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Algorithm 1 Error Threshold Calculation ( ETC ) 1 : function ETC ( Data Dependency Graph G , start V ) 

Q.enqueue ( start 
V ) 

while Q is not empty do 
V from Q dequeue 

for all edges w in G.adjacentEdges ( v ) do 

calculate_error ( v.error tolerance , 

v.operation ) 
if W.error tolerance 
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SYSTEMS AND METHODS FOR 
APPROXIMATE COMMUNICATION 

FRAMEWORK FOR NETWORK - ON - CHIPS 

CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application claims the benefit of priority of 
U.S. Application Ser . No. 63 / 019,752 filed May 4 , 2020 , the 
content of which is relied upon and incorporated herein by 
reference in its entirety . 

[ 0008 ] The disclosure presents an approximate communi 
cation framework to trade data quality for more efficient 
on - chip communication . The proposed framework decreases 
the size of transmitted data to reduce the consumption of 
time and power by on - chip communication . The proposed 
framework incorporates hardware - software co - design to 
decrease network power consumption and latency while 
ensuring a necessary result quality . On the software side , the 
framework automatically identifies error - resilient variables 
in the application and calculates the error tolerance for the 
variables . On the hardware side , we augment the conven 
tional network interface with approximate data compression 
and data decompression modules to reduce packet size . As 
a result , the proposed framework significantly reduces the 
network latency and dynamic power consumption compared 
to conventional NoC designs while meeting the applica 
tion's requirements of result quality . 

GOVERNMENT LICENSE RIGHTS 

[ 0002 ] This invention was made with government support 
under National Science Foundation , CCF - 1812495 , CCF 
1740249 , and CCF - 1513923 . The government has certain 
rights in the invention . 

FIELD OF THE DISCLOSURE BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] The field of the disclosure relates to interconnect 
architecture for parallel computing chips , and more specifi 
cally but not exclusively relates to on - chip communication 
and more specifically to a high - performance , and energy 
efficient interconnection architecture for parallel computing 
systems . 

BACKGROUND OF THE DISCLOSURE 

as 

[ 0009 ] Amore complete appreciation of the disclosure and 
many of the attendant advantages thereof will be readily 
obtained as the same becomes better understood by refer 
ence to the following detailed description when considered 
in connection with the accompanying drawings , wherein : 
[ 0010 ] FIG . 1 illustrates the high - level workflow of the 
system in accordance with an exemplary embodiment , 
[ 0011 ] FIG . 2 illustrates the exemplary workflow of the 
code analyzer component of the software ; 
[ 0012 ] FIG . 3 shows an exemplary algorithm for error 
threshold calculation used by the software ; 
[ 0013 ] FIG . 4 illustrates an exemplary architecture design 
of the approximate communication system ; 
[ 0014 ] FIG . 5 is a diagram illustrating the design of the 
conventional network interface ; 
[ 0015 ] FIG . 6A - 60 illustrate an exemplary method 
applied by the architecture design of the approximate com 
munication system ; and 
[ 0016 ] FIG . 7 is a diagram illustrating the hardware design 
of the quality control table in accordance with an embodi 
ment of the invention . 

[ 0004 ] Network - on - chip has been widely used to connect 
multiple computer components , such processors , 
memory , cores , and caches in a parallel computing system . 
With significant improvement in system performance 
through exploiting parallelism on parallel computing sys 
tems , the state - of - the - art on - chip interconnection network 
design can soon become a communication bottleneck and 
struggle to deliver packets in a power - ancient manner . 
Consequently , there is a need for innovative power and 
latency reduction techniques for future network - on - chip 
designs . 
[ 0005 ] Recent research shows that several big data appli 
cations , such as pattern recognition , image processing , and 
scientific computing , can tolerate modest errors while yield 
ing acceptable results . However , conventional network 
designs for multicore processors transmit all data with 
absolute accuracy , which is unnecessary for such approxi 
mate computing applications . Transmitting data with exces 
sive accuracy consumes excess power and increases the 
network latency . These observations suggest new design 
space in which data accuracy can be sacrificed to some 
extent to achieve better network performance . 
[ 0006 ] The present disclosure describes methods for lever 
aging the error - tolerance of the applications to enhance NoC 
performance with improved power and network latency . 
Simulation results shows that our invention achieves up to 
62 % and 43 % reduction on network latency and dynamic 
power consumption , respectively , when compared to the 
conventional NoC design . 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENTS 

[ 0017 ] In describing a preferred embodiment of the dis 
closure illustrated in the drawings , specific terminology will 
be resorted to for the sake of clarity . However , the disclosure 
is not intended to be limited to the specific terms so selected , 
and it is to be understood that each specific term includes all 
technical equivalents that operate in a similar manner to 
accomplish a similar purpose . Several preferred embodi 
ments of the disclosure are described for illustrative pur 
poses , it being understood that the disclosure may be embod 
ied in other forms not specifically shown in the drawings . 
[ 0018 ] Described herein are embodiments of an approxi 
mate communication system in which the data in a packet 
are compressed based on the error tolerance of the applica 
tion to reduce power consumption and five - network latency . 
The approximate communication framework described 
herein includes a software - based quality control method and 
a hardware - based data approximation method implemented 
in the network interface ( NI ) . 
[ 0019 ] The high - level workflow of the system is exem 
plarily shown in FIG . 1. The approximate communication 

SUMMMARY OF THE DISCLOSURE 
a 

[ 0007 ] The objectives of this disclosure include : ( 1 ) 
improving network performance and power - efficiency by 
using packet approximation technique ; and ( 2 ) ensuring the 
quality of results , which generated by the application . 
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a 

system is comprised of a software 100 component and a 
hardware 200 component . The software 100 is further com 
prised of C ( source ) code 102 , a control flow graph 104 
( “ CFG ” ) , assembly code 106 , a code analyzer 108 , and 
assembly code with approximate load 110. As will be 
explained in greater detail below , the code analyzer 108 
needs three files to operate : the source code 102 , the CFG 
104 , and the assembly code 106. The hardware 100 of the 
system which is used to execute the software 100 , is 
preferably comprised of a parallel computing system with an 
approximate communication network on - chip ( “ NOC ” ) 202 . 
[ 0020 ] Before the execution of the application , the quality 
control method uses the code analyzer 108 to identify 
error - resilient variables and calculate the error tolerance of 
each variable based on the application's quality requirement 
on results . The software of the code analyzer preferably runs 
prior to the execution of the approximation application on 
the multi - core processor , as exemplarily shown in FIG . 5 
below . The error - resilient variables comprise a subset of the 
data generated from the execution of the source code 102 , 
the CFG 104 , and / or the assembly code 106. New instruc 
tions are introduced , namely approximate load and store , to 
indicate error - resilient variables with error tolerance values 
it the assembly code . When an approximate load 110 or store 
is executed , the network interface ( “ NI ” ) compresses the 
data and generates an approximated packet based on the 
error tolerance of the variable , using the data approximation 
method of the present disclosure . As a result , the proposed 
approximate communication system decreases the amount 
of data transmitted , resulting in significant improvements in 
power consumption and network latency compared to con 
ventional interconnection network designs . 
[ 0021 ] FIG . 2 shows an exemplary workflow of the code 
analyzer 108. One of the main functions of the code analyzer 
108 is to identify the error - resilient values in the approx 
imable code sections 112 and calculate the corresponding 
error tolerances based on the quality requirements of the 
application 114. To achieve this goal , the code analyzer 108 
needs to analyze the syntax of the source code 102 and break 
down all operations into basic operations ( addition , subtrac 
tion , multiplication , and division ) . Notably , the compiler can 
generate a control flow graph ( CFG ) 104 that describes the 
function of the source code 102 in terms of basic operations . 
As a result , the code analyzer 108 requires three files to 
operate : the source code 102 , the CFG 104 , and the assembly 
code 106. First , the code analyzer 108 searches for approx 
imable functions in the C code 102 , CFG 104 , and assembly 
code 106. Exemplary approximable functions are shown in 
the C code 102 , the CFG , and the assembly code 106. While 
C code is discussed here , one of ordinary skill in the art 
would readily understand that code in other programming 
languages ( e.g. Java , BASIC , etc. ) is also within the scope 
of this disclosure . As used herein , “ approximable ” refers to 
those variables that the code analyzer 108 determines can 
tolerate error . If the code analyzer 108 determines that the 
that a variable cannot tolerate error within predetermined 
thresholds , that variable will not be modified . 
[ 0022 ] Second , the code analyzer identifies all variables 
and results in the approximable section 114 in the C code 
102 , CFG 104 , and assembly code 106. In FIG . 2 , the result 
and the result quality for this example are highlighted in 
boxes 124a , 124b , 124c . The mov operation on variable a , 
b and c in the assembly code 110 is also identified using 
arrows , listing “ Store a , ” “ Store b , ” “ Store c , " " Load b , ” and 

“ Load a . ” Those of ordinary skill in the art will understand 
that the mov operation , from the X86 instruction set ( https : // 
www.intel.com/content/dam/www/public/us/en/documents/ 
manuals / 64 - ia - 32 - architectures - software - developer - instruc 
tion - set - reference - manual - 325383.pdf ) , is described 
exemplarily in the present disclosure , and those of ordinary 
skill would readily understand that other processors , such as 
ARM and RISC - V , can also use the technology of the 
present disclosure to identify approximable variables . 
[ 0023 ] Third , the analyzer builds a data dependency graph 
116 , which shows the calculation process for each variable , 
based on the CFG 104. For the example in FIG . 2 , the 
intermediate variable D.21740 is equal to the product of b 
and c and that the result d is equal to the sum of a and 
D.21740 126 . 
[ 0024 ] Fourth , the code analyzer 108 traverses the data 
dependency graph and updates the error threshold for each 
variable 118. The calculated error thresholds 128 are high 
lighted in the box in FIG . 2. The error threshold for each 
intermediate data value is exemplarily calculated using 
Algorithm 1 , as shown in FIG . 3. The error threshold 
calculation ( ETC ) algorithm traverses the data dependency 
graph in a manner similar to that of breadth - first search 
( BFS ) . Different from the conventional BFS algorithm , at 
line 13 , the error tolerance is allowed to be updated when the 
current error tolerance is smaller than the previous one to 
prevent erroneous calculation results . The error tolerance for 
each variable is calculated based on the error tolerance for 
the result and the various operations are applied , as exem 
plarily explained below and outlined in : Yuechen Chen , 
Ahmed Louri , “ Approximate Communication Framework 
for Network - on - Chips ” , IEEE Transactions on Parallel and 
Distributed Systems , vol . 31 , no . 6 , pp . 1434-1446 , 2020 , the 
contents of which are incorporated herein by reference . 
[ 0025 ] Equation 1 shows the definition of error tolerance , 
where ã is approximated a and E , is relative error : 7 

la - al ( 1 ) 
Er = < error tolerance 

a 

[ 0026 ] Equation 2 describes the addition and subtraction 
of ã and ? , where ã and ? are transmitted through approxi 
mate communication and ? is the result 

? = ?t ( 2 ) 

[ 0027 ] Using Equation 1 , the following calculations are 
performed , as shown below : 

10 - ? | ( 3 ) 
Erc = < error tolerance 

? 

ã = a + Era Xa ( 4 ) 

6 = b + Eo xb ( 5 ) 

[ 0028 ] When a and b have the same relative error 
( Era = Eqb = Erab ) , Equations 2 , 4 , and 5 can be combined to 
arrive at Equation 6 below : 

? = ( a + Erabxa ) + ( b + Erabxb ) ( 6 ) 

[ 0029 ] By combining Equations 3 and 11 with c = aub , it 
can be determined that the relative error ( Erab ) for a and h 
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replay is generated and transmitted to the core 402 and 
private cache node 404 to confirm the transmission . 
[ 0035 ] The data compression process by the approximate 
data compression logic 406 is exemplarily outlined herein . 
The first step is to truncate the integer or floating point data 
based on the error tolerance . In this paper , we define the 
error tolerance as the maximum relative error that a data can 
accept . As shown above , Equation 1 shows the definition of 
error tolerance , where ã is approximated a and E , is relative 
error . 

' rab 

are equal to the relative error ( Erc ) for c . Therefore , Ere serror 
tolerance is ensured when Erab serror tolerance for the 
addition and subtraction operation . For example , ã and 5 can 
each contain less than 5 percent relative error when ? can 
tolerate 5 percent relative error . Equation 7 describes the 
multiplication of ã and b , where ã and are transmitted 
through approximate communication and ? is the result : 

? = ã + ( 7 ) 

( 0030 ) With the same theory , Equation 8 can be calculated 
for the multiplication , where a and b are fully accurate 
variable and E , is relative error : 

@ = ( a + Erab * a ) * ( b + Erab8b ) ( 8 ) 

[ 0031 ] By combining Equations 3 and 8 , with c = axb , it 
can be determined that for the multiplication operation , 
Erc = ( 1 + Erab ) 2-1 . Therefore , E , serror tolerance is ensured 
when -1 + V1 + Erabserror tolerance for the multiplication 
operation . For example , ã and b can each contain less than 
2.5 percent relative error when ? can tolerate 5 percent 
relative error . Equation 9 then describes the division of ã and 

, where ã and ñ are transmitted through approximate 
communication and ? is the result : 

? = al ( 9 ) 

[ 0032 ] For the division operation , Equation 10 is calcu 
lated , where a and b are fully accurate variables and Era , Erb 
are relative error : 

[ 0036 ] Equations 11 and 12 show the representation of 
single precision floating point value based in IEEE 754 
standard ( IEEE Standards Committee et al . , 754-2008 IEEE 
Standard for Floating - Point Arithmetic , IEEE Computer 
Society Standard 2008 : 517 , 2008 ) . 

> 

float = ( -1 ) " x mantissa x 2exp ? ( 11 ) 

23 ( 12 ) 
mantissa = 20 + ŽX = Xk2 - k ( Xx = 0 or 1 ) 

' 
[ 0037 ] Based on Equations 11 and 12 , the mantissa always 
starts with one . According to the IEEE 754 standard , when 
a data point is represented in the floating point format , the 
first bit of the mantissa is omitted . We observe that when c 
bits ( of the 23 - bit mantissa ) are protected , the maximum 
relative error on this floating point data value will be 
Ek + c + 1232 - K , which is 2 - C according to the sum of the 
geometric sequence ( Ex = , " ark - l = a ( 1 - r " ) / 1 - r , where a is the 
first term , n is the number of term , and r is the common ratio 
in the sequence ) . Therefore , using Equation 12 , the follow 
ing expression for the data error tolerance can be deduced , 
as shown in Equation 13 : 

= 1 
- 1 

= 1 k = 1 

error tolerance = 2 - n ( 1sn23 ) ( 13 ) 

a 

? = ( a + Erab * a ) / ( b + Erab8b ) ( 10 ) 

[ 0033 ] Finally , the code analyzer selects and replaces the 
mov instructions in the assembly code with approximate 
mov instructions 120. The selected mov instructions load 
and store the variable , which locates at the leaf of the data 
dependency graph ( e.g. a , b , c ) . A new type of approximate 
load and store instruction ( amov , dist , src , error threshold ) is 
introduced into the X86 instruction set for the network to 
compress approximable packets . The error threshold in the 
amov instruction is multiplied by 103 to eliminate the 
decimal point . The final result 122 is shown in FIG . 2 , where 
“ 50 ” indicates a 5 % error tolerance and “ 25 ” indicates a 
2.5 % error tolerance . 
[ 0034 ] FIG . 4 presents a high - level overview of an exem 
plary approximate communication system along with the 
hardware design . In certain embodiments , the system oper 
ates as follows . At the core 402 , when a cache miss is caused 
by an approximate store operation , a write request is gen 
erated by the private cache 404 with the approximation 
information . The approximation information includes the 
address , data type ( e.g. integer , floating point , etc. ) , and error 
tolerance . The write request is compressed by the approxi 
mate data compression logic 406 at the core and private 
cache node based on the error tolerance of the data . Then , the 
write request is encoded by the packet encoder 410 at the 
network interface 432 and injected into the network , where 
it travels through one or more routers in the on - chip net 
work . Upon reaching the router 418 of the shared cache / 
shared memory node 420 , the write request packet passes 
through the network interface 434 , a packet decoder 428 , 
and a data decompression module 422. When the shared 
cache or shared memory node 420 receives the write request 
packet , the data decompression module 422 recovers the 
truncated data and adds zeros to the truncated part to 
maintain the original data format . Then , the write request is 
sent to the shared cache or shared memory 420 , and a write 

[ 0038 ] In Equation 13 above , the data error tolerance is a 
number between 0 and 1 , and n is the number of most 
significant bits ( MSBs ) in the mantissa of this floating point 
value . In a floating point data value , the 1 - bit sign and the 
8 - bit exponent ( a total of 9 bits ) are also critical bits , which 
must be transmitted . Thus , by truncating 23 - n bits , we can 
ensure the value's relative error is less than 2 - n . For 
example , to satisfy a data error tolerance of 10 percent for 
any floating point value , we can truncate 18 least significant 
bits ( LSBs ) , resulting in a maximum relative error of 6.25 
percent . Equation 14 shows the representation of a signed 
integer . In a signed integer , the MSB represents the sign , and 
the remaining 31 bits represent the value : 

a 

31 ( 14 ) 
int = xx 2 % ( X4 = 0 or 1 ) = 

k = 0 

[ 0039 ] We observe that when n bits ( of the 31 LSBs ) are 
truncated , the maximum error caused by truncation will be 
Ik_0 " X , 2 * ( Xx = 0 or 1 ) . Thus , Equation 15 below can be used 
to calculate the number of bits ( n ) to be truncated for a given 
error tolerance : 

= 
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( 15 ) ??.2 k = 
error tolerance = WIWI ( Xk = 0 or 1 ) 

? ? , 2k 

[ 0040 ] With this data truncation method , an integer with a 
small absolute value requires a larger number of MSBs to 
achieve the same error thr hold than is required for an 
integer with a large absolute value . For example , for an 
integer value of 100 , 29 MSBs need to be transmitted to 
ensure 5 percent error tolerance . On the other hand , for an 
integer value of 5,418 , only 28 MSBs need to be transmitted 
to achieve the same data error tolerance ( 5 percent ) . To 
overcome this problem , we compress the data using the 
frequent data pattern compression method . In previous 
research , the frequent data pattern compression mechanism 
( Table 1 ) has been proposed [ and extended to NoCs with a 
low - overhead compression and decompression mechanism . 

TABLE 1 

Frequent Pattern Encoding > 

Data Size 
After Encoding Code Pattern Encoded 

000 
001 
010 
011 
100 
101 
111 

Zero run 
4 - bit sign - extended 
1 - byte sign - extended 
Halfword sign - extended 
Halfword padded with a zero halfword 
Two half words , each 1 - byte sign - extended 
Uncompressed word 

3 bits 
4 bits 
8 bits 

16 bits 
16 bits 
16 bits 
32 bits 

[ 0042 ] When a cache miss is caused by approximate load 
operation , a read request is issued by the private cache 404 
with the approximation information . Then , the read request 
is sent to the packet encoder 410 to generate a read request 
packet . The read request packet is injected into the network 
through the network interface 432 , where it travels through 
multiple routers in the on - chip network . Upon reaching the 
router 418 of the shared cache / shared memory node 420 , the 
read request packet passes through the network interface 
434 , a packet decoder 428 , and a quality control table 424 . 
When the shared cache or shared memory node 420 receives 
the read request , the approximation information is extracted 
from the packet and inserted into the quality control table 
424. When the read reply is generated by the shared cache 
or shared memory 420 , the approximate data compression 
logic 426 reads the approximation information in the quality 
control table and truncates the data in accordance with the 
approximation information . Then , the packet encoder 430 
prepares the read reply packet and sends it to the router 418 . 
The read reply packet is decoded at the packet decoder 412 
and then arrives at the core 402 and private cache node 402 , 
where the data decompression module 408 recovers the data . 
[ 0043 ] The baseline system is a multi - core processor , 
which is shown in FIG . 5. FIG . 5 is a zoomed - in , detailed 
view of two of the routers shown , designated “ R. ” As shown 
in FIG . 5 , the system includes a core 402 , a private cache 
404 , a packet encoder 410 , a packet decoder 412 , a first 
router 414 , a network link 416 , a second router 418. In this 
simplified example , the first router 414 , the network link 
416 , and the second router 418 comprise what can be 
considered the network . shared memory 420. FIG . 4 , show 
ing the approximate communication system of the present 
disclosure , is modified to include such additional compo 
nents as : the approximate data compression logic module 
406/426 , the data decompression logic module 408/422 , and 
a quality control table 424 . 
[ 0044 ] FIG . 6A - 60 show a stepwise process by which the 
approximate communication system operates with regard to 
a read request . As shown in FIG . 6A , when the core 402 
reads data from memory and misses the L1 cache , the read 
request , which is comprised of address and approximation 
information , is transmitted from the core 402 and private 
cache 404 to the packet encoder 410. The transmission of the 
read request to the packet encoder 410 is shown in FIGS . 6B 
and 6C . 

[ 0045 ] At FIG . 6D , the read request packet is transmitted 
through multiple routers in the on - chip network 416 from a 
first router 414 to a second router 418. The read request 
packet is transmitted from the second router 418 and 
received by the network interface 434 at shared memory 
shared cache and passes to the packet decoder 428. As 
shown in FIG . 6E , the read request packet is comprised of 
address and approximation information , which includes 
error tolerance and data type , as shown in FIG . 7 . 
[ 0046 ] As shown in FIG . 6F , the read request packet , 
comprised of address and approximation information , is 
transmitted from the packet decoder 428 to the quality 
control table 424. When the network interface at the memory 
or shared cache node 434 receives the read request packet , 
the packet decoder 428 extracts the address and approxima 
tion information from the packet . Then , as shown in FIG . 
6G , the address is sent to the memory or shared cache 420 
to collect the data . 

[ 0041 ] That mechanism is adopted in certain aspects of the 
present disclosure to compress approximated data . The 
essence of frequent data pattern compression method is to 
eliminate zeros and ones in the MSBs and LSBs for both 
integer and floating value without effecting the accuracy of 
the value . We develop a frequent pattern replacement table 
based on Table 1. Table 2 shows the static set of frequent 
patterns and the codes . In this table , the notation X repre 
sents a bit that can be either 0 or 1.Oxff and Ox00 are two 
hexadecimal numbers , which represent eight 1 - bits and eight 
0 - bits . The data compressor checks every piece of data and 
attempts to match its pattern . If the pattern matches , the data 
compressor will replace the pattern with the corresponding 
code . The 0 or 1 represented by X will not be changed during 
the compression process . 

TABLE 2 

Code Frequent Pattern 
000 
001 

010 

Ox00 
Ox00 
Oxff 
Ox00 
Oxff 
Ox00 
Oxff 
XXXXXXXX 
Ox00 
Oxff 

Ox00 
Ox00 
Oxff 
Ox00 
Oxff 
Ox00 
Oxff 
XXXXXXXX 
OXXXXXXX 
1XXXXXXX 

Ox00 Ox00 
Ox00 00000xxx 
Oxff 11111XXX 
Ox00 OXXXXXXX 
Oxff 1XXXXXXX 
OXXXXXXX XXXXXXXX 
1XXXXXXX XXXXXXXX 
Ox00 Ox00 
Ox00 OXXXXXXX 
Oxff 1XXXXXXX 

011 

100 
101 
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[ 0047 ] As shown in FIG . 6H , the address and data are 
received at the memory or shared cache 420 , while the 
approximation information is stored in the quality control 
table 424. Then , as shown at FIG . 61 , the network interface , 
at the approximate data compression logic module 426 
approximates the data based on the approximation informa 
tion stored in the quality control table 424. As shown in FIG . 
6J , the approximate data compression logic module 426 then 
creates a read reply that is comprised of address information 
and approximated data . 
[ 0048 ] As shown in FIG . 6K , the read reply and its address 
information and approximated data are transmitted to the 
packet encoder 430. Then , as shown in FIG . 6L , the packet 
encoder 430 packs the approximated data into the read reply 
packet and sends back to the core 402 through the second 
router 418 , the network link 416 , and the first router 414 . 
[ 0049 ] As shown in FIG . 6M , the packet decoder 412 
decodes the read reply packet that is received through the 
network link 416 and the first router 414. The packet decoder 
412 decodes the read reply packet into its address and 
approximated data , as shown in FIG . 6N The read reply 
packet and its address and approximated data then pass 
through the data decompression logic module 408 , which 
recovers the approximated data and transmits it to the Li 
cache 404 and the core 402 . 
[ 0050 ] FIG . 7 shows the hardware design of the quality 
controllable 424 at the shared cache or shared memory node 
420. The quality control table consists of 3 columns of 
approximation information : addresses , data types , and error 
thresholds . The data type column describes the structure of 
the approximable data ( e.g. integer , floating point , etc. ) . 
[ 0051 ] In the network interface of the shared cache or 
shared memory node , the data approximation logic module 
426 receives a read packet ( A ) containing an address in the 
quality control table 424 from which to acquire the approxi 
mation information for the data . If the address matches an 
entry in the quality control table 424 , then the table sends a 
read reply packet with the corresponding approximation 
information , which includes the address , data type , and error 
tolerance ( B ) . Then , the corresponding entry is deleted from 
the table after the reply packet ( B ) is sent . Otherwise , a 
negative signal ( C ) is sent to the data approximation logic 
module 426 to indicate that these data require accurate 
transmission . When a read request packet ( D ) arrives at the 
quality control table , the table first checks whether it con 
tains approximation information . If so , the table extracts and 
registers the approximation information . If the requested 
data contains multiple data types , multiple entries in the 
quality control table 424 are occupied to store approxima 
tion information . Then , the quality control table forwards the 
read request ( E ) , which now contains only the address , to the 
shared cache or shared memory . 
[ 0052 ] The foregoing description and drawings should be 
considered as illustrative only of the principles of the 
disclosure . The disclosure is not intended to be limited by 
the preferred embodiment and may be implemented in a 
variety of ways that will be clear to one of ordinary skill in 
the art . Numerous applications of the disclosure will readily 
occur to those skilled in the art . Therefore , it is not desired 
to limit the disclosure to the specific examples disclosed or 
the exact construction and operation shown and described . 
Rather , all suitable modifications and equivalents may be 
resorted to , falling within the scope of the disclosure . All 
references cited herein are incorporated in their entireties . 

1. An approximate communication system for network 
on - chips comprising : 

a multi - core processor , wherein said multi - core processor 
comprises a code analyzer module that : 

identifies one or more error - resilient variables in a code of 
interest prior to code execution , wherein the error 
resilient variables comprise a subset of the data gener 
ated when the code of interest is executed ; 

analyzes the data dependency graph to calculate an error 
threshold for each of the one or more error - resilient 
variables ; 

appends an approximation instruction to each of the one 
or more error - resilient variables ; 

updates assembly code to incorporate the approximation 
instruction ; and 

compresses a data packet comprised of the approximation 
function prior to transmitting the data packet . 

2. The system of claim 1 , wherein the error threshold is 
dependent on an application's quality requirements . 

3. The system of claim 1 , wherein the approximation 
instruction loads and stores the one or more error - resilient 
variables in memory . 

4. The system of claim 1 , wherein the approximation 
information is comprised of address data , variable data type , 
and error threshold data . 

5. The system of claim 1 , wherein the multi - core proces 
sor writes the data packet to a shared memory or shared 
cache . 

6. The system of claim 1 , wherein the multi - core proces 
sor compresses data in the write request using the approxi 
mation function in a network interface at a core and a private 
cache node . 

7. The system of claim 6 , wherein the multi - core proces 
sor further decompresses data in the write request in the 
network interface at a shared cache and a shared memory 
node . 

8. The system of claim 7 , wherein the multi - core proces 
sor further reads a data packet from the shared memory or 
the shared cache . 

9. The system of claim 8 , wherein the data packet read 
from the shared memory or the shared cache is received at 
a shared memory . 

10. The system of claim 9 , wherein a quality control table 
at the shared memory extracts approximation information 
comprising address data from the read request packet . 

11. The system of claim 10 , wherein a read reply data 
packet is approximated if the address data is matched to an 
entry in the quality control table . 

12. The system of claim 11 , wherein the matched entry in 
the quality control table is deleted . 

13. The system of claim 11 , wherein the read reply packet 
is received at the core and private cache . 

14. The system of claim 13 , wherein the data in the read 
reply packet is decompressed in a network interface at the 
core and private cache node . 

15. A method for approximate communication for net 
work - on - chips comprising : 

identifying one or more error - resilient variables in a code 
of interest prior to code execution , wherein the error 
resilient variables comprise a subset of the data gener 
ated when the code of interest is executed ; 

analyzing the data dependency graph to calculate an error 
threshold for each of the one or more error - resilient 
variables ; 
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appending an approximation instruction to each of the one 
or more error - resilient variables ; 

updating assembly code to incorporate the approximation 
instruction ; and 

compressing a data packet comprised of the approxima 
tion function prior to transmitting the data packet . 

16. The method of claim 15 , wherein the error threshold 
is dependent on an application's quality requirements . 

17. The method of claim 15 , wherein the approximation 
instruction loads and stores the one or more error - resilient 
variables in memory . 

18. The method of claim 15 , wherein the approximation 
information is comprised of address data , variable data type , 
and error threshold data . 

19. The method of claim 15 , further comprising writing 
the data packet to a shared memory or shared cache . 

20. A network interface at a shared cache and shared 
memory node for processing data packets , said network 
interface comprising : 

an approximate data compression module , quality control 
table , and approximate data decompression model , 
wherein : 
the approximate data compression module is config 

ured to compress a data packet using one or more 
approximation functions ; and 

the quality control table is configured to register the 
approximation information ; and 

the approximate data decompression model is config 
ured to recover the approximated data into an origi 
nal format comprised of data recovery functions . 

* 


