
US 20210344617A1
WT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0344617 A1

LOURI et al . (43) Pub . Date : Nov. 4 , 2021

Publication Classification (54) SYSTEMS AND METHODS FOR
APPROXIMATE COMMUNICATION
FRAMEWORK FOR NETWORK - ON - CHIPS (2006.01)

(51) Int . Ci .
H04L 12/933

(52) U.S. Ci .
CPC

(71) Applicant : The George Washington University ,
Washington , DC (US) H04L 49/109 (2013.01)

(72) Inventors : Ahmed LOURI , Vienna , VA (US) ;
Yuecben Chen , Arlington , VA (US)

(57) ABSTRACT

(21) Appl . No .: 17 / 307,745
(22) Filed : May 4 , 2021

Systems and methods are disclosed for reducing latency and
power consumption of on - chip movement through an
approximate communication framework for network - on
chips (“ NoCs ”) . The technology leverages the fact that big
data applications (e.g. , recognition , mining , and synthesis)
can tolerate modest error and transfers data with the neces
sary accuracy , thereby improving the energy - efficiency and
performance of multi - core processors .

Related U.S. Application Data
(60) Provisional application No. 63 / 019,752 , filed on May

4 , 2020 .

102 104 106

Asseinity

ei OWORSHIRON 14M Store a C Code

Control Slow Graph Score C ogrox { **) , 116

box cox WORD PIRMO ***
124a 1245 1.18

108 $ 67 124c

Code Analyzer
120

Replace inov Build Data
Dependency Approximable

Code Section

Calculate Error
Tolerance Result Erros Error Tolerance

Doma spondency atrar's 8 : Kat Derman Osso bly wsk 2004
Yoo OWORO O X4 ISO a : 5 %

0,23749 0 : 21740 : S %
: 2.5 %

6.2.9 %
m 2.0VCRO P78 6:26

112 114

126 128

122

FIG . 1

Patent Application Publication

ZOT

200 How

Software

Hardware

Nov. 4 , 2021 Sheet 1 of 21

Assembly with Approximate

Parallel Computing System with Approximate
Execute

Control Flow Graph

Analyzer

Assembly

HE

*

X

*

*

*

X

x

*

104

US 2021/0344617 A1

106

108

110

202

FIG . 2

102

104

Patent Application Publication

Store bo

116

2333333

124a

124b

118

108

124c

+

Code Analyzer

120

identity

Replace mov

Build Data Dependency
Calculate Error Tolerance

Error Tolerance

Tolerance

Nov. 4 , 2021 Sheet 2 of 21

d : 5 %

0.21740 X

D.21740 : 5 %

112

C : 2.5 %

237XX

US 2021/0344617 A1

126

128

122

FIG . 3

Patent Application Publication

Algorithm 1 Error Threshold Calculation (ETC) 1 : function ETC (Data Dependency Graph G , start V)

Q.enqueue (start
V)

while Q is not empty do
V from Q dequeue

for all edges w in G.adjacentEdges (v) do

calculate_error (v.error tolerance ,

v.operation)
if W.error tolerance

Nov. 4 , 2021 Sheet 3 of 21

9 :

US 2021/0344617 A1

FIG . 4

Patent Application Publication

Core

402

Shared Cache (S) / Shared Memory (MEM) 420

404
Read
Write Reply

Read Request

Read Reply

Request Request

Request

Reply 426

422

424

Read

Approximate Data Compression

Nov. 4 , 2021 Sheet 4 of 21

Data Decompression
Data

Approximate

Decompression Control Table

432

Compression

406

408

434

410

412

428

430

Packet Decoder Packet

acket !

achet

Router

Network Link

US 2021/0344617 A1

414

416

418

FIG . 5

402

Patent Application Publication

404

Core

Core

Core NIP
R

R

Core

Core

R

R

410

412

Nov. 4 , 2021 Sheet 5 of 21

IN

NU
R

414

Network Interface (NI)
Packet

Write Rep . Read Rep .

420

416

Packet

Write Reqs Read Regs

US 2021/0344617 A1

418
430

428

FIG . 6A

Patent Application Publication

Core

402

Shared Memory
/

Shared Cache

Private Cache

404

Read Request
*********** AQUES

ADO Halaman

Data Decompression

Quality Control Table

Approximate Data Compression
Nov. 4 , 2021 Sheet 6 of 21

Network Interface

Network Inter

Packet Decoder

410 Packet Encoder

Packet Decoder

Packet Encoder

Router

Network
Link

Router

US 2021/0344617 A1

FIG . 6B

Patent Application Publication

Core

Shared Memory Shared Cache
/

Private Cache

Data Decompression

Quality Control Table

jork Interface

Approximate Data Compression
Network Interface

Nov. 4 , 2021 Sheet 7 of 21

Read Request

Packet Decoder

Packet Decoder

Packet Encoder

A

Hinta on

Router

Network Link

Router

US 2021/0344617 A1

FIG . 6C

Patent Application Publication

Core

Shared Memory Shared Cache
/

Private Cache

Data Decompression

Quality Control Table

Approximate Data Compression

Network Interface

Network Interface

Nov. 4 , 2021 Sheet 8 of 21

Packet Decoder

410

Packet Decoder

Packet Encoder

Router

Network Link

Router

US 2021/0344617 A1

FIG . 6D

Patent Application Publication

Core

Shared Memory / Shared Cache

Private Cache

Data Decompression

Quality Control Table

Approximate Data Compression

Network Interface

Network Interface

Nov. 4 , 2021 Sheet 9 of 21

434

Packet Decoder

Packet Encoder

428

Packet Encoder

Router

Network Link

Router

US 2021/0344617 A1

414

416

418

FIG . 6E

Patent Application Publication

Core

Shared Memory / Sharel Cache

Private Cache

Data Decompression

424

Quality Control Table

Approximate Bata Compression

Network Interface

Network Interface

434

Nov. 4 , 2021 Sheet 10 of 21

Packet Decoder

Packet Encoder

428

Approximatio12
ADRESA

TON
Packet Encoder

Router

Network Link

Router

US 2021/0344617 A1

FIG . 6F

Patent Application Publication

Core

/

420

Shared Memory Shared Cache

Private Cache

Data Decompression

424
Address

Approximation HOR
Approximate Data Compression

Network Interface

Network Interface

Nov. 4 , 2021 Sheet 11 of 21

Packet Decoder

Packet Encoder

428

Packet Decoder

Packet Encoder

Router

Network Link

Router

US 2021/0344617 A1

FIG . 6G

Patent Application Publication

Core

420

AIRES

Shared Memory / Shared Cache

Private Cache

Data Decompression

Qual Approximation Toration
42

Approximate Data Compression

Network Interface

Nov. 4 , 2021 Sheet 12 of 21

Network Interface

Packet Decoder

Packet Encoder

428

Packet Decoder

Packet Encoder

Router

Network
Link

Router

US 2021/0344617 A1

FIG . 6H

Patent Application Publication

Core

Shared M

420

Private Cache

Shared

Data Decompression

424

Qua Anna DO

Approximate Data Compression

Network Interface

Network Interface

Nov. 4 , 2021 Sheet 13 of 21

Packet Decoder

Packet Encoder

428

Packet Decoder

Packet Encoder

Router

Network Link

Router

US 2021/0344617 A1

FIG . 61

Patent Application Publication

Core

420

Shared Memory / Shared cache

Private Cache

424

Qual Promat 1007 VOORBID

426

Decompression

Compression

Network Interface

Network Interface

Nov. 4 , 2021 Sheet 14 of 21

Packet Decoder

Packet Encoder

Packet Decoder

Packet Encoder

Router

Network Link

Router

US 2021/0344617 A1

FIG . 6)

Patent Application Publication

Core

420

Shared Memory / Shared Cache

Private Cache

Data Decompression

Quality Control Table

Read Reply ACOBS ARPROXImated Data

Nov. 4 , 2021 Sheet 15 of 21

426

Network Interface

Network i

Packet Decoder

Packet Encoder

Packet Decoder

Packet Encoder

Router

Network Link

Router

US 2021/0344617 A1

FIG . 6K

Patent Application Publication

Core

Shared Memory Shared Cache

Private Cache

Data Decompression

Quality Control Table

Approximate Data Compression
426

Network Interface

Nov. 4 , 2021 Sheet 16 of 21

ork Interface

Read Reply

Packet Decoder

Packet Encoder

Packet Decoder

430

Approximated Data

Router

Network Link

Router

US 2021/0344617 A1

FIG . 6L

Patent Application Publication

Core

402

Shared Memory / Shared cache

Private Cache

404

Data

Quality Control Table

Approximate Data Compression

Decompression

Network interface

Network interface

Nov. 4 , 2021 Sheet 17 of 21

Packet Decoder

Packet Encoder

Packet Decoder

430

Router

Network Link

Router

416

418

US 2021/0344617 A1

FIG . 6M

Patent Application Publication

Core

Shared Memory Shared Cache
/

Private Cache

Data Decompression

Quality Control Table

Approximate Data Compression

Network Interface

432

Network Interface

Nov. 4 , 2021 Sheet 18 of 21

Park?ntDoceder 412

Packet Encoder

Packet Decoder

Packet Encoder

Router

Network Link

Router

414

416

418

US 2021/0344617 A1

FIG . 6N

Patent Application Publication

Core

Shared Memory Shared Cache
/

Private Cache

Data Decompression

Quality Control Table

Approximate Data Compression

Network Interface

432

Network Interface

Nov. 4 , 2021 Sheet 19 of 21

Read Reply ANAS Approximated Dan

Packet Encoder

Packet Decoder

Packet Encoder

Router

Network Link

Router

US 2021/0344617 A1

FIG . 60

Patent Application Publication

Core

402

Shared Memory Shared Cache
/

Private Cache

404

Read Reply

Quality Control Table

Approximate Data Compression

408

Approximated Data

Network Interface

Network Interface

Nov. 4 , 2021 Sheet 20 of 21

Packet Decoder

Packet Encoder

Packet Decoder

Packet Encoder

Router

Network Link

Router

US 2021/0344617 A1

FIG . 7

Patent Application Publication

A

Road

Quality Control Table

8

Address

Data Type

Data Type Tolerance

Nov. 4 , 2021 Sheet 21 of 21

Reply

WWW

VWWWWW

Read Reg .

E

Read Red Address

Tolerance

US 2021/0344617 A1

US 2021/0344617 Al Nov. 4 , 2021
1

SYSTEMS AND METHODS FOR
APPROXIMATE COMMUNICATION

FRAMEWORK FOR NETWORK - ON - CHIPS

CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of priority of
U.S. Application Ser . No. 63 / 019,752 filed May 4 , 2020 , the
content of which is relied upon and incorporated herein by
reference in its entirety .

[0008] The disclosure presents an approximate communi
cation framework to trade data quality for more efficient
on - chip communication . The proposed framework decreases
the size of transmitted data to reduce the consumption of
time and power by on - chip communication . The proposed
framework incorporates hardware - software co - design to
decrease network power consumption and latency while
ensuring a necessary result quality . On the software side , the
framework automatically identifies error - resilient variables
in the application and calculates the error tolerance for the
variables . On the hardware side , we augment the conven
tional network interface with approximate data compression
and data decompression modules to reduce packet size . As
a result , the proposed framework significantly reduces the
network latency and dynamic power consumption compared
to conventional NoC designs while meeting the applica
tion's requirements of result quality .

GOVERNMENT LICENSE RIGHTS

[0002] This invention was made with government support
under National Science Foundation , CCF - 1812495 , CCF
1740249 , and CCF - 1513923 . The government has certain
rights in the invention .

FIELD OF THE DISCLOSURE BRIEF DESCRIPTION OF THE DRAWINGS

[0003] The field of the disclosure relates to interconnect
architecture for parallel computing chips , and more specifi
cally but not exclusively relates to on - chip communication
and more specifically to a high - performance , and energy
efficient interconnection architecture for parallel computing
systems .

BACKGROUND OF THE DISCLOSURE

as

[0009] Amore complete appreciation of the disclosure and
many of the attendant advantages thereof will be readily
obtained as the same becomes better understood by refer
ence to the following detailed description when considered
in connection with the accompanying drawings , wherein :
[0010] FIG . 1 illustrates the high - level workflow of the
system in accordance with an exemplary embodiment ,
[0011] FIG . 2 illustrates the exemplary workflow of the
code analyzer component of the software ;
[0012] FIG . 3 shows an exemplary algorithm for error
threshold calculation used by the software ;
[0013] FIG . 4 illustrates an exemplary architecture design
of the approximate communication system ;
[0014] FIG . 5 is a diagram illustrating the design of the
conventional network interface ;
[0015] FIG . 6A - 60 illustrate an exemplary method
applied by the architecture design of the approximate com
munication system ; and
[0016] FIG . 7 is a diagram illustrating the hardware design
of the quality control table in accordance with an embodi
ment of the invention .

[0004] Network - on - chip has been widely used to connect
multiple computer components , such processors ,
memory , cores , and caches in a parallel computing system .
With significant improvement in system performance
through exploiting parallelism on parallel computing sys
tems , the state - of - the - art on - chip interconnection network
design can soon become a communication bottleneck and
struggle to deliver packets in a power - ancient manner .
Consequently , there is a need for innovative power and
latency reduction techniques for future network - on - chip
designs .
[0005] Recent research shows that several big data appli
cations , such as pattern recognition , image processing , and
scientific computing , can tolerate modest errors while yield
ing acceptable results . However , conventional network
designs for multicore processors transmit all data with
absolute accuracy , which is unnecessary for such approxi
mate computing applications . Transmitting data with exces
sive accuracy consumes excess power and increases the
network latency . These observations suggest new design
space in which data accuracy can be sacrificed to some
extent to achieve better network performance .
[0006] The present disclosure describes methods for lever
aging the error - tolerance of the applications to enhance NoC
performance with improved power and network latency .
Simulation results shows that our invention achieves up to
62 % and 43 % reduction on network latency and dynamic
power consumption , respectively , when compared to the
conventional NoC design .

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0017] In describing a preferred embodiment of the dis
closure illustrated in the drawings , specific terminology will
be resorted to for the sake of clarity . However , the disclosure
is not intended to be limited to the specific terms so selected ,
and it is to be understood that each specific term includes all
technical equivalents that operate in a similar manner to
accomplish a similar purpose . Several preferred embodi
ments of the disclosure are described for illustrative pur
poses , it being understood that the disclosure may be embod
ied in other forms not specifically shown in the drawings .
[0018] Described herein are embodiments of an approxi
mate communication system in which the data in a packet
are compressed based on the error tolerance of the applica
tion to reduce power consumption and five - network latency .
The approximate communication framework described
herein includes a software - based quality control method and
a hardware - based data approximation method implemented
in the network interface (NI) .
[0019] The high - level workflow of the system is exem
plarily shown in FIG . 1. The approximate communication

SUMMMARY OF THE DISCLOSURE
a

[0007] The objectives of this disclosure include : (1)
improving network performance and power - efficiency by
using packet approximation technique ; and (2) ensuring the
quality of results , which generated by the application .

US 2021/0344617 A1 Nov. 4 , 2021
2

a

system is comprised of a software 100 component and a
hardware 200 component . The software 100 is further com
prised of C (source) code 102 , a control flow graph 104
(“ CFG ”) , assembly code 106 , a code analyzer 108 , and
assembly code with approximate load 110. As will be
explained in greater detail below , the code analyzer 108
needs three files to operate : the source code 102 , the CFG
104 , and the assembly code 106. The hardware 100 of the
system which is used to execute the software 100 , is
preferably comprised of a parallel computing system with an
approximate communication network on - chip (“ NOC ”) 202 .
[0020] Before the execution of the application , the quality
control method uses the code analyzer 108 to identify
error - resilient variables and calculate the error tolerance of
each variable based on the application's quality requirement
on results . The software of the code analyzer preferably runs
prior to the execution of the approximation application on
the multi - core processor , as exemplarily shown in FIG . 5
below . The error - resilient variables comprise a subset of the
data generated from the execution of the source code 102 ,
the CFG 104 , and / or the assembly code 106. New instruc
tions are introduced , namely approximate load and store , to
indicate error - resilient variables with error tolerance values
it the assembly code . When an approximate load 110 or store
is executed , the network interface (“ NI ”) compresses the
data and generates an approximated packet based on the
error tolerance of the variable , using the data approximation
method of the present disclosure . As a result , the proposed
approximate communication system decreases the amount
of data transmitted , resulting in significant improvements in
power consumption and network latency compared to con
ventional interconnection network designs .
[0021] FIG . 2 shows an exemplary workflow of the code
analyzer 108. One of the main functions of the code analyzer
108 is to identify the error - resilient values in the approx
imable code sections 112 and calculate the corresponding
error tolerances based on the quality requirements of the
application 114. To achieve this goal , the code analyzer 108
needs to analyze the syntax of the source code 102 and break
down all operations into basic operations (addition , subtrac
tion , multiplication , and division) . Notably , the compiler can
generate a control flow graph (CFG) 104 that describes the
function of the source code 102 in terms of basic operations .
As a result , the code analyzer 108 requires three files to
operate : the source code 102 , the CFG 104 , and the assembly
code 106. First , the code analyzer 108 searches for approx
imable functions in the C code 102 , CFG 104 , and assembly
code 106. Exemplary approximable functions are shown in
the C code 102 , the CFG , and the assembly code 106. While
C code is discussed here , one of ordinary skill in the art
would readily understand that code in other programming
languages (e.g. Java , BASIC , etc.) is also within the scope
of this disclosure . As used herein , “ approximable ” refers to
those variables that the code analyzer 108 determines can
tolerate error . If the code analyzer 108 determines that the
that a variable cannot tolerate error within predetermined
thresholds , that variable will not be modified .
[0022] Second , the code analyzer identifies all variables
and results in the approximable section 114 in the C code
102 , CFG 104 , and assembly code 106. In FIG . 2 , the result
and the result quality for this example are highlighted in
boxes 124a , 124b , 124c . The mov operation on variable a ,
b and c in the assembly code 110 is also identified using
arrows , listing “ Store a , ” “ Store b , ” “ Store c , " " Load b , ” and

“ Load a . ” Those of ordinary skill in the art will understand
that the mov operation , from the X86 instruction set (https : //
www.intel.com/content/dam/www/public/us/en/documents/
manuals / 64 - ia - 32 - architectures - software - developer - instruc
tion - set - reference - manual - 325383.pdf) , is described
exemplarily in the present disclosure , and those of ordinary
skill would readily understand that other processors , such as
ARM and RISC - V , can also use the technology of the
present disclosure to identify approximable variables .
[0023] Third , the analyzer builds a data dependency graph
116 , which shows the calculation process for each variable ,
based on the CFG 104. For the example in FIG . 2 , the
intermediate variable D.21740 is equal to the product of b
and c and that the result d is equal to the sum of a and
D.21740 126 .
[0024] Fourth , the code analyzer 108 traverses the data
dependency graph and updates the error threshold for each
variable 118. The calculated error thresholds 128 are high
lighted in the box in FIG . 2. The error threshold for each
intermediate data value is exemplarily calculated using
Algorithm 1 , as shown in FIG . 3. The error threshold
calculation (ETC) algorithm traverses the data dependency
graph in a manner similar to that of breadth - first search
(BFS) . Different from the conventional BFS algorithm , at
line 13 , the error tolerance is allowed to be updated when the
current error tolerance is smaller than the previous one to
prevent erroneous calculation results . The error tolerance for
each variable is calculated based on the error tolerance for
the result and the various operations are applied , as exem
plarily explained below and outlined in : Yuechen Chen ,
Ahmed Louri , “ Approximate Communication Framework
for Network - on - Chips ” , IEEE Transactions on Parallel and
Distributed Systems , vol . 31 , no . 6 , pp . 1434-1446 , 2020 , the
contents of which are incorporated herein by reference .
[0025] Equation 1 shows the definition of error tolerance ,
where ã is approximated a and E , is relative error : 7

la - al (1)
Er = < error tolerance

a

[0026] Equation 2 describes the addition and subtraction
of ã and ? , where ã and ? are transmitted through approxi
mate communication and ? is the result

? = ?t (2)

[0027] Using Equation 1 , the following calculations are
performed , as shown below :

10 - ? | (3)
Erc = < error tolerance

?

ã = a + Era Xa (4)

6 = b + Eo xb (5)

[0028] When a and b have the same relative error
(Era = Eqb = Erab) , Equations 2 , 4 , and 5 can be combined to
arrive at Equation 6 below :

? = (a + Erabxa) + (b + Erabxb) (6)

[0029] By combining Equations 3 and 11 with c = aub , it
can be determined that the relative error (Erab) for a and h

US 2021/0344617 A1 Nov. 4 , 2021
3

replay is generated and transmitted to the core 402 and
private cache node 404 to confirm the transmission .
[0035] The data compression process by the approximate
data compression logic 406 is exemplarily outlined herein .
The first step is to truncate the integer or floating point data
based on the error tolerance . In this paper , we define the
error tolerance as the maximum relative error that a data can
accept . As shown above , Equation 1 shows the definition of
error tolerance , where ã is approximated a and E , is relative
error .

' rab

are equal to the relative error (Erc) for c . Therefore , Ere serror
tolerance is ensured when Erab serror tolerance for the
addition and subtraction operation . For example , ã and 5 can
each contain less than 5 percent relative error when ? can
tolerate 5 percent relative error . Equation 7 describes the
multiplication of ã and b , where ã and are transmitted
through approximate communication and ? is the result :

? = ã + (7)

(0030) With the same theory , Equation 8 can be calculated
for the multiplication , where a and b are fully accurate
variable and E , is relative error :

@ = (a + Erab * a) * (b + Erab8b) (8)

[0031] By combining Equations 3 and 8 , with c = axb , it
can be determined that for the multiplication operation ,
Erc = (1 + Erab) 2-1 . Therefore , E , serror tolerance is ensured
when -1 + V1 + Erabserror tolerance for the multiplication
operation . For example , ã and b can each contain less than
2.5 percent relative error when ? can tolerate 5 percent
relative error . Equation 9 then describes the division of ã and

, where ã and ñ are transmitted through approximate
communication and ? is the result :

? = al (9)

[0032] For the division operation , Equation 10 is calcu
lated , where a and b are fully accurate variables and Era , Erb
are relative error :

[0036] Equations 11 and 12 show the representation of
single precision floating point value based in IEEE 754
standard (IEEE Standards Committee et al . , 754-2008 IEEE
Standard for Floating - Point Arithmetic , IEEE Computer
Society Standard 2008 : 517 , 2008) .

>

float = (-1) " x mantissa x 2exp ? (11)

23 (12)
mantissa = 20 + ŽX = Xk2 - k (Xx = 0 or 1)

'
[0037] Based on Equations 11 and 12 , the mantissa always
starts with one . According to the IEEE 754 standard , when
a data point is represented in the floating point format , the
first bit of the mantissa is omitted . We observe that when c
bits (of the 23 - bit mantissa) are protected , the maximum
relative error on this floating point data value will be
Ek + c + 1232 - K , which is 2 - C according to the sum of the
geometric sequence (Ex = , " ark - l = a (1 - r ") / 1 - r , where a is the
first term , n is the number of term , and r is the common ratio
in the sequence) . Therefore , using Equation 12 , the follow
ing expression for the data error tolerance can be deduced ,
as shown in Equation 13 :

= 1
- 1

= 1 k = 1

error tolerance = 2 - n (1sn23) (13)

a

? = (a + Erab * a) / (b + Erab8b) (10)

[0033] Finally , the code analyzer selects and replaces the
mov instructions in the assembly code with approximate
mov instructions 120. The selected mov instructions load
and store the variable , which locates at the leaf of the data
dependency graph (e.g. a , b , c) . A new type of approximate
load and store instruction (amov , dist , src , error threshold) is
introduced into the X86 instruction set for the network to
compress approximable packets . The error threshold in the
amov instruction is multiplied by 103 to eliminate the
decimal point . The final result 122 is shown in FIG . 2 , where
“ 50 ” indicates a 5 % error tolerance and “ 25 ” indicates a
2.5 % error tolerance .
[0034] FIG . 4 presents a high - level overview of an exem
plary approximate communication system along with the
hardware design . In certain embodiments , the system oper
ates as follows . At the core 402 , when a cache miss is caused
by an approximate store operation , a write request is gen
erated by the private cache 404 with the approximation
information . The approximation information includes the
address , data type (e.g. integer , floating point , etc.) , and error
tolerance . The write request is compressed by the approxi
mate data compression logic 406 at the core and private
cache node based on the error tolerance of the data . Then , the
write request is encoded by the packet encoder 410 at the
network interface 432 and injected into the network , where
it travels through one or more routers in the on - chip net
work . Upon reaching the router 418 of the shared cache /
shared memory node 420 , the write request packet passes
through the network interface 434 , a packet decoder 428 ,
and a data decompression module 422. When the shared
cache or shared memory node 420 receives the write request
packet , the data decompression module 422 recovers the
truncated data and adds zeros to the truncated part to
maintain the original data format . Then , the write request is
sent to the shared cache or shared memory 420 , and a write

[0038] In Equation 13 above , the data error tolerance is a
number between 0 and 1 , and n is the number of most
significant bits (MSBs) in the mantissa of this floating point
value . In a floating point data value , the 1 - bit sign and the
8 - bit exponent (a total of 9 bits) are also critical bits , which
must be transmitted . Thus , by truncating 23 - n bits , we can
ensure the value's relative error is less than 2 - n . For
example , to satisfy a data error tolerance of 10 percent for
any floating point value , we can truncate 18 least significant
bits (LSBs) , resulting in a maximum relative error of 6.25
percent . Equation 14 shows the representation of a signed
integer . In a signed integer , the MSB represents the sign , and
the remaining 31 bits represent the value :

a

31 (14)
int = xx 2 % (X4 = 0 or 1) =

k = 0

[0039] We observe that when n bits (of the 31 LSBs) are
truncated , the maximum error caused by truncation will be
Ik_0 " X , 2 * (Xx = 0 or 1) . Thus , Equation 15 below can be used
to calculate the number of bits (n) to be truncated for a given
error tolerance :

=

US 2021/0344617 Al Nov. 4 , 2021
4

(15) ??.2 k =
error tolerance = WIWI (Xk = 0 or 1)

? ? , 2k

[0040] With this data truncation method , an integer with a
small absolute value requires a larger number of MSBs to
achieve the same error thr hold than is required for an
integer with a large absolute value . For example , for an
integer value of 100 , 29 MSBs need to be transmitted to
ensure 5 percent error tolerance . On the other hand , for an
integer value of 5,418 , only 28 MSBs need to be transmitted
to achieve the same data error tolerance (5 percent) . To
overcome this problem , we compress the data using the
frequent data pattern compression method . In previous
research , the frequent data pattern compression mechanism
(Table 1) has been proposed [and extended to NoCs with a
low - overhead compression and decompression mechanism .

TABLE 1

Frequent Pattern Encoding >

Data Size
After Encoding Code Pattern Encoded

000
001
010
011
100
101
111

Zero run
4 - bit sign - extended
1 - byte sign - extended
Halfword sign - extended
Halfword padded with a zero halfword
Two half words , each 1 - byte sign - extended
Uncompressed word

3 bits
4 bits
8 bits

16 bits
16 bits
16 bits
32 bits

[0042] When a cache miss is caused by approximate load
operation , a read request is issued by the private cache 404
with the approximation information . Then , the read request
is sent to the packet encoder 410 to generate a read request
packet . The read request packet is injected into the network
through the network interface 432 , where it travels through
multiple routers in the on - chip network . Upon reaching the
router 418 of the shared cache / shared memory node 420 , the
read request packet passes through the network interface
434 , a packet decoder 428 , and a quality control table 424 .
When the shared cache or shared memory node 420 receives
the read request , the approximation information is extracted
from the packet and inserted into the quality control table
424. When the read reply is generated by the shared cache
or shared memory 420 , the approximate data compression
logic 426 reads the approximation information in the quality
control table and truncates the data in accordance with the
approximation information . Then , the packet encoder 430
prepares the read reply packet and sends it to the router 418 .
The read reply packet is decoded at the packet decoder 412
and then arrives at the core 402 and private cache node 402 ,
where the data decompression module 408 recovers the data .
[0043] The baseline system is a multi - core processor ,
which is shown in FIG . 5. FIG . 5 is a zoomed - in , detailed
view of two of the routers shown , designated “ R. ” As shown
in FIG . 5 , the system includes a core 402 , a private cache
404 , a packet encoder 410 , a packet decoder 412 , a first
router 414 , a network link 416 , a second router 418. In this
simplified example , the first router 414 , the network link
416 , and the second router 418 comprise what can be
considered the network . shared memory 420. FIG . 4 , show
ing the approximate communication system of the present
disclosure , is modified to include such additional compo
nents as : the approximate data compression logic module
406/426 , the data decompression logic module 408/422 , and
a quality control table 424 .
[0044] FIG . 6A - 60 show a stepwise process by which the
approximate communication system operates with regard to
a read request . As shown in FIG . 6A , when the core 402
reads data from memory and misses the L1 cache , the read
request , which is comprised of address and approximation
information , is transmitted from the core 402 and private
cache 404 to the packet encoder 410. The transmission of the
read request to the packet encoder 410 is shown in FIGS . 6B
and 6C .

[0045] At FIG . 6D , the read request packet is transmitted
through multiple routers in the on - chip network 416 from a
first router 414 to a second router 418. The read request
packet is transmitted from the second router 418 and
received by the network interface 434 at shared memory
shared cache and passes to the packet decoder 428. As
shown in FIG . 6E , the read request packet is comprised of
address and approximation information , which includes
error tolerance and data type , as shown in FIG . 7 .
[0046] As shown in FIG . 6F , the read request packet ,
comprised of address and approximation information , is
transmitted from the packet decoder 428 to the quality
control table 424. When the network interface at the memory
or shared cache node 434 receives the read request packet ,
the packet decoder 428 extracts the address and approxima
tion information from the packet . Then , as shown in FIG .
6G , the address is sent to the memory or shared cache 420
to collect the data .

[0041] That mechanism is adopted in certain aspects of the
present disclosure to compress approximated data . The
essence of frequent data pattern compression method is to
eliminate zeros and ones in the MSBs and LSBs for both
integer and floating value without effecting the accuracy of
the value . We develop a frequent pattern replacement table
based on Table 1. Table 2 shows the static set of frequent
patterns and the codes . In this table , the notation X repre
sents a bit that can be either 0 or 1.Oxff and Ox00 are two
hexadecimal numbers , which represent eight 1 - bits and eight
0 - bits . The data compressor checks every piece of data and
attempts to match its pattern . If the pattern matches , the data
compressor will replace the pattern with the corresponding
code . The 0 or 1 represented by X will not be changed during
the compression process .

TABLE 2

Code Frequent Pattern
000
001

010

Ox00
Ox00
Oxff
Ox00
Oxff
Ox00
Oxff
XXXXXXXX
Ox00
Oxff

Ox00
Ox00
Oxff
Ox00
Oxff
Ox00
Oxff
XXXXXXXX
OXXXXXXX
1XXXXXXX

Ox00 Ox00
Ox00 00000xxx
Oxff 11111XXX
Ox00 OXXXXXXX
Oxff 1XXXXXXX
OXXXXXXX XXXXXXXX
1XXXXXXX XXXXXXXX
Ox00 Ox00
Ox00 OXXXXXXX
Oxff 1XXXXXXX

011

100
101

US 2021/0344617 A1 Nov. 4 , 2021
5

a

a

[0047] As shown in FIG . 6H , the address and data are
received at the memory or shared cache 420 , while the
approximation information is stored in the quality control
table 424. Then , as shown at FIG . 61 , the network interface ,
at the approximate data compression logic module 426
approximates the data based on the approximation informa
tion stored in the quality control table 424. As shown in FIG .
6J , the approximate data compression logic module 426 then
creates a read reply that is comprised of address information
and approximated data .
[0048] As shown in FIG . 6K , the read reply and its address
information and approximated data are transmitted to the
packet encoder 430. Then , as shown in FIG . 6L , the packet
encoder 430 packs the approximated data into the read reply
packet and sends back to the core 402 through the second
router 418 , the network link 416 , and the first router 414 .
[0049] As shown in FIG . 6M , the packet decoder 412
decodes the read reply packet that is received through the
network link 416 and the first router 414. The packet decoder
412 decodes the read reply packet into its address and
approximated data , as shown in FIG . 6N The read reply
packet and its address and approximated data then pass
through the data decompression logic module 408 , which
recovers the approximated data and transmits it to the Li
cache 404 and the core 402 .
[0050] FIG . 7 shows the hardware design of the quality
controllable 424 at the shared cache or shared memory node
420. The quality control table consists of 3 columns of
approximation information : addresses , data types , and error
thresholds . The data type column describes the structure of
the approximable data (e.g. integer , floating point , etc.) .
[0051] In the network interface of the shared cache or
shared memory node , the data approximation logic module
426 receives a read packet (A) containing an address in the
quality control table 424 from which to acquire the approxi
mation information for the data . If the address matches an
entry in the quality control table 424 , then the table sends a
read reply packet with the corresponding approximation
information , which includes the address , data type , and error
tolerance (B) . Then , the corresponding entry is deleted from
the table after the reply packet (B) is sent . Otherwise , a
negative signal (C) is sent to the data approximation logic
module 426 to indicate that these data require accurate
transmission . When a read request packet (D) arrives at the
quality control table , the table first checks whether it con
tains approximation information . If so , the table extracts and
registers the approximation information . If the requested
data contains multiple data types , multiple entries in the
quality control table 424 are occupied to store approxima
tion information . Then , the quality control table forwards the
read request (E) , which now contains only the address , to the
shared cache or shared memory .
[0052] The foregoing description and drawings should be
considered as illustrative only of the principles of the
disclosure . The disclosure is not intended to be limited by
the preferred embodiment and may be implemented in a
variety of ways that will be clear to one of ordinary skill in
the art . Numerous applications of the disclosure will readily
occur to those skilled in the art . Therefore , it is not desired
to limit the disclosure to the specific examples disclosed or
the exact construction and operation shown and described .
Rather , all suitable modifications and equivalents may be
resorted to , falling within the scope of the disclosure . All
references cited herein are incorporated in their entireties .

1. An approximate communication system for network
on - chips comprising :

a multi - core processor , wherein said multi - core processor
comprises a code analyzer module that :

identifies one or more error - resilient variables in a code of
interest prior to code execution , wherein the error
resilient variables comprise a subset of the data gener
ated when the code of interest is executed ;

analyzes the data dependency graph to calculate an error
threshold for each of the one or more error - resilient
variables ;

appends an approximation instruction to each of the one
or more error - resilient variables ;

updates assembly code to incorporate the approximation
instruction ; and

compresses a data packet comprised of the approximation
function prior to transmitting the data packet .

2. The system of claim 1 , wherein the error threshold is
dependent on an application's quality requirements .

3. The system of claim 1 , wherein the approximation
instruction loads and stores the one or more error - resilient
variables in memory .

4. The system of claim 1 , wherein the approximation
information is comprised of address data , variable data type ,
and error threshold data .

5. The system of claim 1 , wherein the multi - core proces
sor writes the data packet to a shared memory or shared
cache .

6. The system of claim 1 , wherein the multi - core proces
sor compresses data in the write request using the approxi
mation function in a network interface at a core and a private
cache node .

7. The system of claim 6 , wherein the multi - core proces
sor further decompresses data in the write request in the
network interface at a shared cache and a shared memory
node .

8. The system of claim 7 , wherein the multi - core proces
sor further reads a data packet from the shared memory or
the shared cache .

9. The system of claim 8 , wherein the data packet read
from the shared memory or the shared cache is received at
a shared memory .

10. The system of claim 9 , wherein a quality control table
at the shared memory extracts approximation information
comprising address data from the read request packet .

11. The system of claim 10 , wherein a read reply data
packet is approximated if the address data is matched to an
entry in the quality control table .

12. The system of claim 11 , wherein the matched entry in
the quality control table is deleted .

13. The system of claim 11 , wherein the read reply packet
is received at the core and private cache .

14. The system of claim 13 , wherein the data in the read
reply packet is decompressed in a network interface at the
core and private cache node .

15. A method for approximate communication for net
work - on - chips comprising :

identifying one or more error - resilient variables in a code
of interest prior to code execution , wherein the error
resilient variables comprise a subset of the data gener
ated when the code of interest is executed ;

analyzing the data dependency graph to calculate an error
threshold for each of the one or more error - resilient
variables ;

US 2021/0344617 A1 Nov. 4 , 2021
6

appending an approximation instruction to each of the one
or more error - resilient variables ;

updating assembly code to incorporate the approximation
instruction ; and

compressing a data packet comprised of the approxima
tion function prior to transmitting the data packet .

16. The method of claim 15 , wherein the error threshold
is dependent on an application's quality requirements .

17. The method of claim 15 , wherein the approximation
instruction loads and stores the one or more error - resilient
variables in memory .

18. The method of claim 15 , wherein the approximation
information is comprised of address data , variable data type ,
and error threshold data .

19. The method of claim 15 , further comprising writing
the data packet to a shared memory or shared cache .

20. A network interface at a shared cache and shared
memory node for processing data packets , said network
interface comprising :

an approximate data compression module , quality control
table , and approximate data decompression model ,
wherein :
the approximate data compression module is config

ured to compress a data packet using one or more
approximation functions ; and

the quality control table is configured to register the
approximation information ; and

the approximate data decompression model is config
ured to recover the approximated data into an origi
nal format comprised of data recovery functions .

*

