnetwork is observed in the CNN
implementation. Figure 6 shows the simulation results in the
three convolutional layers with the pattern 𝑄. = (𝑓 = 𝑚" ×
𝑡, 𝑟 ∈ {1,2,3}, 𝑐 ∈ {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}, 𝑣 ∈ {0}), 𝑡 ∈ [0, 0.05].

 The conclusions are like for the MLP implementation
discussed in Section IV. Compared with the results in Figure 5,
the CNN version performs slightly better; however, the faults
in the negative subnetworks still lead to a significant accuracy
loss and it tends to be worse when the erroneous units are in the
latter layers.

VI. PROPOSED FAULT TOLERANT METHODS FOR TRAINING
The previous analysis and simulation results suggest that

fault tolerant schemes are required for dealing with stuck-at
faults in the negative subnetwork of TNs. Next, we propose two
methods to protect the training process from missing or
saturating neurons (i.e., against stuck-at 0 and stuck-at 1/-1
faults) respectively. Also, the proposed methods are evaluated
by simulations to prove their efficacy.

A. Regularization to anchor outputs
From the analysis in Section IV-A, the false solution with

stuck-at 0 faults occurs when the faulty neurons in the anchor

and positive subnetworks have large absolute values. In this
case, the constraint of the negative subnetwork can be simply
satisfied by the faulty term.

To prevent an incorrect convergence towards large outputs in
the anchor or positive terms, an extra penalty term (i.e., the L2-
regularization term on the anchor outputs from different layers)
must be added to the loss function as

𝐿 = 𝑚𝑎𝑥(𝑑* − 𝑑+ +𝑀, 0) + 𝜆∑ ∑ 𝑦!,,
3 %&#

,-$
)
3-$ (10)

where 𝑚3 is the dimension of layer 𝑗 and 𝜆 is the parameter
determining the influence of the penalty term. This paper
assumes that faults occur in any layer; however, if the faulty
layer can be specified, only regularization of the corresponding
outputs is required. Consider TL as an example only (applicable
to other functions too). The regularization term can be added to
either the anchor or the positive subnetworks (their outputs tend
to be the same due to the objective function). In this paper, the
regularized anchor outputs affect both positive and negative
distances, so they can better accelerate convergence.

The regularization term on the anchor outputs can restrict the
faulty units from taking a large value, therefore preventing the
convergence to the false solution. By choosing a proper
parameter 𝜆, the additional term is negative to the error-free
case; however, it prevents an unexpected system failure to
occur when caused by the stuck-at 0 faults in TNs.

B. Modified margin
As per the analysis in Section IV-B, measures should be

taken to prevent training to be in a zero-loss situation from the
start under stuck-at 1/-1 faults. In this case, let’s consider the
objective function TL in (7) as the example; the difference
caused by the faulty terms ∑ Z𝑦!,,) − 𝑣,Z,∈1 must be compensated.
An intuitive way is to increase the original margin 𝑀; let the
number of faulty neurons be denoted by 𝑓, so increasing the
margin by 𝑓 can effectively guarantee that the training starts
correctly (as the initial outputs 𝑦!,,) are usually close to 0).

By the analysis in Section III, convergence can still be in the
false solution of the subsequent training process; in this case,
the regularization of the loss function is no longer feasible. A
possible reason is that the regularized outputs towards 1 or -1

(a) (b)

(c) (d)

Fig. 5. Inference accuracy of different percentages of faulty neurons in the
negative subnetwork with dataset (a) “MNIST”; (b) “Fashion-MNIST”; (c)
“CIFAR-10”; (d) “SVHN”.

(a) (b)

(c) (d)

Fig. 6. Inference accuracy of different percentage of faulty neurons in the
negative subnetwork (CNN version) with dataset (a) “MNIST”; (b) “Fashion-
MNIST”; (c) “CIFAR-10”; (d) “SVHN”.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

can cause vanishing gradients with bounded activation
functions. Therefore, the method of further increasing the
margin is considered; for each faulty term Z𝑦!,,) − 𝑣,Z , the
maximum error is 2 when 𝑣, = 1 or 𝑣, = −1, −1 ≤ 𝑦!,,) ≤ 1.
By (7), if the number of faulty neurons is 𝑓 , increasing the
margin by 2𝑓 can ensure that the convergence does not achieve
a false solution over the entire training process.

However, the number of faulty neurons is usually unknown
in many practical applications. An appropriate margin is critical
to address the importance of the contributive triplets [24];
setting the margin to an arbitrarily large value slows down the
convergence in the error-free case. Therefore, increasing the
margin must be thought carefully. We propose to modify the
margin at the beginning of the training by:

𝑀: = 𝑀 + 2⌊𝑑+⌋ (11)
where ⌊𝑑+⌋ denotes the round-down to the largest integer
smaller than 𝑑+. Note that the margin only changes based on
the output at the first iteration, and it is fixed in the following
training process. This value assumes that the initial negative
distance is smaller than 1 in the error-free cases (valid for all
applied datasets); thus, it can be an estimate of the number of
(stuck-at 1 or -1) faults. Consider the widely used process of
weight initialization; this estimate works for most cases, and it
can also be modified by the empirical knowledge of different
applications. In summary, the modified margin 𝑀: is required
to correctly start the training process and prevent false solutions
when stuck-at 1/-1 faults are present in the negative subnetwork.

C. Evaluation
This subsection provides the simulation results for the

proposed technique of regularization to anchor outputs
(modified margin) to avoid false solutions when the stuck-at 0
(stuck-at 1/-1) faults are in the negative subnetwork. The fault
injection process and the network configurations are the same
as those applied in Section V. Simulation has been performed
for faults that are randomly injected into different layers, so also
shows the worst case (when faults are in the output layer).
Consider the MLP implementation as an example with the

network configuration of Section V-A. Also, the pattern of the
fault injection simulation is given by 𝑄. = (𝑓 = 𝑚" × 𝑡	, 𝑟 ∈
{5}, 𝑐 ∈ {𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒}, 𝑣 ∈ {0,1, −1}), 𝑡 ∈ [0, 1].

The inference accuracy at different percentages of faulty
neurons is shown in Figure 7. Compared with the previous
results in Section V, the negative subnetwork is no longer
sensitive to stuck-at faults. The curves are now like those for
the anchor/positive subnetworks, so the false solutions can be
effectively avoided by the proposed approach. More generally,
the regularization on the anchor outputs for stuck-at 0 faults
operates very well; increasing large margins for stuck-at 1 or -
1 faults leads to some accuracy loss, but performance is still
satisfactory. Therefore, the proposed fault-tolerant methods can
be utilized in TNs to avoid fatal system failures caused by
stuck-at faults. Also, they can be applied simultaneously to
protect the network from all other types of stuck-at faults.

VII. INFERENCE PROCESS: RANDOM BIT-FLIP MODEL
During the inference process, the fault model is random bit-

flips; these faults are transient in nature, and they have been
widely accepted as random upset values in memory. Therefore,
in the fault model, random bit-flips can occur at any of the bits
by reversing the value (0 to 1, or 1 to 0); since predictions are
directly determined by the weights stored in memory, bit-flip
faults are critical in the inference process.

When more than one random bit-flip occur (mostly caused
by a radiation particle also known as soft errors), the affected
memory cells are usually physically close; so, a soft error tends
to either affect multiple data bits in a single memory word, or
single data bits in multiple adjacent words [25]. Therefore, two
scenarios caused by bit-flip faults are considered: 1) single-bit
error: multiple errors occur but each faulty weight/memory
word has only one bit flipped; 2) multi-bit error: multiple errors
occur but they affect the same weight/memory word.

Next, an analysis is provided for the weights in FP format as
affected by bit-flips. The implementation with SC is known to
have inherent resilience to errors; hence, it is also analyzed and
compared to provide insight into the fault tolerance of FP TNs.

A. Fault model for FP format
This paper assumes that the weights of the TNs are in the

IEEE 754 standard single-precision floating-point format [26],
i.e., 1 sign bit, 8 exponent bits, and 23 mantissa bits. For single-
bit errors, any one of those bits is flipped to the reversed state.

Similarly, the execution of the inference process in TNs with
bit-flip faults can be represented as patterns. The pattern is
represented by 𝑄1 = (𝑓, 𝑟, 𝑃), where 𝑓 is the number of faults
and 𝑟 denotes the layer to be injected, 𝑓 < 𝑚" ; the set 𝑃 =
}𝑝$, 𝑝%, ⋯ , 𝑝;~ denotes the position of the corresponding faults,
so the location of the bit-flip at the 𝑝,-th bit, 𝑝, ∈ {1, 2,⋯ , 32}.
The decimal value of a floating number is given by

𝑥 = 	 (−1)< × 2=+$%> × (1 +𝑀 × 2+%7), (12)
where 𝑆, 𝐸, and 𝑀 are the decimal number represented by the
sign, exponent, and mantissa bits; so, faults on the sign or
exponent bits (𝑝, ≤ 9) lead to more significant changes.

Let 𝑥? denote the erroneous value represented by a single
flipped bit of an FP number 𝑥. If the fault occurs in the sign,
exponent, or mantissa bits, the erroneous value and the absolute
error are represented as

(a) (b)

(c) (d)

Fig. 7. Inference accuracy of different percentage of faulty neurons with stuck-
at 0 faults (regularization on anchor outputs), and stuck-at 1/-1 faults (modified
margin): (a) “MNIST”; (b) “Fashion-MNIST”; (c) “CIFAR-10”; (d) “SVHN”.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

𝑥? = �

−𝑥,																									sign	bit;
2=$𝑥,																							exponent	bits;
@$@*%%&

@*%%&
𝑥,														mantissa	bits;

(13)

|	𝑥 − 𝑥?| = �

|2𝑥|,																								sign	bit;
|(2=$ − 1)𝑥|,																exponent	bits;
�(@$+$)@
@*%%&

𝑥� ,													mantissa	bits,
(14)

where 𝐸, = 2, if the 𝑖-th bit (counted from least significant bit
(LSB) to most significant bit (MSB)) of the exponent flipped
from 0 to 1; 𝐸, = 2+, if the 𝑖-th bit of the exponent flipped from
1 to 0. Similarly, 𝑀, = 2, when the 𝑖-th bit of the mantissa is
flipped from 0 to 1; otherwise 𝑀, = 2+, .	𝑀 is the decimal
number represented by the mantissa bits in (12); it is concluded
by (14) such that the error of an FP number is related to its
absolute value |𝑥|. Therefore, bit-flips in a larger FP number
lead to a more significant error.

B. Fault model for SC format
An SC number has the feature that each bit has the same

significance, this is an advantage from the perspective of fault
tolerance. Considering the same pattern of bit-flip fault to the
inference process as in the FP TNs, the absolute error an 𝑁-bit
stochastic sequence with bipolar representation is given by

|	𝑥 − 𝑥?| = 	2𝑁+$. (15)
The error of an SC number caused by a bit flip relates to only

the length of the stochastic sequences; hence, it can be treated
as a constant because the length 𝑁 is a predefined parameter.

C. Comparison
To compare the tolerance of FP and SC formats to the bit-flip

fault in the weights, the corresponding absolute value of the
erroneous element is required. Even though the weight
distribution can vary greatly from different applications, they
usually concentrate within a limited range. For TNs with
normalized datasets (as used in this paper), the weight
distributions are approximately normal distributions with zero
mean and 0.6 variance. To give an intuitive illustration,
consider an average absolute weight value of 0.5 as an example
(represented in FP as: sign bit “0”, exponent bits “01111110”,
and all zeros as mantissa bits). Figure 8 illustrates the absolute
error caused by one flipped bit on different positions (the x-axis
is arranged in the order of sign bit: 1; exponent bits: 2-9;
mantissa bits: 10-32) with FP and SC formats. Different lengths

of SC sequences are compared and denoted as horizontal lines
in this figure.

Figure 8 shows that the errors on the mantissa bits of FP
numbers are relatively small and decrease exponentially. The
error when the fault occurs on any position of an SC number is
also very small. The intersections show that the error at the
11/13/15/17-th bit is equivalent to an error in SC format with
16/64/256/1024 bits. One noticeable finding is that a 0 to 1 flip
in significant exponent bits can lead to extremely large errors
(such as the 2nd bit in Figure 8). Also considering (14) and (15),
errors in FP format increase with a larger weight, while the
errors in SC format remain unchanged.

The above analysis quantifies the errors in FP and SC formats;
the FP format suffers significant errors when the faults occur in
the MSBs (especially a 0 to 1 flip), while the SC format keeps
a constant small error with faults in any position. However, it
does not directly show the implications by which the inference
accuracy of the TN is affected by these errors. The next section
provides further evaluations of the impact of faults.

VIII. IMPACT OF FAULTS ON INFERENCE: EVALUATION
This section deals with simulation as fault injection during

the inference process of TNs implemented in both FP and SC
format. The random bit-flip is applied as the fault model; the
network configurations and the datasets are the same as in the
previous section. The results of each evaluation are averaged
over 10000 repeated trials.

A. TNs with FP format
For the TNs with FP format, different numbers of faults in

the TN have been considered during the inference process. Both
cases of single-bit and multi-bit errors have been assessed.

Single-bit error: A faulty bit is injected into each weight and
multiple erroneous weights can be present. Different from
training, a fixed number of faults is assumed and they are
randomly injected into all layers. The patterns 𝑄1 of this fault
injection process is represented as 𝑄1 = (𝑓 ∈ {1,2,⋯ ,10}	, 𝑟 ∈
{1,⋯ ,5}, 𝑃) . With 𝑟 and 𝑃 = }𝑝$, 𝑝%, ⋯ , 𝑝;~ uniformly and
randomly chosen within the feasible range, faults occur in any
layer or bit position; the fault-free case 𝑓 = 0 is included for
comparison. The inference accuracy is plotted in Figure 9 (a).

The results show the accuracy constantly decreases with the
number of faulty bits for all datasets, so the inference accuracy
and the number of faults have a linear relationship. Different
from the fault injections for the training process, only a few
weights with single-bit errors lead to an obvious degradation.
The inference process of TNs is sensitive to random bit flips;
also, by monitoring the position of the faults in all trials, 97.2%
of the degradation (defined as an accuracy loss larger than
0.01%) occurs when the bit-flip (on at least an erroneous weight)
is on the exponential bits.

Multi-bit error: This experiment injects a pattern consisting
of multiple faulty bits into only one weight; this pattern is nearly
identical to the previous experiment. The only difference is that
all bit-flips are injected to the same erroneous weight. The
inference accuracy is shown in Figure 9 (b).

Similar to the previous case, the accuracy loss is linearly
proportional to the number of faulty bits and only one erroneous
weight with multiple bit-flips can lead to significant
degradation. Thus, the same importance should be attached to

Fig. 8. Comparison of absolute error in FP (32-bits) and SC formats with one
bit-flip fault for example weight value 0.5.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

the case of multi-bit error; also, 95.8% of the degradation in all
the repeated trials involves at least one bit-flip on the
exponential bits of the erroneous weight.

B. TNs with SC format
This section provides the simulation results of fault injection

in the TN with SC arithmetic during the inference process. The
design of the SC-based inference network has been described
in [18]. The goal is to support the analysis for TNs with FP
format because the SC implementations are generally
considered tolerant to bit flips. This simulation can also reveal
the relationship between errors caused by faults and the
predicted accuracy loss. For the worse cases, multi-bit errors
are applied in this subsection.

Sensitivity on sequence length: Different lengths of
stochastic sequences in SC TNs are utilized in inference. Since
the bit length is different from the FP format, the fault rate is set
equivalent to the one used in Section VIII-A (a multi-bit error
with 10 faulty bits). The pattern of this fault injection can be
thus represented as 𝑄1 = (𝑓 = $CD

7%
, 𝑟 ∈ {1,⋯ ,5}, 𝑃) , 𝑓 is

rounded off. Sequence lengths from 𝑁 = 1024 bits to 𝑁 = 32
bits are utilized; the results are plotted in Figure 10 (a).

Sensitivity on the number of faults: The first simulated
scenario relies on different numbers of faults, but it assumes
that all faulty bits are of the same weight. The bit length of the
stochastic sequences is set to 𝑁 = 32; the pattern of this fault
injection is identical to Section VIII-A as 𝑄1 = (𝑓 ∈
�D
7%
, %D
7%
, ⋯ , $CD

7%
�	 , 𝑟 ∈ {1,⋯ ,5}, 𝑃) . The results are given in

Figure 10 (b).
Figure 10 (a) shows an accuracy loss with shorter SC

sequences; however, the accuracy remains almost unchanged in
Figure 10 (b) when increasing the number of faulty bits; this
phenomenon does not relate to different impacts for errors
(illustrated in Figure 8), but it is caused by the less accurate SC
arithmetic with shorter sequence lengths. In Figure 8, the SC
format does not show an immediate improvement over the FP
format in terms of absolute error, but its inference accuracy
shows a significant advantage. As a fault-tolerant
implementation, SC has the feature that all bits share the same
significance, so bit-flip faults cannot lead to significant changes.
The impact of errors with the SC format (𝑁 = 32) is similar to
the mantissa bits of the FP format; while Figure 9 (b) and Figure
10 (b) show different plots at the same fault rate, the
degradation is mostly caused by the changes in the exponent
bits. If the large outliers can be eliminated, the fault tolerance
of TNs with the FP format can be greatly increased (compared
to the performance of SC implementations).

IX. PROPOSED FAULT TOLERANT METHODS FOR INFERENCE
The previous analysis and simulation by error injection have

shown the effects of random bit-flip faults on the inference
process of the TNs; in particular, large outliers in weights are
caused by flips in the significant bits. This paper focuses on
low-cost solutions while still retaining satisfactory performance
and taking advantage of the inherent fault tolerance of the NNs.
The proposed methods protect the inference process from bit-
flips by inserting parity bits for both single-bit and multi-bit
errors. Also, related works are discussed, and the proposed
methods are evaluated to show their efficiency.

A. Replacing LSB by a parity bit for single-bit errors
As per the error injection process, the protection of MSBs

(exponent bits) is of great importance and can greatly reduce
the loss of accuracy. A single parity check is widely used for
error detection and thus, it is applied in this paper. A parity bit
is employed to check the exponent bits (encoded by the XOR
operation with each bit) as illustrated in Figure 11; therefore,
the parity bit detects a single-bit error when any of the
significant bits are changed by faults. Once the bit-flip is
detected, the corresponding weight is directly set to zero to
prevent outliers; moreover, the parity bit replaces the LSB of
the mantissa. This scheme does not require additional memory
overhead and shows the applicability of the proposed scheme
because the data format remains unchanged. Setting the weight
to zero and replacing the mantissa bit can lead to a loss in
accuracy; this is usually negligible compared to the benefits of
protecting the MSBs. With normalization and activation
functions (such as sigmoid or tanh), the weights in NN
applications usually have small absolute values (nearly close to
zero); the effect of a changed mantissa bit is verified by the
analysis in Section VII-A and related literature [27]. For
example, in Figure 8, the error due to the parity bit (32-th) is at
a level of 10+>; with large outliers avoided, the degradation
caused by bit-flip faults is expected to be greatly mitigated and
evaluation of performance is provided by simulation.

B. Replacing LSBs by parity bits for multi-bit errors
The case of multiple faults in one weight is rarer than the

single case; however, as code-based protection for single-bit
errors can fail, this paper also proposes a parity-based
protection method for multi-bit errors.

The principle in the proposed methods is similar to detecting
single-bit errors by using parity bits (inserted at the LSBs of the
mantissa) to detect errors in the exponent bits. However, since
more than one fault can occur in these bits, more parity bits are

 (a) (b)

Fig.9. Inference accuracy of different number of faults injected in the inference
process (FP implementation) for (a) single-bit error; (b) multi-bit error.

 (a) (b)

Fig.10. Simulation results for TNs with SC format. The inference accuracy of
(a) different SC sequence lengths; (b) different number of faults.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

required to check each of them (one parity bit encodes an
exponent bit and 8 bits are required for an exponent in the
single-precision FP format) as shown in Figure 11. Similarly, if
a fault is detected, the weight is directly set to zero to prevent
large outliners. Replacing more LSBs in the mantissa decreases
the accuracy, but as per the analysis in Section VII-A, such loss
is still negligible (<0.001% in fault-free cases) compared with
a possible fatal effect due to these faults; for example, in Figure
8, the error caused by the 8 parity bits is at a level of 10+9.
Further evaluation is provided by simulations to verify the
feasibility of the proposed methods with also a loss in accuracy.

C. Related works
Fault tolerance of NNs is required in critical applications and

different approaches for protecting the model from bit-flip
faults in weights during inference have been studied; most of
these methods require some redundancy either spatial or
temporal [11] or retraining the model by artificial fault injection
[28]. Traditional single-error correction (SEC) codes can fully
recover the faulty weights by utilizing 6 additional bits (for the
32-bit FP format). However, this overhead may not always be
acceptable, especially for NN applications in hardware/power-
constrained platforms, such as portable devices/systems.

Therefore, this paper focuses more on solutions for random
bit-flips with low memory/hardware overheads. The inherent
resilience of NNs to faults allows the use of low-cost methods
with satisfactory classification error; for example, [29]
proposed an optimization technique based on the observation
that resilience is not homogeneous over the networks; so, the
weights are adjusted according to a resilience prediction
criterion. Similar to this paper, the replacement of weights with
coding bits has been already proposed in the technical literature.
In [30] an SEC code has been used to replace the 4 LSB in the
mantissa to protect the sign and exponent bits; in [31] a similar
idea to using parity bits has been proposed, but all memory bits
for the weights are protected. However, those code-based
methods are better suited for single-bit errors, and hence,
solutions for multi-bit errors have to also be investigated; for
example, [30] has applied filters to eliminate the large values in
the weights caused by faults. So different methods are
compared with the proposed parity-based fault tolerance for
both single-bit and multi-bit errors.

D. Evaluation
The proposed methods and schemes of related works are

compared with bit-flip faults in the inference of TNs. The MLP
is used for subnetworks and the configurations are identical to
those in Section VIII; the results are evaluated by the accuracy
loss compared with the fault-free cases. The results with no
fault tolerance are also provided for comparison.

For the single-bit error evaluation, one bit-flip has been
simulated for 10 different random weights; the results are
averaged over 10000 repeated trials and are shown in Table IV.
The method in [30] has the lowest accuracy loss, because it
performs full correction by SEC; the proposed method
eliminates on average 96.76% of accuracy loss caused by faults,
so better performance than [29] and [31]. Considering that the
proposed parity-based method is much simpler and replaces
fewer bits, it can be thought as an effective alternative for TNs.

For multi-bit errors, 10 bit-flips are applied to one different
random weight; the results are averaged over 10000 repeated
trials as shown in Table V. The proposed method eliminates on
average 97.74% of accuracy loss and again it performs better
than [29] and the filter in [30]. The replaced bits in the mantissa
are thus shown to have a marginal effect compared with the
benefits of fault tolerance. Therefore, if the application is at risk
from multi-bit errors, the proposed method provides
comprehensive protection.

X. CONCLUSION
This paper has comprehensively studied the fault tolerance

of Triplet Networks (TNs) under stuck-at faults in training and
random bit-flips in inference.

For the training process, the analysis has revealed a special
case: the stuck-at faults in the negative subnetworks can cause
incorrect convergence when the loss is dominated by the faulty
terms; moreover, stuck-at 1/-1 faults can even lead to a zero-
loss situation at the beginning of training. These faults can make
the network converge to false solutions, so resulting in system
failure. Simulation results have been provided for evaluating
the impact of stuck-at faults, by considering different number
and position of faults and affected subnetworks. It has been

TABLE IV
ACCURACY LOSS (%) OF FAULT TOLERANCE METHODS WITH DIFFERENT

DATASETS FOR 10 SINGLE-BIT ERRORS

Scheme MNIST Fashion-
MNIST

CIFAR-
10 SVHN

Unprotected 3.765 3.157 2.460 2.967
[29] 0.662 0.582 0.449 0.560

Code in [30] 0.178 0.146 0.108 0.117
[31] 0.007 0.005 0.006 0.006

Proposed method 0.118 0.104 0.089 0.086

TABLE V
ACCURACY LOSS (%) OF FAULT TOLERANCE METHODS WITH DIFFERENT

DATASETS FOR AN MULTI-BIT ERROR WITH 10 FAULTY BITS

Scheme MNIST Fashion-
MNIST CIFAR-10 SVHN

Unprotected 2.459 2.611 1.932 2.030
[29] 0.388 0.301 0.274 0.319

Filter in [30] 0.068 0.080 0.062 0.074
Proposed method 0.050 0.056 0.043 0.053

Fig. 11. Parity-based fault tolerance for bit-flips during inference process for single-bit or multi-bit errors.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

shown that the anchor and positive subnetworks are not
sensitive to stuck-at faults. However, several faults in the
negative subnetworks can lead to invalid training, which has
confirmed the proposed theory of false solutions.

Two fault-tolerant methods have been proposed to solve the
special case in the negative subnetworks. As per the outlined
analysis, the loss function with regularization on the anchor
outputs can be applied for stuck-at 0 faults, while the so-called
modified margin scheme is a viable solution for stuck-at 1/-1
faults. Simulation has proved their performance and efficacy as
false solutions can be effectively avoided; therefore, the
proposed methods can be used for TNs during training to avoid
a fatal system failure caused by stuck-at faults.

For the inference process, the theoretical analysis provided
in this paper has shown that the flips in the exponent bits of the
floating-point (FP) format lead to very large classification
errors, while the impact of errors in the stochastic computing
(SC) format is rather small, independently of the locations of
the faulty bits. Comparison between the FP and SC formats in
the analysis has been verified by extensive simulation; it can be
concluded that the extremely large outliers in erroneous FP
numbers are the main reason for degradation in accuracy. As
with no such problem, SC implementations have shown strong
resilience to random bit-flips; therefore, the fault tolerance of
FP-based TNs can be improved by eliminating these outliers.

Two methods have also been proposed for protecting the TN
from bit-flip faults during inference against both single-bit and
multi-bit errors; they are based on the use of parity bits to check
the exponent bits and prevent possible large outliers. These
approaches lead to a small accuracy loss and they can efficiently
improve the performance of faulty TNs without introducing
memory redundancy. Evaluation has been pursued for the
proposed methods and other approaches in related works. For
single-bit errors, the proposed scheme performs better than all
others except for SEC-based full correction (which requires a
significantly larger memory overhead); for multi-bit errors, the
proposed scheme achieves the lowest accuracy loss.

REFERENCES
[1] E. Hoffer, and N. Ailon, "Deep metric learning using triplet

network," International workshop on similarity-based pattern
recognition. Springer, Cham, pp. 84-92, Nov. 2015.

[2] F. Schroff, D. Kalenichenko, and J. Philbin, "Facenet: A unified
embedding for face recognition and clustering." in Proc. of the IEEE
conference on computer vision and pattern recognition, pp. 815-823,
2015.

[3] Y. Zhang, D. Liu, and Z. J. Zha, "Improving triplet-wise training of
convolutional neural network for vehicle re-identification," in IEEE
International Conference on Multimedia and Expo (ICME), IEEE, pp.
1386-1391, Jul. 2017.

[4] H. Lai, J. Chen, L. Geng, Y. Pan, X. Liang and J. Yin, "Improving Deep
Binary Embedding Networks by Order-Aware Reweighting of Triplets,"
IEEE Trans. on Circuits and Systems for Video Technology, vol. 30, no.
4, pp. 1162-1172, April 2020.

[5] V. Kumar BG, G. Carneiro, and I. Reid. "Learning local image
descriptors with deep siamese and triplet convolutional networks by
minimising global loss functions," In Proc. of the IEEE conference on
computer vision and pattern recognition, pp. 5385-5394, 2016.

[6] J. A. Abraham and W. K. Fuchs, ''Fault and error models for VLSI,'' in
Proc. IEEE, vol. 74, no. 5, pp. 639-654, May 1986.

[7] C. Torres-Huitzil and B. Girau, "Fault tolerance in neural networks:
Neural design and hardware implementation," in International
Conference on ReConFigurable Computing and FPGAs (ReConFig), pp.
1-6, Dec. 2017.

[8] L. Matanaluza et al., "Emulating the Effects of Radiation-Induced Soft-
Errors for the Reliability Assessment of Neural Networks," IEEE Trans.
on Emerging Topics in Computing, pp. 1-15, Sept. 2021 (early acces).

[9] S. Liu, K. Chen, P. Reviriego, W. Liu, A. Louri and F. Lombardi,
"Reduced Precision Redundancy for Reliable Processing of Data," IEEE
Trans. on Emerging Topics in Computing, vol. 9, no. 4, pp. 1960-1971,
1 Oct. 2021.

[10] M. D. Emmerson and R. I. Damper, "Determining and improving the
fault tolerance of multilayer perceptrons in a pattern-recognition
application," IEEE Trans. on Neural Network, vol. 4, no. 5, pp. 788-793,
Sep. 1993.

[11] T. Haruhiko, M. Masahiko, K. Hidehiko and H. Terumine, "Enhancing
both generalization and fault tolerance of multilayer neural networks," in
International Joint Conference on Neural Networks, pp. 1429-1433, Aug.
2007.

[12] N. Kamiura, Y. Taniguchi, T. Isokawa and N. Matsui, "An improvement
in weight-fault tolerance of feedforward neural networks," in Proc. 10th
Asian Test Symposium, pp. 359-364, Aug. 2001.

[13] B. S. Arad and A. El-Amawy, "On fault tolerant training of feedforward
neural networks", Neural Network, vol. 10, no. 3, pp. 539-553, 1997.

[14] C. H. Sequin and R. D. Clay, "Fault tolerance in artificial neural
networks", in Proc. Int. Joint Conf. Neural Netw. (IJCNN), vol. 1, pp.
703-708, Jun. 1990.

[15] S. Ding, et al., "Deep feature learning with relative distance comparison
for person re-identification," Pattern Recognition, vol 48, no. 10, pp.
2993-3003, Oct. 2015.

[16] Y. Liu and C. Huang, "Scene Classification via Triplet Networks," IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 11, no. 1, pp. 220-237, Jan. 2018.

[17] W. J. Gross and V. C. Gaudet, Stochastic computing: Techniques and
Applications, Springer Internation Publishing, Feb. 2019.

[18] S. Liu, X. Tang, F. Niknia, P. Reviriego, W. Liu, A. Louri, and F.
Lombardi, “Stochastic divders for low latency neural netoworks,” IEEE
Trans. on Circuits and Systems I: Regular Papers, vol. 68, no. 10, pp.
4102-4115, 2021.

[19] W. Qian, X. Li, M. D. Riedel, K. Bazargan and D. J. Lilja, "An
Architecture for Fault-Tolerant Computation with Stochastic Logic,"
IEEE Trans. on Computers, vol. 60, no. 1, pp. 93-105, Jan. 2011.

[20] Y. LeCun, L. Bottou, Y. Bengio et al., "Gradient-based learning applied
to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp.
2278-2324, 1998.

[21] H. Xiao, K. Rasul and R. Vollgraf, "Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms," in arXiv preprint
arXiv:1708.07747, 2017.

[22] A. Krizhevsky and G. Hinton, "Learning multiple layers of features from
tiny images," Citeseer, 2009.

[23] Y. Netzer, T. Wang, A. Coates, et al., "Reading digits in natural images
with unsupervised feature learning," 2011.

[24] Y. Liu and C. Huang, "Scene Classification via Triplet Networks," IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 11, no. 1, pp. 220-237, Jan. 2018.

[25] M. Maniatakos, M.L. Michael, Y. Makris, "Vulnerability-based
interleaving for multi-bit upset (MBU) protection in modern
microprocessors," in IEEE International Test Conference, pp.1-8, Nov.
2012.

[26] W. Kahan, “IEEE standard 754 for binary floating-point arithmetic”,
Lecture Notes on the Status of IEEE 754, no. 94720-1776, pp. 11, 1996.

[27] G. Li, S. K. S. Hari, M. Sullivan, et al., "Understanding error propagation
in deep learning neural network (DNN) accelerators and applications",
in Proc. of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1-12, Nov. 2017.

[28] C.-T. Chiu, K. Mehrotra, C. K. Mohan and S. Ranka, "Robustness of
feedforward neural networks", in Proc. IEEE Int. Conf. Neural Netw.,
vol. 2, pp. 783-788, Apr. 1993.

[29] C. Schorn, A. Guntoro and G. Ascheid, "An Efficient Bit-Flip Resilience
Optimization Method for Deep Neural Networks," in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp.
1507-1512, May 2019.

[30] Z. Wang, F. Niknia, S. Liu, P. Reviriego, P. Montuschi and F. Lombardi,
"Tolerance of Siamese Networks (SNs) to Memory Errors: Analysis and
Design," IEEE Trans. on Computers, Jun. 2022.

[31] M. Qin, C. Sun, & D. Vucinic, "Improving robustness of neural networks
against bit flipping errors during inference," Journal of Image and
Graphics, vol. 6, no. 2, pp. 1-6, Dec. 2018.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Ziheng Wang (S'21) received the BEng
degree in electronic and information
engineering from Harbin Institute of
Technology, Harbin, China, in 2018, and the
MS degree in electrical engineering from
University of Pennsylvania in 2020. He is
studying for the PhD degree in the Department

of Electrical and Computer Engineering, Northeastern
University. His current research directions are neural networks
and stochastic computing.

Farzad Niknia (S'21) received the B.Sc. and
M.Sc. degrees in Electrical and Electronics
Engineering from the University of Tabriz,
Iran in 2014 and 2018. He worked as a
research assistant at the IC Design Lab
through his M.Sc. degree. He is currently
working towards the Ph.D. degree in

Computer Engineering at Northeastern University, Boston as a
research assistant with a concentration on ASIC Design. His
research interests include ASIC and FPGA design, VLSI, EDA
tools, design for test and hardware security.

Shanshan Liu (M'19) received the Ph.D.
degree in Microelectronics and Solid-State
Electronics from Harbin Institute of
Technology, Harbin, China, in 2018. She
was a post-doctoral researcher with the
Department of Electrical and Computer
Engineering (ECE), Northeastern University,
Boston, USA, from 2018 to 2021, and is

currently an Assistant Professor with the Klipsch School of
ECE, New Mexico State University, Las Cruces, USA. She
serves as an Associate Editor for the IEEE Trans. on Emerging
Topics in Computing and the IEEE Trans. on Nanotechnology,
a Guest Editor for the IEEE Trans. on Circuits and Systems I.
Her research interests include fault tolerance design in high
performance computing systems, emerging computing, VLSI
design, dependable machine learning, error correction codes.

Pedro Reviriego (M'04-SM'15) received
the M.Sc. and Ph.D. degrees in
telecommunications engineering from the
Technical University of Madrid, Madrid,
Spain, in 1994 and 1997, respectively. From
1997 to 2000, he was an Engineer with
Teldat, Madrid, working on router
implementation. In 2000, he joined

Massana to work on the development of 1000BASE-T
transceivers. From 2004 to 2007, he was a Distinguished
Member of Technical Staff with the LSI Corporation, working
on the development of Ethernet transceivers. From 2007 to
2018 he was with Nebrija University and from 2018 to 2022
with Universidad Carlos III de Madrid. He is currently with
Universidad Politécnica de Madrid working on several topics in
computer science with a focus on security, privacy and
reliability.

Ahmed Louri is the David and Marilyn
Karlgaard Endowed Chair Professor of
Electrical and Computer Engineering at the
George Washington University, which he
joined in August 2015. He received the
Ph.D. degree in Computer Engineering
from the University of Southern California,
Los Angeles, California in 1988. From

1988 to 2015, he was a professor of Electrical and Computer
Engineering at the University of Arizona. From 2010 to 2013,
he served as a program director in the National Science
Foundation's (NSF) Directorate for Computer and Information
Science and Engineering. His research interests are
interconnection networks and network on chips for multicores,
and the use of machine learning techniques for energy-efficient,
reliable, high-performance and secure many-core architectures
and accelerators. He was recently selected to be the recipient
of the IEEE Computer Society 2020 Edward J. McCluskey
Technical Achievement Award. He is currently serving as the
Editor-in-Chief of IEEE TRANS. ON COMPUTERS.

Fabrizio Lombardi (M'81-SM'02-F'09)
received the B.Sc. degree (Hons.) in
electronic engineering from the University
of Essex, U.K., in 1977, the master’s degree
in microwaves and modern optics and the
Diploma degree in microwave engineering
from the Microwave Research Unit,
University College London, in 1978, and the

Ph.D. degree from the University of London in 1982. He is
currently the International Test Conference (ITC) Endowed
Chair Professorship with Northeastern University, Boston,
USA. His research interests are bio-inspired and nano
manufacturing/computing, VLSI design, testing, and
fault/defect tolerance of digital systems. He is currently the
2022/23 President of the IEEE Nanotechnology Council.

	Fault Tolerant Triplet Networks for Training and Inference

