
Workload Capacity Considering NBTI Degradation in

Multi-core Systems

Jin Sun∗, Roman Lysecky∗, Karthik Shankar∗, Avinash Kodi†, Ahmed Louri∗, and Janet M. Wang∗
∗Department of Electrical and Computer Engineering, The University of Arizona, USA
†Department of Electrical Engineering and Computer Science, Ohio University, USA
∗Email: {sunj, rlysecky, karthik1, louri, wml}@ece.arizona.edu, †kodi@ohio.edu

Abstract—As device feature sizes continue to shrink, long-term reli-
ability such as Negative Bias Temperature Instability (NBTI) leads to
low yields and short mean-time-to-failure (MTTF) in multi-core systems.
This paper proposes a new workload balancing scheme based on device
level fractional NBTI model to balance the workload among active
cores while relaxing stressed ones. The proposed method employs the
Capacity Rate (CR) provided by the NBTI model, applies Dynamic
Zoning (DZ) algorithm to group cores into zones to process task flows,
and then uses Dynamic Task Scheduling (DTS) to allocate tasks in
each zone with balanced workload and minimum communication cost.
Experimental results on 64-core system show that by allowing a small
part of the cores to relax over a short time period (10 seconds), the
proposed methodology improves multi-core system yield (percentage of
core failures) by 20%, while extending MTTF by 30% with insignificant
degradation in performance (less than 3%).

I. INTRODUCTION

As device feature sizes continue to shrink, long-term reliability

or permanent fault such as Negative Bias Temperature Instability

(NBTI) affects system life-span, and leads to low yields and short

mean-time-to-failure (MTTF) in multi-core systems. A number of

new techniques have recently emerged to cope with permanent faults

such as NBTI using post-manufacturing burn-in [1][2][3]. However,

very little attention has been paid to device stress and its impact on

system life-span and performance in the multi-core era. Device stress

may happen after days of full workload operation, and requires days

to relax before recovering. Letting the device completely wear-out

will impact the system as defective cores have to be permanently

removed from the pool of active cores. A meaningful approach

would be relaxing cores when they are stressed long before they

are completely wear-out. This approach would require solving three

challenges: how to assess a core is stressed, how to assign workload

to relax stressed cores, how to avoid additional performance cost

associated with balancing workload. The proposed approach in this

paper answered all these questions. We explain each part in turn.

Different from existing approaches [2][3] that focused on long-term

stress using static NBTI models, we propose to use a fractional stress

and recovery model to model partially stressed cores: cores alternate

between a heavy workload phase (once the core has relaxed) and a

light workload phase (when the core becomes stressed) with high

frequency of alternation between phases. During the light workload

phase, pmos transistors of idle gates are set to “1” to relieve the stress

as discussed in [4]. The end result of fractional NBTI model is a core

capacity rate (CR) that indicates how much additional workload one

core can accept before getting over-stressed.

A number of recent works have focused on how to balance

workload considering communication cost. Though not solving the

same problem, some of these ideas are worth mentioning and

provided a good initiative of the current work. For example, in

[5] the authors proposed a dynamic workload balancing strategy

called Dynamic Load Balancing using Expectation-Maximization

(DLBEM). To characterize workload a mixture Gaussian model is

employed to estimate workload distribution. Iterative load balancing

approaches such as diffusive load balancing [6][7] exchange workload

information between neighbor processors, thus avoid communication

messages flooding in the entire system. [8] suggests a predictive

method which estimates workload information based on historical

workload data.

These above reviewed ideas and approaches work well in their

applications but may not be applicable in our scenario. For example,

DLBEM requires an explicit expression of probability distribution

function (PDF) of the workload distribution, which is a significant

limitation to our situation where explicit PDF only exists at de-

vice level. Besides, the job migration policy in DLBEM tends to

cause considerable communication overhead when doing workload

balancing. Iterative load balancing approaches ensure local workload

balancing, and have been proved to be globally imbalance [9]. [8]’s

approach was built on historical workload and thus could not provide

us dynamic workload balancing.

The proposed approach has three components: NBTI introduced

core performance difference estimation, Dynamic Zoning (DZ), and

Dynamic Task Scheduling (DTS). Core performance difference is

estimated using fractional NBTI model and indicated by capacity

rate. Each core has its own capacity rate. Dynamic Zoning (DZ)

algorithm groups cores into zones according to core capacity rates. It

starts with a rectangular region as the initial zone, and adjusts grad-

ually considering zone connectivity and core capacity rate to match

workload from the assigned flow. Then, Dynamic Task Scheduling

(DTS) algorithm allocates tasks in one zone to achieve maximum

utilization with little communication cost. Fig. 1 demonstrates the

flow of our proposed approach. Note that this method is iterative, the

core capacity rate should be updated frequently because of changing

core performance or aging effect.

Dynamic Zoning

A newly

generated flow

Task Scheduling

Task Execution

Update of

Capacity Rate

Workload

Constraints

Fig. 1. The general flow of the proposed workload balancing methodology

Specifically, the new contributions of this paper are: 1) a system

NBTI stress estimation model, 2) a new workload balancing strategy

978-1-4244-5767-0/10/$26.00 2010 IEEE

5C-4

450
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:16:52 UTC from IEEE Xplore. Restrictions apply.

considering core’s performance difference, 3) a novel scheduling

scheme including data packet size and communication cost, and 4) a

new insight into the relationship between core recovery time, stress

time, and workload, and their impact on core life-span. This strategy

has shown good system yield improvement and extended MTTF with

insignificant impact on latency or communication traffic overhead.

Experimental results on a 64 core system show that by allowing a

part of cores (approximately 12.5%) to relax over a short time period

(10 seconds), the proposed methodology improves multi-core system

yield by reducing core failure rate by 20%, and extending MTTF by

30% with insignificant degradation in performance (less than 3%).

The remainder of this paper is organized as follows. Section II

introduces the NBTI device and core model. Section III discusses

the proposed workload balancing methodology considering NBTI

introduced performance difference. Experimental results are included

in Section IV. Finally, Section V concludes the paper.

II. NBTI MODEL FOR MULTI-CORE PERFORMANCE

NBTI limits lifetime in nano-scale integrated circuits and continues

to worsen with device scaling beyond 90nm [1][2][3]. When PMOS

is negatively biased, the electrical field across the gate oxide produces

a complicated electro-chemical reaction that consequently increases

the PMOS threshold voltage over time. The impact of NBTI may

take days or months to ultimately affect timing and circuit delay,

eventually leading to system failure.

The NBTI impact causes the core to alternate between stress and

recovery phases. In general, recovery and stress period are fairly

symmetric. Suggested by the sampling time of NBTI sensors [10],

we currently assume a 10-second duration for each period. The NBTI

introduced threshold voltage change ΔVth in stress phase follows a

similar style as reported in [3]:

ΔVth =
(
Kv (T (t)) (t − t0)

1
2 + ΔVth0

1
2n

)2n

(1)

where T (t) represents temperature fluctuation with regard to time. In

recovery phase, the Vth degradation can be represented as:

ΔVth = Vth0

(
1 − 2ε1 +

√
ε2C(T (t))(t − t0)

2tox +
√

C(T (t))t

)
(2)

Considering the temperature changes with regard to time, we include

the time dependency in parameters Kv and C, as they both are func-

tions of T (t). The complete expressions of the associated parameters

in (1) and (2) can be referred to [3].

The change in threshold voltage in turn affects timing and leakage

power of the core. Take timing issue for example. According to

[11][12], delay model considering Vth change can be estimated by

using first-order Taylor expansion. We extend this model to critical

path delay model. The i-th critical path delay can be represented as:

di = di0 + (∂di/∂Vth) ΔVth. (3)

Here the delay is modeled as Gaussian distribution perturbed around

its nominal value di0. For a single core, we may have a number of

critical paths. The worst-case is the critical path with largest variation:

Δdmax = min {max ((∂di/∂Vth) ΔVth) , 3σ} . (4)

The greater the delay variations, the less workload the core should

accept. We define Capacity Rate (CR) as an indication of how much

workload one core can accept. We relate delay variations with core’s

capacity rate using the following percentage model:

CR(d) = 1 − Δdmax/3σ (5)

where σ indicates the delay variance subject to a Gaussian distri-

bution. Apparently our concern is only positive delay fluctuation.

Therefore when worst-case delay variation Δdmax is zero, this core’s

capacity rate is at 100% or 1. The opposite situation is that Δdmax

is equal to its extreme value 3σ. In this case, capacity rate is at its

lowest, 0. The majority capacity rate will lie in between these two

extreme cases, indicating core’s performance difference. A core with

capacity rate 0.6 can accept only 60% workload compared with a

core with full capacity rate.

On the other hand, Vth variation also has a dramatic impact on

leakage power. The impact of leakage variation on core’s capacity

rate could be derived in a similar way (detailed in [13]). We denote

it by CR(L). If we consider both delay and leakage power impacts

at the same time, a simple average model provides:

Capacity Rate = 0.5 ∗ CR(d) + 0.5 ∗ CR(L). (6)

Thus, we have transferred the NBTI device model to core capacity

rate interpretation. The NBTI model first explicates its impact on

threshold voltage. Then we model the variation in threshold voltage

on system-level delay and leakage power respectively. The end result

is the capacity rate for each core in percentage. The generated

capacity rate will be treated as an upper bound limit of assigned

workload on each core. Since the impact of NBTI on threshold

voltage changes over time, as will the corresponding capacity rate.

NBTI introduced threshold voltage fluctuation also affects system

life-span, leading to short MTTF in multi-core systems. The MTTF

estimation follows the derivation from [14][15] where MTTF is

modeled as an exponential function of operating temperature T , and

temperature T is dependent on threshold voltage change ΔVth.

III. NBTI AWARE WORKLOAD BALANCING

This section introduces a new workload balancing framework. This

proposed method groups cores into zones based on capacity rates.

Each zone has one task flow. Task scheduling within the zone is

formulated as a mixed-integer program (MIP) considering workload

balancing and communication cost.

A. Dynamic Zoning

We propose Dynamic Zoning (DZ) to spread out the workload

across the entire multi-core network. Workloads are fundamentally

composed of sets of tasks, named task flows. Tasks within a particular

flow may have dependencies among them, while tasks from different

flows tend to have very few or no dependencies among them [16].

Therefore, to minimize communication cost, we limit the process of

one task flow to a group of cores physically adjacent to each other.

Such a group of cores is defined as a zone. The DZ algorithm aims at

mapping a task flow onto one particular zone. We then schedule tasks

belonging to this flow among the cores within the assigned zone.

Given a task flow presented as a DAG (Directed Acyclic Graph)

G = (V, E) in Fig. 2, nodes V = {v1, v2, · · ·, vn} represent a

set of tasks to be executed. And the arcs E = {(i, j)} specify

precedence relationships: each arc (i, j) means that task vi must be

completed before vj can start execution. Task weights wi’s represent

the execution time of task vi on a non-stressed core (i.e. a core

with capacity rate 1). The numbers at the input and output of each

node are the number of data tokens which represent the number

of data packets are consumed (at input of node) or produced (at

the output of each node) on each arc [17]. The data token concept

is going to be revisited in Section III-B. The workload caused by

this flow can be evaluated by the structure of the task graph and

the task weights. These two factors provide sufficient information

for workload estimation. Each zone, once generated for a particular

451

5C-4

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:16:52 UTC from IEEE Xplore. Restrictions apply.

2

1

2

2

1

2

3

2

1

1

2

1

4

2

1

3 2

2

w1

w2

w3

w4

w5 w6

w7

v1

v2

v3

v4

v5 v6

v6

Fig. 2. A task graph representing a flow

flow, should be able to accept the workload evaluated based on the

given flow. On the other side, as capacity rate specifies the upper

bound of workload one core can accept, the sum of core capacity

rates in one zone reflects the maximum total workload one zone can

accept. This summation must exceed the estimated workload resulted

from the flow assigned to this zone. We now explain how to evaluate

the workload induced by a particular flow. We sum up all the task

weights of its task graph, and average the total sum over the length

of the worst-case path because the worst-case path determines the

longest execution time. The estimated workload induced by this flow

is defined as follows:

Workload =

∑
i wi, ∀ vi ∈ V∑

j wj , ∀ vj ∈ WCP
(7)

where WCP is the set of nodes existing on the worst-case path. The

workload estimation defined in (7) is the minimally required capacity

rate for a required zone to process this particular flow, since capacity

rate indicates the upper bound of acceptable assigned workload.

Zones are not always in rectangle shapes in the current paper.

Several factors determine the shape: capacity rates of included cores,

total communication distances, and the size of zones (defined as the

number of cores in each zone). We start zoning in a greedy way: start

with a rectangular region for each zone and perturb gradually to meet

the communication and capacity rate requirement. The requirement

of capacity rate in this zone has been discussed above. Besides, to

ensure low communication cost, a good zoning should have short

Manhattan distances among cores in one zone. Thus, the problem of

organizing an optimal zone for a particular flow can be described as:

find Zk

minimize
∑
(i,j)

d(i, j), ∀vi, vj ∈ Zk

subject to
∑

i

CRi ≥ Workload, ∀vi ∈ Zk

where Zk is the zoning result consisting of an optimal set of adjacent

cores, d(i, j) denotes the Manhattan distance between any two cores

in this zone, and CRi represents the capacity rate for each included

core. The workload information of this flow is evaluated according

to (7).

Algorithm 1 describes the proposed DZ method. When a new

task flow comes into the system, DZ algorithm first searches

for the maximally empty contiguous region of available cores

(‘Find Max Region’ operator). Then starting from one corner of the

explored empty region, ‘Initial Rectangle’ operator initializes a zone

in rectangular shape. Rectangular shape leads to short Manhattan

Algorithm 1 Dynamic Zoning

Input: a task flow to be allocated;

a multi-core system with core capacity rate identified

Output: the optimal zoning result to execute the given flow

1: S ⇐ Find Max Region ()

2: DZ opt ⇐ Initial Rectangle (S)

3: Dist opt ⇐ Manhattan Distances (DZ opt)
4: k ⇐ 0

5: while k < N and Dist opt > Dth do
6: DZ new ⇐ Perturbation (DZ opt)
7: Dist new ⇐ Manhattan Distances (DZ new)

8: if Dist new < Dist opt then
9: DZ opt ⇐ DZ new; Dist opt ⇐ Dist new

10: end if
11: ΔDist ⇐ Dist new–Dist opt
12: if exp(–ΔDist / N) > random (0,1) then
13: DZ opt ⇐ DZ new; Dist opt ⇐ Dist new
14: end if
15: k ⇐ k+1
16: end while
17: return DZ opt

distances, and therefore is expected to be a good initial solution.

‘Manhattan Distances’ operator calculates the total communication

distances in this zone. Then ‘Perturbation’ operator makes slight ad-

justments to this initialized zone to explore better grouping solution,

according to a heuristic procedure described in Algorithm 1. For

each adjustment, the heuristic compares the total distances between

the initialized zone and the adjusted current zone. The heuristic

not only accepts changes that improve the objective, but also some

changes that deteriorate it. The latter are accepted probabilistically

following simulated annealing algorithm. Above searching procedure

is repeated until the termination condition is satisfied (the total

distances of current zone is less than a pre-determined threshold).

B. Task Scheduling In One Zone

As mentioned above, the execution of tasks belonging to the

same flow are restricted within one zone, because of no inter-zone

dependency. Therefore after zoning, the next step is to schedule

tasks in each zone. We formulate the Dynamic Task Scheduling

(DTS) problem as a mixed-integer program (MIP). The objective is to

achieve maximum system utilization with minimum communication

cost under workload constraints. A mixed-integer program is an

optimization model in which some of the decision variables (not all

of them) have to be of type integer or binary. We choose the MIP

solver integrated in LINGO software to solve the within-zone task

scheduling problem. The solver is equipped with advanced heuristic

implementation speeding the finding of feasible solutions on many

difficult MIP problems.

To formulate the DTS problem into MIP form, we introduce a

binary matrix M to represent all task-core mapping relationship. Let

V = {v1, v2, · · ·, vn} denote a set of tasks to be executed within

a zone of m cores. The task-core mapping matrix is thus of size

m×n. Each entry in this mapping matrix Mij is a decision variable

of binary type, with “1” representing task vi assigned to the j-th core

and “0” as the opposite situation. Fig. 3 shows an example of a task-

core mapping matrix which assigns 6 tasks to 3 cores. The definition

of this matrix obviously imposes the first set of constraints:

m∑
i=1

Mij = 1, for j = 1, 2, · · ·, n. (8)

5C-4

452
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:16:52 UTC from IEEE Xplore. Restrictions apply.

which indicates that one task can be assigned to only one core.

Using this binary mapping matrix, we conveniently determine task

assignments.

Core 1

Task 1

0

0

Core 2

Core 3

Task 2

0

1

Task 3

1

0

Task 4

0

1

Task 5

1

0

1 0 0 0 0

Task 6

1

0

1

Fig. 3. An example of a task-core mapping matrix

Other than the mapping matrix, another set of decision variables are

the starting times for each task, denoted by Si’s. Task starting times

are combined with the task-core mapping matrix to determine the job

sequences of all involved cores. An optimal schedule can be fully

specified by determining the mapping matrix Mij’s and task starting

times Si’s: each row in the mapping matrix indicates a set of tasks

to be executed on a particular core; the starting times help determine

the execution sequence of all assigned tasks. Here we explicit the

second set of constraints in this optimization model, in order to keep

the precedence relationships among tasks. For each arc (i, j) of the

task graph, the precedence relationship requires that task i must be

finished before the execution of its successor j:

Si + Ti + Tcomm(i, j) ≤ Sj , (9)

where Si and Ti represents the starting time and execution time for

task vi respectively, while Tcomm represents the communication time

between task i and j.

The third set of constraints are workload constraints imposed by

core capacity rates. Capacity rate is included as an upper bound limit

for workload assigned to each core. A stressed core with low capacity

rate indicates that light workload should be assigned to this core.

the proposed DTS method dynamically scales down core operating

frequency and thus leads to varying task execution time. Ti for task i
depends on which core this task resides in. Therefore we need to take

into account the scaling ratio when evaluating the assigned workload

on a particular core. Let αij denote the frequency scaling ratio when

core i is processing task j. For each core within the zone, its assigned

workload can be estimated as:

WLi =

∑
j αijTj , ∀Mij = 1

Ts
≤ CRi, for i = 1, · · ·, m. (10)

WLi in (10) records the assigned workload on i-th core. Ts represents

the length of schedule, i.e. the execution time on the worst-case path.

The value of core’s workload lies into the interval [0, 1], and therefore

can be compared with its capacity rate. The workload assigned to

each core should not exceed its capacity rate.

We now discuss the objective functions in the proposed DTS

method. For an efficient system, it is important to achieve high

utilization. Core Utilization is measured as the ratio of its busy time

to its total active period of time. One goal in our optimization model

is to optimize the overall system utilization summed over all cores.

Under core workload constraints imposed by capacity rates, this total

utilization is also bounded by total capacity rate of the zone.

Another goal in this DTS scheme is to minimize the total commu-

nication cost among the cores. In a task graph with different rates

of data production and consumption [17], some data tokens have to

be stored in the buffer on the arc. Therefore the communication cost

consists of two components:

Tcomm = Ttrans + Tbuff . (11)

where Ttrans denotes total transmitting cost, and Tbuff denotes the

total buffering cost (or storage cost). For each arc (i, j) in the task

graph, the transmitting cost is computed as the multiplication of the

number of token transmitted and the unit time to transmit one token.

The total transmitting cost is summed up over all arcs with buffering

operations:

Ttrans =
∑
(i,j)

Nc(i, j) c(i, j) (12)

where Nc(i, j) is the number of tokens transmitted on arc (i, j),

c(i, j) is the unit transmission cost on (i, j). The buffering cost is

calculated and accumulated in a similar way:

Tbuff =
∑
(i,j)

Nb(i, j) b(i, j) (13)

where Nb(i, j) denotes the number of tokens to be buffered on arc

(i, j) or loaded from (i, j), and b(i, j) is the unit buffering cost.

In case that the number of input data tokens is greater than that of

output data tokens, b(i, j) indicates the time it takes to buffer one

unit token on (i, j). Under the opposite condition, b(i, j) denotes the

time it takes to load one token from the buffer on arc (i, j).

To sum up, the DTS problem in our workload balancing framework

can be generalized by the following mixed-integer program:

minimize α ·
(

m∑
i=1

(1 − Ui)

)
+ β · Tcomm

subject to

n∑
j=1

Mij = 1, ∀j = 1, 2, · · ·, n

Si + Ti + Tcomm(i, j) ≤ Sj , ∀ (i, j) ⊂ E

WLi(M, S) ≤ CRi, ∀i = 1, 2, · · ·, m
variables M = [Mij]m×n , S = {S1, S2, · · ·, Sn} (14)

where Ui represents the recorded utilization of i-th core, Tcomm

calculates the total communication cost based on the schedule, α
and β are simply two weighting factors. The decisions variables are

the task-core mapping matrix, with each entry Mij constrained to

be a binary value, and the task starting times. The first constraint

in this optimization model is to guarantee the uniqueness of task-

core mapping relationship. The second constraint satisfies all the

precedence relationships among the tasks. The third constraint reflects

the workload constraint induced by NBTI introduced capacity rate,

where WLi denotes the assigned workload on i-th core, which is

dependent on the mapping relationships and task starting times (refer

to (10)), and CRi represents its corresponding capacity rate.

C. NBTI-Aware Workload Balancing

This section discusses how to dynamically spread the workload

across the entire network based on the proposed DZ and DTS

methods. The balancing strategy is adaptive to the frequent update of

core capacity rate. As explained in Section II, core capacity rate varies

at different time points. In most situations, some of the cores may

be in “quasi-defect” situations as they are over-stressed. Under this

situation, the over-stressed cores cannot be assigned heavy workload

at that moment. On the other hand, when they are released at a later

time, they may be available again. In this sense, the capacity rate for

a core is not a constant number but has to be updated frequently.

In subsequent part we focus on two important moments to explain

our proposed workload balancing policy: the moment when a new

flow comes in, and the moment when a flow is finished execution.

When a new flow comes into the system, the DZ algorithm takes

effect immediately to generate an appropriate zone to allocate the

453

5C-4

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:16:52 UTC from IEEE Xplore. Restrictions apply.

0.5 0.5 0.5 0.8

0.3 0 0.5 0.5

0.5

0.3

0.8

1.0

0.3 0.6

0 0.5

(a)

0.5 0.5 0.5 0.8

0.3 0 0.5 0.5

0.5

0.3

0.8

1.0

0.3 0.6

0 0.5

(b)

0.5 0.5 0.5 0.8

0.3 0 0.5 0.5

0.5

0.3

0.8

1.0

0.3 0.6

0 0.5

(c)

Fig. 4. The generation of a new zone

flow tasks. The DZ algorithm first searches for available cores and

explores the maximally contiguous region. Starting from the bottom-

left corner of the region, the DZ algorithm determines the optimal

grouping solution according to the heuristic described in Algorithm

1. After the cores are grouped in a zone for task execution, the DTS

algorithm is responsible for mapping the tasks onto particular cores

within this zone. Note that due to the generation of a new zone, the

maximally contiguous region will then be updated. The procedure of

generating a new zone is illustrated in Fig. 4.

The case of relaxing a zone is relatively simply. When a zone

finishes processing all assigned tasks, all the cores within this zone

will be relaxed to join other available cores for the processing of new

flows. Therefore the maximally contiguous region will be changed in

next search iteration. This is done by a merging procedure. Moreover,

after a period of task execution, the capacity rates of all involved cores

also will be updated. Fig. 5 illustrates the relaxation procedure of an

existing zone.

0.5 0.5 0.5 0.8

0.3 0 0.5 0.5

0.5

0.3

0.8

1.0

0.3 0.6

0 0.5

(a)

0.5 0.5 0.5 0.8

0.3 0 0.5 0.5

0.5

0.3

0.8

1.0

0.3 0.6

0 0.5

(b)

0.5 0.5 0.5 0.8

0.3 0 0.5 0.5

0.5

0.3

0.8

1.0

0.3 0.6

0 0.5

(c)

Fig. 5. The relaxation of an existing zone

IV. EXPERIMENTAL RESULTS

This section presents the results of the proposed workload balanc-

ing methodology. We consider a 8×8 multi-core system. We choose

8/64 nodes to be stressed (∼12.5%). To demonstrate the effectiveness

of our proposed approach, all task graphs are generated from realistic

applications from several benchmark suites, including MediaBench,

MiBench, NetBench and EEMBC. Table I lists the scheduling results

at 90 seconds after the start of simulation. This table includes core

index, zone number each core is grouped in, each core’s capacity

rate and its assigned workload. Note that only the stressed cores are

listed in Table I. In addition, the scheduling results at 100 seconds are

further presented in Table II. We can observe that for each stressed

core, its assigned workload is well bounded by its capacity rate. The

tables show that those cores stressed at 90 seconds have been relaxed

at 100 seconds, while a new group of cores alternate into stressed

phase. The experimental results demonstrate that capacity rate is an

indication of upper bound limit one core can accept workload. The

DZ algorithm together with DTS algorithm effectively balances the

workloads among the stresses cores.

TABLE I
THE SCHEDULING RESULTS FOR STRESSED CORES AT 90S

Stressed
Core Index

Zone #
Grouped in

Capacity
Rate

Assigned
Workload

9 1 0.7 0.6248
12 1 0.5 0.5000
28 3 0.5 0.3892
33 3 0.4 0.4000
37 6 0.4 0.4000
39 6 0.5 0.4473
50 7 0.8 0.6482
57 7 0.9 0.8079

TABLE II
THE CAPACITY RATE AND CORE UTILIZATION FOR THE STRESSED CORES

AT 100S

Stressed
Core Index

Zone #
Grouped in

Capacity
Rate

Assigned
Workload

14 3 0.4 0.3514
25 2 0.4 0.4000
31 5 0.5 0.5000
38 5 0.5 0.3892
41 6 0.7 0.5864
44 4 0.3 0.3000
52 6 0.6 0.5536
58 6 0.5 0.4293
59 6 0.2 0.2000

To compare system performance in execution time, we initially ran

simulations at a normal load up to 10000 cycles, then reduce the load

by 50% every 10000 cycles, i.e. at 10000 cycles the load is 0.5 of the

offered load, and at 20000 cycles it will be 25% of the offered load.

We terminate generation of new flows at 30000 cycles. We observe

how long the task flows will run in such a 8 × 8 multi-core system.

Here, while the stressed load on 8/64 nodes is reduced, other nodes

can operate at the maximum rate. Each stressed core is able to execute

these tasks at certain frequency, which is associated with its capacity

rate. We distribute the tasks by using the proposed DZ algorithm

and evaluate the execution time by using the DTS algorithm. Fig.

6 illustrates the overall task execution times at different levels of

offered network load. “Non-Stressed” represents simulation results

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
16000

18000

20000

22000

24000

26000

28000

30000

32000

E
x

e
c

u
ti

o
n

 T
im

e
 (

c
y

c
le

s
)

Offered Load (as a fraction of network capacity)

 Non-Stressed

 Stressed

Fig. 6. Comparison of execution times between non-Stressed and stressed
cases

without considering NBTI introduced stress and “Stressed” considers

NBTI impact. An insignificant increase in execution time (<2%) can

be observed when the offered load is above 0.2. When offered load

increases beyond 0.5, very minor differences can be observed between

the ideal “Non-stressed” and “Stressed” cases (<1%). For the worst

case of offered load as 0.1, approximately a 3% increase in execution

5C-4

454
Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:16:52 UTC from IEEE Xplore. Restrictions apply.

time is obtained.

To demonstrate the efficiency of our proposed methodology, we

increase the number of stressed cores and observe the increase in

system performance degradation. Fig. 7 shows the comparison of task

execution time between “Stressed” and “Non-Stressed” cases. Here

the offered load is fixed at full rate. Starting with 8 stressed cores,

the execution time is almost identical before and after applying the

NBTI stress model. As the number of stressed cores increases, a slight

increase in the overall execution time can be observed. When the

number of stressed cores grows to 16, an insignificant performance

drop (approximately 3%) is observed, which is still acceptable.

8 9 10 11 12 13 14 15 16
20000

21000

22000

23000

24000

25000

26000

27000

28000

29000

30000

31000

32000

E
x

e
c

u
ti

o
n

 T
im

e
 (

c
y

c
le

s
)

Number of Stressed Cores

 Non-Stressed

 Stressed

Fig. 7. Comparison of execution times with different number of stressed
cores

Fig. 8 displays core failure percentage with regard to time. The

x-axis represents the time in terms of year and y-axis represents the

percentage of core failure. The red solid line represents the result

of our new approach (denoted as “New”) while the blue dash line

represents the case without (“Old”) the new approach. The difference

in terms of yield becomes obvious after 2 years and begins to

widen. We used a Monte-Carlo simulation in SPICE to monitor

5

1 2 3 4 5 6

New
Old

Failure
Rate (%)

10

15

20

25

Year

Fig. 8. Core failure percentage comparison between new strategy and without
new strategy

the critical path delay and total leakage power for each core, and

predicted the changes in MTTF. The MTTF computation models

come from [15], including a variety of MTTF estimation approaches

with regard to core activity in terms of workload. Fig. 9 shows the

MTTF comparison between multi-core systems without the proposed

methodology (“Old”) and with the proposed methodology (“New”).

The x-axis presents the time in terms of years of operation. The y-

axis is the MTTF result that shows the average MTTF of a 8/64

multi-core system. Though after about 3 years both cases observe

decreases in MTTF. The “New” one shows about 30% less changes.

Old

1 2 3 4 5 6

MTTF
(month)

10

8

6

4

2

New

Year

Fig. 9. MTTF comparison between new strategy and without new strategy

V. CONCLUSION

This paper presents a new design framework for multi-core system

to include device wear-out impact. The new approach starts from de-

vice fractional NBTI model to evaluate core performance differences,

providing a new NBTI-aware system workload model based on new

DZ and DTS algorithms to balance workload among active cores

while relaxing stressed ones.

REFERENCES

[1] K. Constantinides, S. Plaza, J. Blome, V. Bertacco, S. Mahlke, T. Austin,
B. Zhang, and M. Orshansky, “Architecting a reliable CMP switch
architecture”, ACM Trans. Architecture and Code Optimization, vol. 4,
no. 1, pp. 1-37, 2007.

[2] W. Wang, S. Yang, S. Bhardwaj, R. Wattikonda, S. Vrudhula, F. Liu,
Y. Cao, “The impact of NBTI on the performance of combinational and
sequential circuits”, in Proc. DAC, 2007, pp. 364-369.

[3] S. Bhardwaj, W. Wang, R. Vttikonda, Y. Cao, S. Vrudhula, “Predictive
modeling of the NBTI effect for reliable design”, in Proc. CICC, 2006,
pp. 189-192.

[4] J. JAbella, X. Vera, and A. Gonzalez, “Penelope: The NBTI-Aware
Processor”, in Proc. International Symposium on Microarchitecture, 2007,
pp.85-96.

[5] Han Zhao, Xinxin Liu and Xiaolin Li, “DLBEM: Dynamic load balancing
using expectation-maximization”, in Proc. IPDPS, 2008, pp. 1-7.

[6] G. Cybenko, “Dynamic load balancing for distributed memory multipro-
cessors”, Journal of Parallel and Distributed Computing, vol. 7, no. 2,
pp. 279-301, 1989.

[7] Y. F. Hu and R. J. Blake, “An improved diffusion algorithm for dynamic
load balancing”, Parallel Computing, vol. 25, no. 4, pp. 417-444, 1999.

[8] D. Gu, L. Yang and L. R. Welch, “A predictive, decentralized load
balancing approach”, vol.3, pp. 131b, in Proc. International Parallel and
Distributed Processing Symposium (IPDPS), 2005.

[9] A. Cortes, A. Ripoll, M. A. Senar and E. Luque, “Dynamic load balancing
strategy for scalable parallel systems”, in Proc. International Conference
on Parallel Computing, 1997, pp. 735-738.

[10] E. Karl, P. Singh, D. Blaauw, D. Sylvester, “Compact in-situ sensors
for monitoring Negative-Bias-Temperature-Instability effect and oxide
degradation”, in Proc. ISSCC, 2008, pp. 410-623.

[11] M. Mani, A. Devgan, and M. Orshansky, “An efficient algorithm for
statistical minimization of total power under timing yield constraints”, in
Proc. DAC, 2005, pp. 309-314.

[12] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single PERT-like traversal”, in Proc. ICCAD,
2007, pp. 621-625.

[13] J. Sun, A. Kodi, A. Louri, and J. M. Wang, “NBTI aware workload
balancing in multi-core systems”, in Proc. ISQED, 2009, pp. 833-838.

[14] K. Waldshmidt, J. Haase, A. Hofmann, M. Damm and D. Hauser,
“Reliability-aware power management of multi-core systems (MPSoCs)”,
in Proc. Dynamically Reconfigurable Architectures, 2006.

[15] Y. Liu, W. Tang and R. Zhang, “Reliability and mean time to failure of
unrepairable systems with fuzzy random lifetimes”, IEEE Trans. Fuzzy
Systems, vol. 15, no. 5, pp. 1009-1026, 2007.

[16] H. El-Rewini, T. G. Lewis and H. H. Ali, Task Scheduling in Parallel
and Distributed Systems. Prentice Hall, 1994.

[17] E. A. Lee, and D. G. Messerschmitt, “Synchronous data flow”, in
Proceedings of the IEEE, vol. 75, no. 9, pp. 1235-1245, 1987.

455

5C-4

Authorized licensed use limited to: The George Washington University. Downloaded on October 24,2022 at 15:16:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

